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1. Introduction

This technical appendix provides further details on three aspects of the paper. First, we

discuss alternative procedures to perform likelihood inference. Second, we discuss smoothing.

Finally, we discuss the construction of our data.

2. Comparison with Alternative Schemes

The particle filter is not the only procedure for evaluating the likelihood of the data implied by

nonlinear and/or non-normal dynamic macroeconomic models. Our discussion in the paper

highlighted how computing the likelihood amounts to solving a nonlinear filtering problem,

i.e., generating estimates of the values of W t
1 and S0 conditional on Yt−1 to evaluate the

integral in the likelihood function. Since this task is of interest in different fields, several

alternative schemes have been proposed to handle this problem.

A first line of research has been in deterministic filtering. Historically, the first procedure

in this line was the Extended Kalman filter (Jazwinski, 1973), which linearizes the transi-

tion and measurement equations and uses the Kalman filter to estimate for the states and

the shocks to the system. This approach suffers from the approximation error incurred by

linearization and from the inaccuracy incurred by the fact that the posterior estimates of the

states are non-normal. As the sample size grows, those problems accumulate and the filter di-

verges. Even refinements such as the Iterated Extended Kalman filter, the quadratic Kalman

filter (which carries the second order term of the transition and measurement equations), and

the unscented Kalman filter (which considers a set of points instead of just the conditional

mean of the state, see Julier and Uhlmann, 1996) cannot fully solve these problems.

A second approach in deterministic filtering is the Gaussian-sum filter (Alspach and Soren-

son, 1972), which approximates the densities required to compute the likelihood with a mix-

ture of normals. Under regularity conditions, as the number of normals increases, we will

represent the densities arbitrarily well. However, the approach suffers from an exponential

growth in the number of components in the mixture and from the fact that we still need to

rely on the Extended Kalman filter to track the evolution of those different components.

A third alternative in deterministic filtering is grid filters, which use quadrature integration

to compute the different integrals of the problem (Bucy and Senne, 1971). Unfortunately,

grid filters are difficult to implement, since they require a constant readjustment to small

changes in the model or its parameter values. Also, they are too computationally expensive

to be of any practical benefit beyond very low dimensions. A final shortcoming of grid filters

is that the grid points are fixed ex ante and the results are very dependent on that choice.
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In comparison, a particle filter can be interpreted as a grid filter where the grid points are

chosen endogenously over time based on their ability to account for the data.

Tanizaki (1996) investigates the performance of deterministic filters (Extended Kalman

filter, Gaussian Sum approximations, and grid filters). His Monte Carlo evidence documents

that all of those filters deliver poor performance in economic applications.

A second strategy is to think of the functions f and g as a change in variables of the

innovations to the model and use the jacobian of the transformation to evaluate the likelihood

of the observables (Miranda and Rui, 1997). In general, however, this approach is cumbersome

and problematic to implement.

Monte Carlo techniques are a third line of research on filtering. The use of simulation

techniques for nonlinear filtering can be traced back at least to Handschin and Mayne (1969).

Beyond the class of particle filters reviewed by Doucet, de Freitas, and Gordon (2001), other

simulation techniques are as follows. Keane (1994) develops a recursive importance sampling

simulator to estimate multinomial probit models with panel data. However, it is difficult to

extend his algorithm to models with continuous observables. Mariano and Tanizaki (1995)

propose rejection sampling. This method depends on finding an appropriate density for the

rejection test. This search is time-consuming and requires substantial work for each particular

model. Geweke and Tanizaki (1999) evaluate the whole joint likelihood through draws from

the distribution of the whole set of states over the sample with an McMc algorithm. This

approach notably increases the dimensionality of the problem, especially for the sample size

used in macroeconomics. Consequently, the resulting McMc may be too slowly mixing to

achieve convergence in a reasonable timeframe. Also, it requires good proposal densities and

a good initialization of the chain that may be difficult to construct.

In a separate paper (Fernández-Villaverde and Rubio-Ramírez, 2006), we compare many

of the previous approaches to filtering in a Monte Carlo experiment. We show how the particle

filter outperforms the alternative filters in terms of approximating the distribution of states

and minimizing the root mean squared error between the computed and exact states. We

direct the interested reader to that paper for further information.

