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Motivation

Three Approaches

o We are interested in optimization in continuous time, both in
deterministic and stochastic environments.

o Elegant and powerful math (differential equations, stochastic
processes...).

o Three approaches:

@ Calculus of Variations.
@ Optimal Control.
@ Dynamic Programming.

o We will focus on the last two:

@ Optimal control can do everything economists need from calculus of
variations.

@ Dynamic programming is better for the stochastic case.
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Deterministic Case

Maximization Problem |

o Basic setup:

o x (t) is a state variable.

o y(t) is a control variable.
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Deterministic Case

Maximization Problem |l

o Admissible pair: (x (t),y (t)) s.t. the previous conditions are
satisfied.

o Optimal pair: (X (t),y (t)) that reach V (0, x (0)) < oo.
Then:

VX)) = [FEx().5(0)d

o Two difficulties:

@ We need to find a whole function y (t) of optimal choices.

@ The constraint is in the form of a differential equation.
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Deterministic Case ~ Optimal Control

Optimal Control

o Pontryagin and co-authors.

Principle of Optimality
If (x(t),y(t)) is an optimal pair, then:
t1
Vit x () = [ f(6R(5).7(2) de+V (8.7 (1))

to

for all t; > tg.

o We will assume that there is an optimal path.

o Proving existence is, however, not a trivial task.
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Deterministic Case ~ Optimal Control

Hamiltonian

o Define:
H(t.x(t),y (), A(t) =Ff(t.x(t),y(t)+A(t)g(t.x(t),y(t))

where A (t) is the co-state multiplier.

o Necessary conditions:

V
X

plus x (0) = xp and lim; e b (t) x (t
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Deterministic Case ~ Optimal Control

Exponential Discounting Case |

o More specific form:

V()= max [Tt (x(e),y (0) de
st. =g (x(t).y (1))
x(0) = xo, I|m b(t)x(t) > xi

(

x(t) € IntX,y t) € Int)

o g(x(t),y(t)) being autonomous is not needed but it helps to
simplify notation.
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Deterministic Case ~ Optimal Control

Exponential Discounting Case Il

o Hamiltonian:

H(t,x(t),y(t), A (1))

)]
o

~+

-
—~
X
~
SN—
<
—~
~
#\_/
~—
>
—~
~
SN—
0
—~
x
—~
~
~ —
<
—~
~
~ ~—

where

Jesis Fernandez-Villaverde (PENN) Optimization in Continuous Time November 9, 2013 8 /28



Deterministic Case ~ Optimal Control

Maximum Principle for Discounted Infinite-Horizon
Problems

Theorem

Under some technical conditions, the optimal pair (x (t),y (t)) satisfies
the necessary conditions:

@ H, (x(t),y(t),u(t) =0 forVt € Ry.
@ Ho(x(t),y (1), 1(t) = pp(t) —ji(t) for Ve € Ry.

@ Hyu(x(t),y(t),pu(t)) =x(t) for Vt € Ry,x(0) = xo and
lime oo x (t) > x1.

@ lim; oo e PH (x (t),y (t), 1 (1)) = lim; oo e Pt (£) X (£) = 0.
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Deterministic Case ~ Optimal Control

Sufficiency Conditions
o Previous theorem only delivers necessary conditions.

o However, we also need sufficient conditions.

Theorem

Mangasarian Sufficient Conditions for Discounted Infinite-Horizon
Problems. The necessary conditions will be sufficient if f and g are
continuously differentiable and weakly monotone and

H (t,x(t),y(t),A(t)) is jointly concave in x (t) and y (t) for Vt € R;.

o We will skip sufficiency arguments. They will be relevant later in
models of endogenous growth.
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Deterministic Case ~ Optimal Control

Example |

o Consumption-savings problem:
[ee]
V(a) = max/ e Ptu(c)dt
a,c Jo

a=rat+tw-—c

o Hamiltonian:

~

H(a,c,p)=u(c)+pu(ra+w—c)
o Necessary conditions:

He(acp) = 0=d(c)—pu=0=1d(c)=p

=

Ha(a,cop) = e A r—op)
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Deterministic Case ~ Optimal Control

Example I
o Then:
' (c)e=p=
u"(c)
u/(c)c_ﬁ__<r_p)
o Assume, for instance:
u(c) =logc
and we get:
c P

o Comparison with bang-bang solutions (linear returns and bounded
controls).
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Deterministic Case Dynamic Programming

Dynamic Programming

o Dynamic programming is a more flexible approach (for example, later,
to introduce uncertainty).

o Instead of searching for an optimal path, we will search for decision
rules.

o Cost: we will need to solve for PDEs instead of ODEs.

o But at the end, we will get the same solution.
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Deterministic Case Dynamic Programming

Hamilton-Jacobi-Bellman (HJB) Equation

o When V (t,x (t)) is differentiable, (X (t),y (t)) satisfies:

FR(8),7(0) + V(ER(8) + Va (£%(6) g (£%(8),7 (1) = 0

o Similar the Euler equation from a value function in discrete time.

o Other way to write the formula, closer to the Bellman equation:

V(R() = max F(6x(6),y ()48 (8x(0),y (1)) Ve (8:(0)

o Tight connection between V (t,x (t)) and pu (t).
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Deterministic Case Dynamic Programming

