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Motivation

Three Approaches

We are interested in optimization in continuous time, both in
deterministic and stochastic environments.

Elegant and powerful math (differential equations, stochastic
processes...).

Three approaches:

1 Calculus of Variations.
2 Optimal Control.
3 Dynamic Programming.

We will focus on the last two:

1 Optimal control can do everything economists need from calculus of
variations.

2 Dynamic programming is better for the stochastic case.
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Deterministic Case

Maximization Problem I

Basic setup:

V (0, x (0)) = max
x (t),y (t)

∫ ∞

0
f (t, x (t) , y (t)) dt

s.t. ẋ = g (t, x (t) , y (t))

x (0) = x0, lim
t→∞

b (t) x (t) ≥ x1
x (t) ∈ X , y (t) ∈ Y

x (t) is a state variable.

y (t) is a control variable.
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Deterministic Case

Maximization Problem II

Admissible pair: (x (t) , y (t)) s.t. the previous conditions are
satisfied.

Optimal pair: (x̂ (t) , ŷ (t)) that reach V (0, x (0)) < ∞.
Then:

V (0, x (0)) =
∫ ∞

0
f (t, x̂ (t) , ŷ (t)) dt

Two diffi culties:

1 We need to find a whole function y (t) of optimal choices.

2 The constraint is in the form of a differential equation.
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Deterministic Case Optimal Control

Optimal Control

Pontryagin and co-authors.

Principle of Optimality

If (x̂ (t) , ŷ (t)) is an optimal pair, then:

V (t0, x (t0)) =
∫ t1

t0
f (t, x̂ (t) , ŷ (t)) dt + V (t1, x̂ (t1))

for all t1 ≥ t0.

We will assume that there is an optimal path.

Proving existence is, however, not a trivial task.
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Deterministic Case Optimal Control

Hamiltonian

Define:

H (t, x (t) , y (t) ,λ (t)) = f (t, x (t) , y (t)) + λ (t) g (t, x (t) , y (t))

where λ (t) is the co-state multiplier.

Necessary conditions:

Hy (t, x̂ (t) , ŷ (t) ,λ (t)) = 0
λ̇ (t) = −Hx (t, x̂ (t) , ŷ (t) ,λ (t))
ẋ = Hλ (t, x̂ (t) , ŷ (t) ,λ (t))

plus x (0) = x0 and limt→∞ b (t) x (t) ≥ x1.
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Deterministic Case Optimal Control

Exponential Discounting Case I

More specific form:

V (x (0)) = max
x (t),y (t)

∫ ∞

0
e−ρt f (x (t) , y (t)) dt

s.t. ẋ = g (x (t) , y (t))

x (0) = x0, lim
t→∞

b (t) x (t) ≥ x1
x (t) ∈ IntX , y (t) ∈ IntY

g (x (t) , y (t)) being autonomous is not needed but it helps to
simplify notation.
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Deterministic Case Optimal Control

Exponential Discounting Case II

Hamiltonian:

H (t, x (t) , y (t) ,λ (t)) = e−ρt f (x (t) , y (t)) + λ (t) g (x (t) , y (t))

= e−ρt [f (x (t) , y (t)) + µ (t) g (x (t) , y (t))]

where
µ (t) = eρtλ (t)

Current-Value Hamiltonian:

Ĥ (x (t) , y (t) , µ (t)) = f (x (t) , y (t)) + µ (t) g (x (t) , y (t))
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Deterministic Case Optimal Control

Maximum Principle for Discounted Infinite-Horizon
Problems

Theorem

Under some technical conditions, the optimal pair (x̂ (t) , ŷ (t)) satisfies
the necessary conditions:

1 Ĥy (x (t) , y (t) , µ (t)) = 0 for ∀t ∈ R+.

2 Ĥx (x (t) , y (t) , µ (t)) = ρµ (t)− µ̇ (t) for ∀t ∈ R+.

3 Ĥµ (x (t) , y (t) , µ (t)) = ẋ (t) for ∀t ∈ R+,x (0) = x0 and
limt→∞ x (t) ≥ x1.

4 limt→∞ e−ρtĤ (x (t) , y (t) , µ (t)) = limt→∞ e−ρtµ (t) x̂ (t) = 0.
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Deterministic Case Optimal Control

Suffi ciency Conditions

Previous theorem only delivers necessary conditions.

However, we also need suffi cient conditions.

Theorem
Mangasarian Suffi cient Conditions for Discounted Infinite-Horizon
Problems. The necessary conditions will be suffi cient if f and g are
continuously differentiable and weakly monotone and
H (t, x (t) , y (t) ,λ (t)) is jointly concave in x (t) and y (t) for ∀t ∈ R+.

