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Jesús Fernández-Villaverde
University of Pennsylvania

1



Why Spectral Analysis?

• We want to develop a theory to obtain the business cycle properties

of the data. Burns and Mitchell (1946).

• General problem of signal extraction.

• We will use some basic results in spectral (or harmonic) analysis.

• Then, we will develop the idea of a filter.
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Riesz-Fisher Theorem

• First we will show that there is an intimate link between L2 [−π, π]
and l2 (−∞,∞).

• Why? Because we want to represent a time series in two different
ways.

• Riesz-Fischer Theorem: Let {cn}∞n=−∞ ∈ l2 (−∞,∞). Then, there
exist a function f (ω) ∈ L2 [−π, π] such that:

f (ω) =
∞∑

j=−∞
cje
−iωj

• This function is called the Fourier Transform of the series.
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Properties

• Its finite approximations converge to the infinite series in the mean
square norm:

lim
n→∞

∫ π
−π

∣∣∣∣∣∣
n∑

j=−n
cje
−iωj − f (ω)

∣∣∣∣∣∣
2

dω = 0

• It satisfies the Parseval’s Relation:∫ π
−π
|f (ω)|2 dω =

∞∑
n=−∞

|cn|2

• Inversion formula:

ck =
1

2π

∫ π
−π

f (ω) eiωkdω
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Harmonics

• The functions
{
e−iωj

}j=∞
j=−∞ are called harmonics and constitute an

orthonormal base in L2 [−π, π].

• The orthonormality follows directly from:∫ π
−π

e−iωjeiωkdω = 0

if j 6= k and ∫ π
−π

e−iωjeiωjdω = 1

• The fact that they constitute a base is given by the second theorem
that goes in the opposite direction than Riesz-Fischer: given any func-
tion in L2 [−π, π] we can find an associated sequence in l2 (−∞,∞).
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Converse Riesz-Fischer Theorem

Let f (ω) ∈ L2 [−π, π]. Then there exist a sequence {cn}∞n=−∞ ∈ l2 (−∞,∞)

such that:

f (ω) =
∞∑

j=−∞
cje
−iωj

where:

ck =
1

2π

∫ π
−π

f (ω) eiωkdω

and finite approximations converge to the infinite series in the mean square

norm:

lim
n→∞

∫ π
−π

∣∣∣∣∣∣
n∑

j=−n
cje
−iωj − f (ω)

∣∣∣∣∣∣
2

dω = 0
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Remarks I

• The Riesz-Fisher theorem and its converse assure then that the Fourier

transform is an bijective from l2 (−∞,∞) into L2 [−π, π].

• The mapping is isometric isomorphism since it preserves linearity and

distance: for any two series {xn}∞n=−∞, {yn}∞n=−∞ ∈ l2 (−∞,∞)

with Fourier transforms x (ω) and y (ω) we have:

x (ω) + y (ω) =
∞∑

j=−∞
(xn + yn) eiωj

αx (ω) =
∞∑

j=−∞
αxne

iωj

{
1

2π

∫ π
−π
|x (ω)− y (ω)|2 dω

}1
2

=

 ∞∑
j=−∞

|xk − yk|2
1

2
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Remarks II

• There is a limit in the amount of information in a series.

• We either have concentration in the original series or concentration in

the Fourier transform.

• This limit is given by: ∞∑
j=−∞

j2
∣∣∣cj∣∣∣2

(∫ ∞
−∞

ω2 |f (ω)|2 dω
)
≥ 1

4

∥∥∥cj∥∥∥4

• This inequality is called the Robertson-Schrödinger relation.
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Stochastic Process

• X ≡ {Xt : Ω→ Rm, m ∈ N, t = 1, 2, ...} is a stochastic process de-
fined on a complete probability space (Ω,=, P ) where:

1. Ω = Rm×∞ ≡ limT→∞⊗Tt=0Rm

2. = ≡ limT→∞=T ≡ limT→∞⊗Tt=0B (Rm) ≡ B
(
Rm×∞

)
is just

the Borel σ-algebra generated by the measurable finite-dimensional
product cylinders.

3. PT (B) ≡ P (B) |=T ≡ P
(
Y T ∈ B

)
, ∀B ∈ =T .

