Continuous Time Stochastic Processes

Jesús Fernández-Villaverde

University of Pennsylvania

November 9, 2013

Jesús Fernández-Villaverde (PENN)

Filtration

• Fix a probability space (Ω, \mathcal{F}, P) .

• Define
$$t \in [0, \infty) = \mathbb{R}_+$$
.

• Filtration: a family $\mathbb{F} = \{\mathcal{F}_t : t \ge 0\}$ of increasing σ -algebras contained in \mathcal{F} :

$$\mathcal{F}_s \subseteq \mathcal{F}_t$$
 for $orall s \leq t$ and $\mathcal{F}_t \subseteq \mathcal{F}$

• Clearly, $\mathcal{F}_{\infty} = \mathcal{F}$ is the smallest σ -algebras containing $\forall \mathcal{F}_t$.

• (Ω, \mathbb{F}, P) : filtered probability space.

Stochastic Processes

- Continuous-time stochastic process: a mapping $x : [0, \infty) \times \Omega \to \mathbb{R}$ which is measurable with respect to $\mathcal{B}_+ \times \mathcal{F}$ (where \mathcal{B}_+ are the Borel sets of \mathbb{R}_+).
- A stochastic process is adapted to \mathbb{F} if $x(t, \omega)$ is \mathcal{F}_t -measurable $\forall t$.
- $x(t, \cdot)$: \mathcal{F}_t -measurable function of ω .
- $x(\cdot, \omega)$: realization, trajectory, or sample path of the process.
- Continuous stochastic process: $x(\cdot, \omega) \in C[0, \infty)$, a.e. $\omega \in \Omega$.

Brownian Motions: Definition

- A Wiener processes (or Brownian motion) is a stochastic process *W* having:
 - continuous sample paths.
 - independent increments.
 - 3 $W(t) \sim \mathcal{N}(0, t)$, $\forall t$.

Basic Result

If a stochastic process $\{X(t), t \ge 0\}$ has continuous sample paths with stationary, independent, and i.i.d. increments, then it is a Wiener process.

• Differential:

$$dW = \lim_{dt\downarrow 0} \left(W\left(t + dt\right) - W\left(t\right) \right)$$

Properties of Differentials

Moments:

1
$$\mathbb{E}[dW] = 0.$$

2 $\mathbb{E}[(dW)^2] = dt$

• Also, as $dt \rightarrow 0$ (we skip the proof):

1
$$dW \sim o\left(\sqrt{dt}\right).$$

2 $(dW)^2 \rightarrow \mathbb{E}\left[(dW)^2\right] = dt.$

• Note that, while W(t) has a continuous path, it is not differentiable:

$$rac{dW}{dt} = rac{o\left(\sqrt{dt}
ight)}{dt} o \infty$$
 as $dt o 0$

Diffusions I

• A Brownian motion with drift:

$$dX(t) = \mu dt + \sigma dW(t)$$
 with $X(0) = x_0$

• More generally, we have a diffusion:

$$dX\left(t\right) = \mu\left(t,x\right)dt + \sigma\left(t,x\right)dW\left(t\right) \;\forall t,\forall \omega$$

• Properties:

$$\mathbb{D} \mathbb{E}_t [dX] = \mu (t, x) dt.$$

2
$$\operatorname{var}_{t}[dX] = \sigma^{2}(t, x) dt.$$

Diffusions II

- Diffusion are important in arbitrage-free asset pricing. Aït-Sahalia (2006).
- Particularly useful cases are:

1) Geometric Brownian motion

$$dX = \mu X dt + \sigma X dW$$

② Ornstein-Uhlenbeck process

$$dX = -\theta \left(X - \mu \right) dt + \sigma \left(t, x \right) X dW$$

Functions of Stochastic Processes I

- Let F(t, x) be a function that is at least once differentiable in t and twice in x.
- We approximate the total differential of $F(t, X(t, \omega))$ by a Taylor expansion:

$$dF = F_t dt + F_x dX + \frac{1}{2} F_{tt} (dt)^2 + \frac{1}{2} F_{xx} (dX)^2 + F_{xt} dt (dX) + \dots$$

• We substitute in:

$$dF = F_t dt + F_x \left[\mu dt + \sigma dW\right] \\ + \frac{1}{2} F_{tt} \left(dt\right)^2 \\ + \frac{1}{2} F_{xx} \left[\mu^2 \left(dt\right)^2 + 2\mu\sigma dt dW + \sigma^2 \left(dW\right)^2\right] \\ + F_{xt} dt \left(\mu dt + \sigma dW\right) \\ + H.O.T...$$

Functions of Stochastic Processes II

• Itō's lemma: we can drop the terms that have order higher than dt or $(dW)^2$ and use $(dW)^2 \rightarrow dt$:

$$dF = F_t dt + F_x \left[\mu dt + \sigma dW \right] + \frac{1}{2} \sigma^2 F_{xx} \left(dW \right)^2$$
$$= \left(F_t + \mu F_x + \frac{1}{2} \sigma^2 F_{xx} \right) dt + \sigma F_x dW$$

• Since $\mathbb{E}[dW] = 0$,

$$\mathbb{E}[dF] = \left[F_t + \mu F_x + \frac{1}{2}\sigma^2 F_{xx}\right] dt$$

Var $[dF] = \mathbb{E}[dF - \mathbb{E}[dF]]^2 = \sigma^2 F_x^2 dt$

Functions of Stochastic Processes III

• Particular case
$$F(t, x) = e^{-rt}f(x)$$
:

$$\mathbb{E}\left[dF\right] = \left[-rf + \mu f' + \frac{1}{2}\sigma^2 f''\right]e^{-rt}dt$$

and when r = 0 (that is, F(t, x) = f(x), an often relevant case in economics)

$$\mathbb{E}\left[dF\right] = \left[\mu f' + \frac{1}{2}\sigma^2 f''\right] dt$$