We will skip suffi ciency arguments. They will be relevant later in
models of endogenous growth.
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Deterministic Case Optimal Control

Example I

Consumption-savings problem:

V (a) = max
a,c

∫ ∞

0
e−ρtu (c) dt

ȧ = ra+ w − c

Hamiltonian:

Ĥ (a, c , µ) = u (c) + µ (ra+ w − c)

Necessary conditions:

Ĥc (a, c, µ) = 0⇒ u′ (c)− µ = 0⇒ u′ (c) = µ

Ĥa (a, c , µ) = ρµ− µ̇⇒ rµ = ρµ− µ̇⇒ µ̇

µ
= − (r − ρ)
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Deterministic Case Optimal Control

Example II

Then:

u′′ (c) ċ = µ̇⇒
u′′ (c)
u′ (c)

ċ =
µ̇

µ
= − (r − ρ)

Assume, for instance:
u (c) = log c

and we get:
ċ
c
= r − ρ

Comparison with bang-bang solutions (linear returns and bounded
controls).
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Deterministic Case Dynamic Programming

Dynamic Programming

Dynamic programming is a more flexible approach (for example, later,
to introduce uncertainty).

Instead of searching for an optimal path, we will search for decision
rules.

Cost: we will need to solve for PDEs instead of ODEs.

But at the end, we will get the same solution.
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Deterministic Case Dynamic Programming

Hamilton-Jacobi-Bellman (HJB) Equation

When V (t, x (t)) is differentiable, (x̂ (t) , ŷ (t)) satisfies:

f (t, x̂ (t) , ŷ (t)) + V̇ (t, x̂ (t)) + Vx (t, x̂ (t)) g (t, x̂ (t) , ŷ (t)) = 0

Similar the Euler equation from a value function in discrete time.

Other way to write the formula, closer to the Bellman equation:

−V̇ (t, x̂ (t)) = max
x (t),y (t)

f (t, x (t) , y (t))+ g (t, x (t) , y (t))Vx (t, x (t))

Tight connection between Vx (t, x (t)) and µ (t) .
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Deterministic Case Dynamic Programming

Solution of the HJB Equation I

The HJB equation allows for easy derivations.

For exponential discount problems:

V (t, x̂ (t)) =
∫ ∞

t
e−ρs f (x̂ (s) , ŷ (s)) ds

Note that:

V (t, x̂ (t)) = e−ρt
∫ ∞

t
e−ρ(s−t)f (x̂ (s) , ŷ (s)) ds

and the integral on the right hand side does not depend on t.
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Deterministic Case Dynamic Programming

Solution of the HJB Equation II

Then:

V̇ (t, x̂ (t)) = −ρe−ρt
∫ ∞

t
e−ρ(s−t)f (x̂ (s) , ŷ (s)) ds

= −ρ
∫ ∞

t
e−ρs f (x̂ (s) , ŷ (s)) ds

= −ρV (t, x̂ (t))

Simplyfing notation:

ρV (x) = max
x ,y
f (x , y) + g (x , y)V ′ (x)

Jesús Fernández-Villaverde (PENN) Optimization in Continuous Time November 9, 2013 16 / 28



Deterministic Case Dynamic Programming

Solution of the HJB Equation III

Characterized by a necessary condition:

fy (x , y) + gy (x , y)V ′ (x) = 0

and an envelope condition:

(ρ− gx (x , y))V ′ (x)− fx (x , y) = g (x , y)V ′′ (x)

Then:

V ′ (x) = − fy (x , y)
gy (x , y)

= h (x , y)

and

V ′′ (x) = hx (x , y) + hy (x , y)
dy
dx
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Deterministic Case Dynamic Programming

Solution of the HJB Equation IV

We can plug these two equations in the envelope condition, to get:

(ρ− gx (x , y)) h (x , y)− fx (x , y)

=

(
hx (x , y) + hy (x , y)

dy
dx

)
g (x , y)

an ODE on dy
dx .

Analytical solutions?