• Define a T−segment as XT ≡
(
X ′1, ..., X

′
T

)′
with X0 = {∅} and a

realization of that segment as xT ≡
(
x′1, ..., x

′
T

)′
.
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Moments

• Moments, if they exist, can be defined in the usual way:

µt = Ext =
∫
Rm

xtdP
T

γtj = Extxt−j =
∫
Rm×(j+1)

(xt − µ)
(
xt−j − µ

)
dPT

• If both µt and γtjare independent of t for all j, X is a covariance-

stationary or weakly stationary process.

• Now, let us deal with X: covariance-stationary process with zero mean

(the process can be always renormalized to satisfy this requirement).
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z−Transform

• If
∑∞
j=−∞

∣∣∣γj∣∣∣ <∞, define the operator gx : C → C:

gx (z) =
∞∑

j=−∞
γjz

j

where C is the complex set.

• This mapping is known as the autocovariance generating function.

• Dividing this function by 2π and evaluating it at e−iω (where ω is a

real scalar), we get the spectrum (or power spectrum) of the process

xt:

sx (ω) =
1

2π

∞∑
j=−∞

γje
−iωj
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Spectrum

• The spectrum is the Fourier Transform of the covariances of the

process, divided by 2π to normalizes the integral of sx (·) to 1.

• The spectrum and the autocovariances are equivalent: there is no

information in one that is not presented in other.

• That does not mean having two representations of the same informa-

tion is useless: some characteristics of the series, as its serial correla-

tion are easier to grasp with the autocovariances while others as its

unobserved components (as the different fluctuations that compose

the series) are much easier to understand in the spectrum.
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Example

• General ARMA model: Φ (L)xt = θ (L) εt.

• Since xt =
∑∞
j=0ψjεt−j, an MA (∞) representation of xt in the lag

operator Ψ (L) and variance σ2 satisfies:

gx (L) = |Ψ (L)|2 = Ψ (L) Ψ
(
L−1

)
σ2

• Wold’s theorem assures us that we can write any stationary ARMA as

an MA (∞) and then since we can always make:

θ (L) = Φ (L) Ψ (L)

we will have

gx (L) = Ψ (L) Ψ
(
L−1

)
σ2 =

θ (L) θ
(
L−1

)
Φ (L) Φ

(
L−1

)σ2

and then the spectrum is given by:

sx (ω) =
σ2

2π

θ
(
e−iωj

)
θ
(
eiωj

)
Φ
(
e−iωj

)
Φ
(
eiωj

)e−iωj
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Working on the Spectrum

• Since γj = γ−j:

sx (ω) =
1

2π

∞∑
j=−∞

γje
−iωj =

1

2π

γ0 +
∞∑
j=1

γj
[
eiωj + e−iωj

]
=

1

2π

γ0 + 2
∞∑
j=1

γj cos (ωj)


by Euler’s Formula (e

iz+e−iz
2 = cos z)

• Hence:

1. The spectrum is always real-valued.

2. It is the sum of an infinite number of cosines.

3. Since cos (ω) = cos (−ω) = cos (ω + 2πk), k = 0,±1,±2, ..., the

spectrum is symmetric around 0 and all the relevant information is

concentrated in the interval [0, π].
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Spectral Density Function

• Sometimes the autocovariance generating function is replaced by the

autocorrelation generating function (where every term is divide by γ0).

• Then, we get the spectral density function:

s′x (ω) =
1

2π

1 + 2
∞∑
j=1

ρj cos (ωj)


where ρj = γj/γ0.
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Properties of Periodic Functions

• Take the modified cosine function:

yj = A cos (ωj − θ)

• ω (measured in radians): angular frequency (or harmonic or simply

the frequency).

• 2π/ω: period or whole cycle of the function.

• A: amplitude or range of the function.

• θ: phase or how much the function is translated in the horizontal axis.
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Different Periods

• ω = 0, the period of fluctuation is infinite, i.e. the frequency associ-

ated with a trend (stochastic or deterministic).

• ω = π (the Nyquist frequency), the period is 2 units of time, the

minimal possible observation of a fluctuation.

• Business cycle fluctuations: usually defined as fluctuations between 6

and 32 quarters. Hence, the frequencies of interest are those comprised

between π/3 and π/16.

