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Introduction

� In the last set of lecture notes, we reviewed some theoretical back-
ground on numerical programming.

� Now, we will discuss numerical implementation.

� Two issues:

1. Finite versus in�nite time.

2. Discrete versus continuous state space.

2



Finite Time

� Problems where there is a terminal condition.

� Examples:

1. Life cycle.

2. Investment.

� Why are �nite time problems nicer? Backward induction.
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In�nite Time

� Problems where there is no terminal condition.

� Examples:

1. Industry dynamics.

2. Business cycle dynamics.

� However, we will need the equivalent of a terminal condition: transver-
sality condition.
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Discrete State Space

� We can solve problems up to 
oating point accuracy.

� Why is this important?

1. "-equilibria.

2. Estimation.

� However, how realistic are models with a discrete state space.
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In�nite State Space

� More common cases in economics.

� Problem: we will always have to rely on a numerical approximation.

� Interaction of di�erent approximation errors.

� Bounds?
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Di�erent Strategies

1. Value Function Iteration.

2. Policy Function Iteration.

3. Projection.

4. Perturbation.
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Value Function Iteration

� Well known, basic algorithm of dynamic programming.

� We have tight convergence properties and bounds on errors.

� Well suited for parallelization.

� It will always (perhaps quite slowly) work.
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How Do We Implement The Operator?

� We come back to our two distinctions: �nite versus in�nite time and
discrete versus continuous state space.

� Then we need to talk about:

1. Initialization.

2. Discretization.
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Value Function Iteration in Finite Time

� We begin with the Bellman operator:
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Value Function Iteration in In�nite Time

� We begin with the Bellman operator:
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Normalization

� Before initializing the algorithm, it is usually a good idea to normalize
problem:
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� Two advantages:

1. We save one iteration.

2. Stability properties.

3. Convergence bounds are interpretable.
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Initial Value in Finite Time Problems

� Usually, economics of the problem provides natural choices.

� Example: �nal value of an optimal expenditure problem is zero.

� However, some times there are subtle issues.

� Example: what is the value of dying? And of bequests? OLG.
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Initial Guesses for In�nite Time Problems

� Theorems tell us we will converge from any initial guess.

� That does not mean we should not be smart picking our initial guess.

� Several good ideas:

1. Steady state of the problem (if one exists). Usually saves at least

one iteration.

2. Collapsing one or more dimensions of the problem. Which one?
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Discretization

� In the case where we have a continuous state space, we need to dis-
cretize it into a grid.

� How do we do that?

� Dealing with curse of dimensionality.

� Do we let future states lie outside the grid?
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New Approximated Problem

� Exact problem:
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� Approximated problem:
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Grid Generation

� Huge literature on numerical analysis on how to e�ciently generate

grids.

� Two main issues:

1. How to select points sk:

2. How to approximate p by pN :

� Answer to second issue follows from answer to �rst problem.

� We can (and we will) combine strategies to generate grids.
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Uniform Grid

� Decide how many points in the grid.

� Distribute them uniformly in the state space.

� What is the state space is not bounded?

� Advantages and disadvantages.
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Non-uniform Grid

� Use economic theory or error analysis to evaluate where to accumulate
points.

� Standard argument: close to curvatures of the value function.

� Problem: this an heuristic argument.

� Self-con�rming equilibria in computations.
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Quadrature Grid

� Tauchen and Hussey (1991).

� Motivation: quadrature points in integralsZ
f (s) p (s) ds '

NX
k=1

f (sk)wk

� Gaussian quadrature: we require previous equation to be exact for all
polynomials of degree less than or equal to 2N � 1:
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Stochastic Grid

� Randomly chosen grids.

� Rust (1995): it breaks the curse of dimensionality. Why?

� How do we generate random numbers?
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Interpolation

� Discretization also generates the need for interpolation.

� Simpler approach: linear interpolation.

� Problem: in one than more dimension, linear interpolation may not
preserve concavity.

� Shape-preserving splines: Schumaker scheme.
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Multigrid Algorithms

� Old tradition in numerical analysis.

� Basic idea: solve �rst a problem in a coarser grid and use it as a guess

for more re�ned solution.

� Examples:

1. Di�erential equations.

2. Projection methods.

3. Dynamic programming (Chow and Tsitsiklis, 1991).
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Applying the Algorithm

� After deciding initialization and discretization, we still need to imple-
ment each step:
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� Two numerical operations:

1. Maximization.

2. Integral.
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Maximization

� We need to apply the max operator.

� Most costly step of value function iteration.

� Brute force (always works): check all the possible choices in the grid.

� Sensibility: using a Newton or quasi-Newton algorithm.
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Brute Force

� Some times we do not have any other alternative. Examples: problems
with discrete choices, constraints, non-di�erentiabilities, etc.

� Even if brute force is expensive, we can speed things up quite a bit:

1. Previous solution.

2. Monotonicity of choices.

3. Concavity (or quasi-concavity) of value and policy functions.
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Newton or Quasi-Newton

� Much quicker.

� However:

1. Problem of global convergence.

2. We need to compute derivatives.

� We can mix brute force and Newton-type algorithms.
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Accelerator

� Maximization is the most expensive part of value function iteration.

� Often, while we update the value function, optimal choices are not.

� This suggests a simple strategy: apply the max operator only from
time to time.

� How do we choose the optimal timing of the max operator?
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How Do We Integrate?

� Exact integration.

� Approximations: Laplace's method.

� Quadrature.

� Monte Carlo simulations.
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Convergence Assessment

� How do we assess convergence?

� By the contraction mapping property:


V � V k


1 � 1

1� �




V k+1 � V k


1
� Relation of value function iteration error with Euler equation error.
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Error Analysis

� We can use errors in Euler equation to re�ne grid.

� How?

� Advantages of procedure.

� Problems.
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