3. Smoothing

The particle filter allows us to draw from the filtering distribution p (W t
1, S0|Yt−1; γ) and

compute the likelihood p
¡
YT ; γ

¢
. Often, we are also interested in the density p

¡
ST |YT ; γ

¢
,

i.e., the density of states conditional on the whole set of observations. Among other things,

these smoothed estimates are convenient for assessing the fit of the model and running coun-

terfactuals. We describe how to use the distribution p
¡
ST |YT ; γ

¢
for these two tasks.
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First, we analyze how to assess the fit of the model. Given a value for γ, the sequence

of observables implied by the model is a random variable that depends on the history of

states and the history of the perturbations that affect the observables but not the states,

YT
¡
ST , V T ; γ

¢
. Thus, for any γ, we compute the mean of the observables implied by the

model and the realization of observables, YT :

YT
¡
V T ; γ

¢
=

Z
YT
¡
ST , V T ; γ

¢
p
¡
ST |YT ; γ

¢
dST . (1)

If V T are measurement errors, comparing YT
¡
V T = 0; γ

¢
versus YT is a good measure of the

fit of the model.

Second, we study how to run a counterfactual. Given a value for γ, what would have

been the expected value of the observables if a particular state had been fixed at value from

a given moment in time? We answer that question by computing:

YTSt:Tk =Sk,t

¡
V T ; γ

¢
=

Z
YT
¡
ST−k, S

t:T
k = Sk,t, V

T ; γ
¢
p
¡
ST |YT ; γ

¢
dST , (2)

where S−k,t =
¡
S1,t, . . . , Sk−1,t, Sk+1,t . . . , Sdim(St),t

¢
and St:T−k = {S−k,m}

T
m=t. If V

T are mea-

surement errors, YTSt:Tk =Sk,t

¡
V T = 0; γ

¢
represents the expected value for the whole history of

observables when the state k is fixed to its value at t from that moment onward. A counter-

factual exercise compares YT
¡
V T = 0; γ

¢
and YTSt:Tk =Sk,t

¡
V T = 0; γ

¢
for different values of k

and t.

The two examples share a common theme. To compute integrals like (1) or (2), which

will appear in our application below, we need to draw from p
¡
ST |YT ; γ

¢
. To see this, let

{st,i}Ni=1 be a draw from p
¡
ST |YT ; γ

¢
. Then (1) and (2) are approximated by:

YT
¡
V T = 0; γ

¢
' 1

N

NX
i=1

YT
¡
st,i, 0; γ

¢
and

YTSt:Tk =Sk,t

¡
V T = 0; γ

¢
' 1

N

NX
i=1

YT
¡
st,i−k, S

t:T
k = sik,t, 0; γ

¢
.

Hence, the problem of computing integrals like (1) and (2) is equivalent to the problem

of drawing from p
¡
ST |YT ; γ

¢
. We now propose a smoothing algorithm to accomplish this

objective.

An advantage of particle filtering is that smoothing can be implemented with the simulated

filtered distribution from our previous exercise. We do so following the suggestion of Godsill,
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Doucet, and West (2004). We factorize the density p
¡
ST |YT ; γ

¢
as:

p
¡
St:T |YT ; γ

¢
= p

¡
St|St+1:T ,YT ; γ

¢
p
¡
St+1:T |YT ; γ

¢
(3)

for all t, where St+1:T = {Sm}Tm=t+1 is the sequence of states from period t + 1 to period

T . Therefore, from (3) it should be clear that to draw from p
¡
St:T |YT ; γ

¢
, we need to draw

from p
¡
St|st+1:T ,YT ; γ

¢
, where st+1:T

³
= {sm}Tm=t+1

´
is a draw from p

¡
St+1:T |YT ; γ

¢
. We

describe a recursive procedure to do so.

Because of the Markovian structure of the shocks, we can derive

p
¡
St|st+1:T ,YT ; γ

¢
= p

¡
St|st+1,Yt; γ

¢
=

p (St|Y t; γ) p (st+1|St,Y t; γ)
p (st+1|Y t; γ)

∝ p
¡
St|Y t; γ

¢
p
¡
st+1|St,Yt; γ

¢
= p

¡
St|Y t; γ

¢
p (st+1|St; γ)

Then, following an argument similar to the one in proposition 4 in the main text of the

paper, we show that p (St|Yt; γ) is an importance sampling function to draw from the density
p
¡
St|st+1:T ,YT ; γ

¢
. This statement is proved in the following proposition:

Proposition 1. Let st+1:T be a draw from p
¡
St+1:T |YT ; γ

¢
and let

©
st,it
ªN
i=1
be a draw from

p (St|Y t; γ). Also, let the weights:

qit|t+1 (st+1) =
p
¡
st+1|st,it ; γ

¢PN
i=1 p

¡
st+1|st,it ; γ

¢ .
Let the sequence

©est,it ªNi=1 be a draw with replacement from ©
st,it
ªN
i=1

where qit|t+1 (st+1) is the

probability of
©
st,it
ªN
i=1
being drawn ∀i . Then

©est,it ªNi=1 is a draw from p
¡
St|st+1:T ,YT ; γ

¢
.