• We can have cycles with higher frequency than π. When sampling in

not continuous these higher frequencies will be imputed to the fre-

quencies between 0 and π. This phenomenon is known as aliasing.

17



.

Inversion

• Using the inversion formula, we can find all the covariances from the
spectrum: ∫ π

−π
sx (ω) eiωjdω =

∫ π
−π

sx (ω) cos (ωj) dω = γj

• When j = 0, the variance of the series is:∫ π
−π

sx (ω) dω = γ0

• Alternative interpretation of the spectrum: integral between [−π, π] of
it is the variance of the series.

• In general, for some ω1 ≥ −π and and ω2 ≤ π:∫ ω2

ω1

sx (ω) dω

is the variance associated with frequencies in the [ω1, ω2]

• Intuitive interpretation: decomposition of the variances of the process.
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Spectral Representation Theorem

• Any stationary process can be written in its Cramér’s Representation:

xt =
∫ π

0
u (ω) cosωtdω +

∫ π
0
v (ω) sinωtdω

• A more general representation is given by:

xt =
∫ π
−π

ξ (ω) dω

where ξ (·) is any function that satisfies an orthogonality condition:∫ π
−π

ξ (ω1) ξ (ω2)′ dω1dω2 = 0 for ω1 6= ω2
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Relating Two Time Series

• Take a zero mean, covariance stationary random process Y with real-

ization yt and project it against the process X, with realization xt:

yt = B (L)xt + εt

where

B (L) =
∞∑

j=−∞
bjL

j

and Extεt = 0 for all j.

• Adapting our previous notation of covariances to distinguish between

different stationary processes we define:

γlj = Eltlt−j
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• Thus:

ytyt−j =

 ∞∑
s=−∞

bsxt−s

 ∞∑
r=−∞

brxt−j−r


+

 ∞∑
s=−∞

bsxt−s

 εt−j +

 ∞∑
r=−∞

brxt−j−r

 εt + εtεt−j

• Taking expected values of both sides, the orthogonality principle im-
plies that:

γ
y
j =

∞∑
s=−∞

∞∑
r=−∞

bsbrγ
x
j+r−s + γεj

• With these covariances, the computation of the spectrum of y is direct:

sy (ω) =
1

2π

∞∑
j=−∞

γ
y
je
−iωj =

1

2π

 ∞∑
j,s,r=−∞

brbsγ
x
j+r−se

−iωj +
∞∑

j=−∞
γεje
−iωj
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• If we define h = j + r − s:

e−iωj = e−iω(h−r+s) = e−iωhe−iωseiωr

we get:

sy (ω) =
∞∑

r=−∞
bre

iωr
∞∑

s=−∞
bse
−iωs 1

2π

∞∑
r=−∞

γxhe
−iωh +

1

2π

∞∑
j=−∞

γεje
−iωj

= B
(
eiωr

)
B
(
e−iωs

)
sx (ω) + sε (ω)

• Using the symmetry of the spectrum:

sy (ω) =
∣∣∣B (e−iω)∣∣∣2 sx (ω) + sε (ω)
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LTI Filters

• Given a process X, a linear time-invariant filter (LTI-filter) is a op-

erator from the space of sequences into itself that generates a new

process Y of the form:

yt = B (L)xt

• Since the transformation is deterministic, sε (ω) = 0 and we get:

sy (ω) =
∣∣∣B (e−iω)∣∣∣2 sx (ω)

• B
(
e−iω

)
: frequency transform or the frequency response function is

the Fourier transform of the coefficients of the lag operator.

• G (ω) =
∣∣∣B (e−iω)∣∣∣ is the gain (its modulus).

•
∣∣∣B (e−iω)∣∣∣2 is the power transfer function (since

∣∣∣B (e−iω)∣∣∣2 is a

quadratic form, it is a real function). It indicates how much the spec-

trum of the series is changed at each particular frequency.
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Gain and Phase

• The definition of gain implies that the filtered series has zero variance

at ω = 0 if and only if B
(
e−i0

)
=
∑∞
j=−∞ bje

−i0 =
∑∞
j=−∞ bj = 0.

• Since the gain is a complex mapping, we can write:

B
(
e−iω

)
= Ba (ω) + iBb (ω)

where Ba (ω) and Bb are both real functions.