Standard numerical solution methods.
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Deterministic Case Dynamic Programming

Solution of the HJB Equation V

With our previous example:

ρV (a) = max
a,c
u (c) + (ra+ w − c)V ′ (a)

Then:
h (a, c) = u′ (c)

and:

− (r − ρ) u′ (c) = u′′ (c)
dc
da
ȧ = u′′ (c) ċ

Therefore, as before:

u′′ (c)
u′ (c)

ċ = − (r − ρ)
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Deterministic Case Dynamic Programming

Comparison with Discrete Time

HJB versus Bellman equation:

ρV (a) = max
a,c
u (c) + (ra+ w − c)V ′ (a)

V (a) = max
a,c
u (c) + βV ((1+ r) a+ w − c)

Optimality conditions:

u′′ (c)
u′ (c)

ċ = − (r − ρ)

u′ (c ′)
u′ (c)

= β (1+ r)
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Stochastic Case

Stochastic Case

We move now into the stochastic case.

Handling it with calculus of variations or optimal control is hard.

At the same time, there are many problems in macro with uncertainty
which are easy to formulate in continuous time.
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Stochastic Case

Stochastic Problem

Consider the problem:

V (x (0)) = max
x (t),y (t)

E

∫ ∞

0
e−ρt f (x (t) , y (t)) dt

s.t. dx (t) = g (x (t) , y (t)) dt + σ (x (t)) dW (t)

give some initial conditions.

The evolution of the state is a controlled diffusion.

If f is continuous and bounded, the integral is well defined.
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Stochastic Case

Value Function and a Bellman-Type Property

Given a small interval of time ∆t, we get:

V (x (0)) ≈ max
x ,y
f (x (0) , y (0))∆t +

1
1+ ρ∆t

E [V (x (0+ ∆t))]

Multiply by (1+ ρ∆t) and substrate V (x (0)):

ρV (x (0))∆t ≈ max
x ,y
f (x (0) , y (0))∆t (1+ ρ∆t) +E [∆V ]

Divide by ∆t

ρV (x (0)) ≈ max
x ,y
f (x (0) , y (0)) (1+ ρ∆t) +

1
∆t

E [∆V ]

Letting ∆t → 0 and taking the limit:

ρV (x (0)) = max
x ,y
f (x (0) , y (0)) +

1
dt

E [dV ]
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Stochastic Case

Hamilton-Jacobi-Bellman (HJB) Equation I

Given a small interval of time ∆t, we get:

ρV (x) = max
x ,y
f (x , y) +

1
dt

E [dV ]

Applying previous results:

1
dt

E [dV ] =
[
gV ′ +

1
2

σ2V ′′
]

we have

ρV (x) = max
x ,y
f (x , y) + g (x , y)V ′ (x) +

1
2

σ2 (x)V ′′ (x) ∀x

Important observation: thanks to Itō’s lemma, the HJB is not
stochastic.
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Stochastic Case

Hamilton-Jacobi-Bellman (HJB) Equation II

Comparison with deterministic case:

ρV (x) = max
x ,y
f (x , y) + g (x , y)V ′ (x)

ρV (x) = max
x ,y
f (x , y) + g (x , y)V ′ (x) +

1
2

σ2 (x)V ′′ (x)

Extra term 1
2σ2 (x)V ′′ (x) corrects for curvature.

Concentrated HJB:

ρV (x) = f (x , y (x)) + g (x , y (x))V ′ (x) +
1
2

σ2 (x)V ′′ (x)

is the Feynman—Kac formula that links parabolic partial differential
equations (PDEs) and stochastic processes.
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Stochastic Case

Hamilton-Jacobi-Bellman (HJB) Equation III

Characterized by a necessary condition:

fy (x , y) + gy (x , y)V ′ (x) = 0

and an envelope condition:

(ρ− gx (x , y))V ′ (x)− fx (x , y) =

g (x , y)V ′′ (x) +
1
2

σ2 (x)V ′′′ (x) + σ (x) σ′ (x)V ′′ (x)

Solutions:

1 Theoretical: classical, viscosity, backward SDE, martingale duality.

2 Numerical.
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Stochastic Case

Real Business Cycle I

Standard business cycle framework without labor choice:

max
{c (t),k (t)}∞

t=0

E0

∫ ∞

0
e−ρtu (c (t)) dt

s.t. k̇ = ezkα − δk − c
dz = −λzdt + σzdW

HJB:

ρV (k, z) =

u (c) + (ezkα − δk − c)V1 (k, z)− λzV2 (k, z) +
1
2
(σz)2 V22 (k , z)
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Stochastic Case

Real Business Cycle II

Necessary condition

u′ (c (t))− V1 (k, z) = 0

and envelope condition:(
ρ−

(
αezkα−1 − δ

))
V1 (k, z)

= (ezkα − δk − c)V11 (k, z)− λzV21 (k, z)

+
1
2
(σz)2 V221 (k, z) + σ2zV22 (k, z)
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