Solution of the HJB Equation |

o The HJB equation allows for easy derivations.
o For exponential discount problems:

V(3 (0) = [ er(R(s).7(s)) o5
o Note that:

V(6R(D) = e ?t /too e P Of (R(s),5 (s)) ds

and the integral on the right hand side does not depend on t.
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Deterministic Case Dynamic Programming

Solution of the HJB Equation Il

o Then:
V(tx(t) = —pe Pf/°°e*’< OF (%(s),7(s)) ds
— o[ ePF(R(9).7()ds
= v rx<>>

o Simplyfing notation:

PV (x) = maxf (x,y) +g (x,y) V' (x)
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Deterministic Case Dynamic Programming

Solution of the HJB Equation Il

o Characterized by a necessary condition:
fy(x.y) +8 (x.y) V' (x) =0
and an envelope condition:
(0 — & (x,y)) V' (x) = £ (x.y) =g (x,y) V" (x)

o Then:
V') = =2 hixy)

and

V' () = e (xy) + hy ()

Jesis Fernandez-Villaverde (PENN) Optimization in Continuous Time November 9, 2013

17 / 28



Deterministic Case Dynamic Programming

Solution of the HJB Equation IV

o We can plug these two equations in the envelope condition, to get:

(p—&x (x,¥)) h(x,y) = (x,y)
= (G h o0 G g ley)

dy
an ODE on 7.
o Analytical solutions?

o Standard numerical solution methods.
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Deterministic Case Dynamic Programming

Solution of the HJB Equation V

o With our previous example:
pV (a) =maxu(c)+ (ra+w—c)V'(a)

a,c

o Then:

and:
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Deterministic Case Dynamic Programming

Comparison with Discrete Time

o HJB versus Bellman equation:

pV(a) = rgixu(c)+(ra+w—c) V' (a)
V(a) = rgixu(c)+5V((1+r)a+w—c)

o Optimality conditions:
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Stochastic Case

Stochastic Case

o We move now into the stochastic case.

o Handling it with calculus of variations or optimal control is hard.

o At the same time, there are many problems in macro with uncertainty
which are easy to formulate in continuous time.
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Stochastic Case

Stochastic Problem

o Consider the problem:

V (x(0)) = max IE/ e Pt (x (1) y (1)) dt
st dx (t) = g (x () y(t))dt+o(x(t))dW (t)

give some initial conditions.
o The evolution of the state is a controlled diffusion.

If f is continuous and bounded, the integral is well defined.
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Stochastic Case
Value Function and a Bellman-Type Property
o Given a small interval of time At, we get:

V (x(0)) ~ n;g/xf (x(0), (0))At+

ALV (x(0+ )]

):
1

+
o Multiply by (14 pAt) and substrate V (x (0
At (14 pAt) + E[AV]

pV (x(0)) At = maxf (x (0),y (0))

X,y

o Divide by At

pV (x(0)) ~ maxf (x (0),y (0)) (1 -+ pAt) + i]E AV]

o Letting At — 0 and taking the limit:

oV (x(0)) = maxf (x (0) v (0)) + - E[dV/]
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Stochastic Case

Hamilton-Jacobi-Bellman (HJB) Equation |

o Given a small interval of time At, we get:

L

SElaV]

pV (x) = maxf (x,y) +
Xy

o Applying previous results:

1 1
—E[dV] = |gV'+ V"
p” [dV] [g +50

we have
PV () = maxf (x,y) + & (x,y) V' (x) + 50 (x) V" (x) ¥x
X,y

o Important observation: thanks to I1to's lemma, the HJB is not
stochastic.
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Stochastic Case

Hamilton-Jacobi-Bellman (HJB) Equation Il

o Comparison with deterministic case:
pV (x) = rgayxf (x,y)+g(x,y) V' (x)

PV (x) = max (x,y) + (%) V' (x) + 502 () V" (x)

Extra term 202 (x) V"' (x) corrects for curvature.

o Concentrated HJB:
pV (x) = f(x,y(x)) +g(x.y(x) V' (x)+ %02 (x) V" (x)

is the Feynman—Kac formula that links parabolic partial differential
equations (PDEs) and stochastic processes.
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Stochastic Case

Hamilton-Jacobi-Bellman (HJB) Equation Il

o Characterized by a necessary condition:
fy(x.y) +g (xy) V' (x) =0
and an envelope condition:

(0~ 8 (x V) V' ()~ i (x.y) =
g (6, y) V' () + 202 () V" () + 0 (x) & () V" (x)

o Solutions:

@ Theoretical: classical, viscosity, backward SDE, martingale duality.

@ Numerical.
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Stochastic Case

Real Business Cycle |

o Standard business cycle framework without labor choice:

{e(t).k(
st. k=e?k" — 6k —c¢
dz = —Azdt + oczdW

max IEO/ e Ptu(c(t))dt
k(t)}o 0

o HJB:
oV (k z) =
u(c)+ (e*k* =6k —c) Vi (k,z) —AzV, (k,z) + % (02) Vo (k, 2)
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Stochastic Case

Real Business Cycle Il

o Necessary condition
U (c(t))—Vi(k,z)=0
and envelope condition:

(o — (xek* 1 = 6)) Vi (k. 2)
(6K — 0k — ) Van (ko 2) — A2V ()

1
+§ ((72)2 V221 (k, Z) + 022\/22 (k, Z)
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