• Then we define the phase of the filter

φ (ω) = tan−1

(
−B

b (ω)

Ba (ω)

)
The phase measures how much the series changes its position with

respect to time when the filter is applied. For a given φ (ω), the filter

shifts the series by φ (ω) /ω time units.
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Symmetric Filters I

• A filter is symmetric if bj = b−j:

B (L) = b0 +
∞∑
j=1

bj
(
Lj + L−j

)

• Symmetric filters are important for two reasons:

1. They do not induce a phase shift since the Fourier transform of

B (L) will always be a real function.

2. Corners of the a T − segment of the series are difficult to deal

with since the lag operator can only be applied to one side.
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Symmetric Filters II

If
∑∞
j=−∞ bj = 0, symmetric filters can remove trend frequency compo-

nents, either deterministic or stochastic up to second order (a quadratic

deterministic trend or a double unit root):

∞∑
j=−∞

bjL
j =

∞∑
j=1

bj
(
Lj + L−j

)
− 2

∞∑
j=−∞

bjL
j

=
∞∑
j=1

bj
(
Lj + L−j − 2

)
= −

∞∑
j=1

bj
((

1− Lj
) (

1− L−j
))

= − (1− L)
(

1− L−1
) ∞∑
j=1

bj

j−1∑
h=−j+1

(k − |h|)Lh

= (1− L)
(

1− L−1
)
B′ (L)

where we used
(

1− Lj
)

= (1− L)
(

1 + L+ ...+ Lj−1
)

and

(1 + L+ ...)
(

1 + L−1 + ...
)

=
∞∑
j=1

bj

j−1∑
h=−j+1

(k − |h|)Lh

if the sum is well defined.
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Ideal Filters

• An ideal filter is an operator B (L) such that the new process Y only

has positive spectrum in some specified part of the domain.

• Example: a band-pass filter for the interval {(a, b) ∪ (−b,−a)} ∈
(−π, π) and 0 < a ≤ b ≤ π, we need to choose B

(
e−iω

)
such

that:

B
(
e−iω

)
=

{
= 1, for ω ∈ (a, b) ∪ (−b,−a) ,

= 0 otherwise

Since a > 0, this definition implies that B (0) = 0. Thus, a band-pass

filter shuts off all the frequencies outside the region (a, b) or (−b,−a)

and leaves a new process that only fluctuates in the area of interest.

27



.

How Do We Build an Ideal Filter?

• SinceX is a zero mean, covariance stationary process,
∑∞
n=−∞ |xn|

2 <

∞, the Riesz-Fischer Theorem holds.

• If we make f (ω) = B
(
e−iω

)
, we can use the inversion formula to set

the Bj:

bj =
1

2π

∫ π
−π

B
(
e−iω

)
eiωjdω

• Substituting B
(
e−iω

)
by its value:

bj =
1

2π

∫ π
−π

B
(
e−iω

)
eiωjdω =

1

2π

(∫ −a
−b

eiωjdω +
∫ b
a
eiωjdω

)

=
1

2π

∫ b
a

(
eiωj + e−iωj

)
dω

where the second step just follows from
∫−a
−b e

iωjdω =
∫ b
a e
−iωjdω.
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Building an Ideal Filter

• Now, using again Euler’s Formula,

bj =
1

2π

∫ b
a

2 cosωjdω =
1

πj
sinωj|ba =

sin jb− sin ja

πj
∀ j ∈ N \ {0}

• Since sin z = − sin (−z),

b−j =
sin (−jb)− sin (−ja)

−πj
=
− sin jb+ sin ja

−πj
=

sin jb− sin ja

πj
= bj

• Also:

b0 =
1

2π

∫ b
a

2 cosω0dω =
b− a
π

and we have all the coefficients to write:

yt =

b− a
π

+
∞∑
j=1

sin jb− sin ja

πj

(
Lj + L−j

)xt
• The coefficients bj converge to zero at a sufficient rate to make the

sum well defined in the reals.
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Building an Low-Pass Filter

• Analogously, a low-pass filter allows only the low frequencies (between

(−b, b)), implying a choice of B
(
e−iω

)
such that:

B
(
e−iω

)
=

{
= 1, for ω ∈ (−b, b) ,

= 0 otherwise

• Just set a = 0.

bj = b−j =
sin jb

πj
∀ j ∈ N \ {0}

b0 =
b

π

yt =

 b
π

+
∞∑
j=1

sin jb

πj

(
Lj + L−j

)xt
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Building an High-Pass Filter

• Finally a high-pass allows only the high frequencies:

B
(
e−iω

)
=

{
= 1, for ω ∈ (b, π) ∪ (−π,−b) ,

= 0 otherwise

• This is just the complement of a low-pass (−b, b):

yt =

1− b

π
−
∞∑
j=1

sin jb

πj

(
Lj + L−j

)xt

31



.