Proof. The proof uses the same strategy as the proof for proposition 4.
The crucial step in proposition 1 is to draw from p (St|Yt; γ). We accomplish this with

the output from the particle filter. First, we know that p (St|Y t; γ) = p (W t
2,W

t
1, S0|Y t; γ).

Second, we also know that

p
¡
W t
2,W

t
1, S0|Y t; γ

¢
= p

¡
W t
2|W t

1, S0,Y t; γ
¢
p
¡
W t
1, S0|Yt; γ

¢
and p (W t

2|W t
1, S0,Y t; γ) = χ{wt2(W t

1 ,S0,Yt;γ)}
(W t

2), where w
t
2 (W

t
1, S0,Y t; γ) is the function de-

scribed in assumption 2 of the paper and χ is the indicator function. Thus, if
©
wt,i1 , s

t,i
0

ªN
i=1
is a
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draw from p (W t
1, S0|Y t; γ) obtained using the particle filter, then

©
wt2
¡
wt,i1 , s

t,i
0 ,Yt; γ

¢
, wt,i1 , s

t,i
0

ªN
i=1

is a draw from p (W t
2,W

t
1, S0|Yt; γ). Clearly, using

©
wt2
¡
wt,i1 , s

t,i
0 ,Y t; γ

¢
, wt,i1 , s

t,i
0

ªN
i=1
, we can

build
©
sT,i
ªN
i=1
, a draw from p (St|Yt; γ).

From proposition 4 in the paper and the explanation above, the smoother algorithm is:

Step 0, Initialization: Draw N particles
n
wT,i1 , s

T,i
0

oN
i=1

from p
³
W T,i
1 , S0|YT ; γ

´
using a particle filter. Let wT,i2 = wT2

³
wT,i1 , s

T,i
0 ,Y t; γ

´
and use

n
wT,i2 , w

T,i
1 , s

T,i
0

oN
i=1

to build
©
sT,i
ªN
i=1
.

Step 1, Proposal I: Set i = 1.

Step 2, Proposal II: Draw states
n
sT−1,jT−1,i

oM
j=1

from p
¡
ST−1|YT−1; γ

¢
and computen

qjT−1|T (s
i
T )
oM
j=1
.

Step 3, Resampling: Sample once from
n
sT−1,jT−1,i

oM
j=1

with probabilities qiT−1|T (s
i
T ).

Call the draw sT−1,i. If i < N set i Ã i + 1 and go to step 2. If T > 1 set

T Ã T − 1 and go to step 1. Otherwise stop.

The algorithm works as follows. Starting from
n
wT,i1 , s

T,i
0

oN
i=1

from p
³
W T,i
1 , S0|YT ; γ

´
and taking advantage of corollary 1, steps 1 to 3 generate draws p

¡
St:T |YT ; γ

¢
in a recursive

way. The outcome of the algorithm,
©
sT,i
ªN
i=1
, is a draw from p

¡
ST |YT ; γ

¢
. As the number

of particles goes to infinity, the simulated conditional distribution of states converges to the

unknown true conditional density.

4. Construction of Data

As we mention in the main text, to make the observed series compatible with the model, we

compute both real output and real gross investment in consumption units. As the relative

price of investment we use the ratio of an investment deflator and a deflator for consumption.

The consumption deflator is constructed from the deflators of nondurable goods and services

reported in the NIPA. Since the NIPA investment deflators are poorly measured, we use the

investment deflator constructed by Fisher (2006). For the real output per capita series, we

first define nominal output as nominal consumption plus nominal gross investment. We define

nominal consumption as the sum of personal consumption expenditures on nondurable goods

and services, national defense consumption expenditures, federal nondefense consumption

expenditures, and state and local government consumption expenditures. We define nominal
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gross investment as the sum of personal consumption expenditures on durable goods, national

defense gross investment, federal government nondefense gross investment, state and local

government gross investment, private nonresidential fixed investment, and private residential

fixed investment. Per capita nominal output is defined as the ratio between our nominal

output series and the civilian noninstitutional population between 16 and 65. Since we

need to measure real output per capita in consumption units, we deflate the series by the

consumption deflator. For the real gross investment per capita series, we divide our above

mentioned nominal gross investment series by the civilian noninstitutional population between

16 and 65 and the consumption deflator. Finally, the hours worked per capita series is

constructed with the index of total number of hours worked in the business sector and the

civilian noninstitutional population between 16 and 65. Since our model implies that hours

worked per capita are between 0 and 1, we normalize the observed series of hours worked per

capita such that it is, on average, 0.33.
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