Finite Sample Approximations

• With real, finite, data, it is not possible to apply any of the previous

formulae since they require an infinite amount of observations.

• Finite sample approximations are this required.

• We will study two approximations:

1. the Hodrick-Prescott filter

2. the Baxter-King filters.

• We will be concern with the minimization of several problems:

1. Leakage: the filter passes frequencies that it was designed to elim-

inate.

2. Compression: the filter is less than one at the desired frequencies.

3. Exacerbation: the filter is more than one at the desired frequencies.
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HP Filter

• Hodrick-Prescott (HP) filter:

1. It is a coarse and relatively uncontroversial procedure to represent

the behavior of macroeconomic variables and their comovements.

2. It provides a benchmark of regularities to evaluate the comparative

performance of different models.

• Suppose that we have T observations of the stochastic process X,

{xt}t=∞t=1 .

• HP decomposes the observations into the sum of a trend component,

xtt and a cyclical component xct :

xt = xtt + xct
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Minimization Problem

• How? Solve:

min
xtt

T∑
t=1

(
xt − xtt

)2
+ λ

T−1∑
t=2

[(
xtt+1 − xtt

)
−
(
xtt − xtt−1

)]2

• Intuition.

• Meaning of λ:

1. λ = 0⇒trivial solution (xtt = xt).

2. λ =∞⇒linear trend.
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Matrix Notation

• To compute the HP filter is easier to use matrix notation, and rewrite

minimization problem as:

min
xt

(
x− xt

)′ (
x− xt

)
+ λ

(
Axt

)′ (
Axt

)
where x = (x1, ..., xT )′, xt =

(
xt1, ..., x

t
T

)′
and:

A =


1 −2 1 0 · · · · · · 0
0 1 −2 1 · · · · · · 0
... ... . . . . . . . . . ... ...
... ... ... 1 −2 1 0
0 · · · · · · · · · 1 −2 1


(T−2)×T
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Solution

• First order condition:

xt − x+ λA′Axt = 0

or

xt =
(
I + λA′A

)−1
x

•
(
I + λA′A

)−1 is a sparse matrix (with density factor (5T − 6) /T 2).

We can exploit this property.
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Properties I

• To study the properties of the HP filter is however more convenient

to stick with the original notation.

• We write the first-order condition of the minimization problem as:

0 = −2
(
xt − xtt

)
+ 2λ

[(
xtt − xtt−1

)
−
(
xtt−1 − xtt−2

)]
−

4λ
[(
xtt+1 − xtt

)
−
(
xtt − xtt−1

)]
+ 2λ

[(
xtt+2 − xtt+1

)
−
(
xtt+1 − xtt

)]

• Now, grouping coefficients and using the lag operator L:

xt = xtt +
(
λ
[
1− 2L+ L2

]
− 2λ

[
L−1 − 2 + L

]
+ λ

[
L−2 − 2L−1 + 1

])
xtt

=
[
λL−2 − 4λL−1 + (6λ+ 1)− 4λL+ λL2

]
=

[
1 + λ (1− L)2

(
1− L−1

)2
]

= F (L)xtt
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Properties II

• Define the operator C (L) as:

C (L) = (F (L)− 1)
(
F (L)−1

)
=

λ (1− L)2
(

1− L−1
)2

1 + λ (1− L)2
(

1− L−1
)2

• Now, if we let, for convenience, T =∞, and since

xtt = B (L)xt
xct = (1−B (L))xt

we can see that

B (L) = F (L)−1

1−B (L) = 1− F (L)−1 = (F (L)− 1)
(
F (L)−1

)
= C (L)

i.e., the cyclical component xct is equal to:

xct =
λ (1− L)2

(
1− L−1

)2

1 + λ (1− L)2
(

1− L−1
)2xt

a stationary process if xt is integrated up to fourth order.
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Properties III

• Remember that:

sxc (ω) =
∣∣∣1−B (e−iω)∣∣∣2 sx (ω) =

∣∣∣C (e−iω)∣∣∣2 sx (ω)

• We can evaluate at e−iω and taking the module, the gain of the cyclical
component is:

Gc (ω) =

∣∣∣∣∣∣∣
λ
(

1− e−iω
)2 (

1− eiω
)2

1 + λ
(

1− e−iω
)2 (

1− eiω
)2

∣∣∣∣∣∣∣
=

4λ (1− cos (ω))2

1 + 4λ (1− cos (ω))2

where we use the identity
(

1− e−iω
) (

1− eiω
)

= 2 (1− cos (ω)).

• This function gives zero weight to zero frequencies and close to unity
on high frequency, with increases in λ moving the curve to the left.

• Finally note that since the gain is real, φ (ω) = 0 and the series is not
translated in time.

39



.

Butterworth Filters

• Filters with gain:

G (ω) =

1 +

 sin
(
ω
2

)
sin

(
ω0
2

)
2d


−1

that depends on two parameters, d, a positive integer, and ω0, that

sets the frequency for which the gain is 0.5.

• Higher values of d make the slope of the band more vertical while

smaller values of ω0 narrow the width of the filter band.
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Butterworth Filters and the HP Filter

• Using the fact that 1− cos (ω) = 2 sin2
(
ω
2

)
, the HP gain is:

Gc (ω) = 1− 1

1 + 16λ sin4
(
ω
2

)
• Since B (L) = 1− C (L), the gain of the trend component is just:

Gx
t
t (ω) = 1−Gc (ω) =

1

1 + 16λ sin4
(
ω
2

)
a particular case of a Butterworth filter of the sine version with d = 2

and ω0 = 2 arcsin
(

1
2λ0.25

)
.
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Ideal Filter Revisited

• Recall that in our discussion about the ideal filter yt =
∑∞
j=−∞ bjL

jxt
we derived the formulae:

bj = b−j =
sin jb− sin ja

πj
∀ j ∈ N

b0 =
b

π

for the frequencies a = 2π
pu

and b = 2π
pl

where 2 ≤ pl < pu < ∞ are

the lengths of the fluctuations of interest.

• Although this expressions cannot we evaluate for all integers, they

suggest the feasibility of a more direct approach to band-pass filtering

using some form of these coefficients.
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.

Baxter and King (1999)

• Take the first k coefficients of the above expression.

• Then, since we want a gain that implies zero variance at ω = 0, we

normalize each coefficient as:

b̃j = bj −
b0 + 2

∑k
j=1 bj

2k + 1

to get that
∑k
j=−k b̃j = 0 as originally proposed by Craddock (1957).

• This strategy is motivated by the remarkable result that the solution

to the problem of minimizing

Q =
1

2π

∫ π
−π

∣∣∣B (e−iω)−Bk (e−iω)∣∣∣2 dω
whereB (·) is the ideal band-pass filter andBk (·) is its k-approximation,

is simply to take the first k coefficients bj from the inversion formula

and to make all the higher order coefficients zero.
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• To see that, write the minimization problem s.t.
∑k
j=−k b̃j = 0 as:

L = − 1

2π

∫ π
−π

Ψ
(
ω, b̃

)
Ψ
(
ω, b̃

)′
dω + λ

k∑
j=−k

b̃j

where

Ψ
(
ω, b̃

)
=

B (e−iω)− ∞∑
j=−∞

b̃je
−iωj


• First order conditions:

1

2π

∫ π
−π

e−iωjΨ
(
ω, b̃

)′
+ Ψ

(
ω, b̃

)′
eiωjdω = −λ

0 =
k∑

j=−k
b̃j

for j = 1, ..., k.
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• Since the harmonics e−iωj are orthonormal

0 = 2
(
bj − b̃j

)
+ λ

λ = 2−
∑k
j=−k bj
2k + 1

for j = 1, ..., k, that provides the desired result.

• Notice that, since the ideal filter is a step function, this approach

suffers from the same Gibbs phenomenon that arises in Fourier analysis

(Koopmans, 1974).
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