
Numerical Dynamic Programming

Jes�us Fern�andez-Villaverde
University of Pennsylvania

1



Introduction

� In the last set of lecture notes, we reviewed some theoretical back-
ground on numerical programming.

� Now, we will discuss numerical implementation.

� Two issues:

1. Finite versus in�nite time.

2. Discrete versus continuous state space.

2



Finite Time

� Problems where there is a terminal condition.

� Examples:

1. Life cycle.

2. Investment.

� Why are �nite time problems nicer? Backward induction.

3



In�nite Time

� Problems where there is no terminal condition.

� Examples:

1. Industry dynamics.

2. Business cycle dynamics.

� However, we will need the equivalent of a terminal condition: transver-
sality condition.

4



Discrete State Space

� We can solve problems up to 
oating point accuracy.

� Why is this important?

1. "-equilibria.

2. Estimation.

� However, how realistic are models with a discrete state space.

5



In�nite State Space

� More common cases in economics.

� Problem: we will always have to rely on a numerical approximation.

� Interaction of di�erent approximation errors.

� Bounds?

6



Di�erent Strategies

1. Value Function Iteration.

2. Policy Function Iteration.

3. Projection.

4. Perturbation.

7



Value Function Iteration

� Well known, basic algorithm of dynamic programming.

� We have tight convergence properties and bounds on errors.

� Well suited for parallelization.

� It will always (perhaps quite slowly) work.

8



How Do We Implement The Operator?

� We come back to our two distinctions: �nite versus in�nite time and
discrete versus continuous state space.

� Then we need to talk about:

1. Initialization.

2. Discretization.

9



Value Function Iteration in Finite Time

� We begin with the Bellman operator:

�
�
V t
�
(s) = max

a2A(s)

�
u (s; a) + �

Z
V t

0 �
s0
�
p
�
ds0js; a

��

� Specify V T and apply Bellman operator:

V T�1 (s) = max
a2A(s)

�
u (s; a) + �

Z
V T

�
s0
�
p
�
ds0js; a

��

� Iterate until �rst period:

V 1 (s) = max
a2A(s)

�
u (s; a) + �

Z
V 2

�
s0
�
p
�
ds0js; a

��

10



Value Function Iteration in In�nite Time

� We begin with the Bellman operator:

� (V ) (s) = max
a2A(s)

�
u (s; a) + �

Z
V
�
s0
�
p
�
ds0js; a

��

� Specify V 0 and apply Bellman operator:

V 1 (s) = max
a2A(s)

�
u (s; a) + �

Z
V 0

�
s0
�
p
�
ds0js; a

��

� Iterate until convergence:

V T (s) = max
a2A(s)

�
u (s; a) + �

Z
V T�1

�
s0
�
p
�
ds0js; a

��

11



Normalization

� Before initializing the algorithm, it is usually a good idea to normalize
problem:

V (s) = max
a2A(s)

�
(1� �)u (s; a) + �

Z
V
�
s0
�
p
�
ds0js; a

��

� Two advantages:

1. We save one iteration.

2. Stability properties.

3. Convergence bounds are interpretable.

12



Initial Value in Finite Time Problems

� Usually, economics of the problem provides natural choices.

� Example: �nal value of an optimal expenditure problem is zero.

� However, some times there are subtle issues.

� Example: what is the value of dying? And of bequests? OLG.

13



Initial Guesses for In�nite Time Problems

� Theorems tell us we will converge from any initial guess.

� That does not mean we should not be smart picking our initial guess.

� Several good ideas:

1. Steady state of the problem (if one exists). Usually saves at least

one iteration.

2. Collapsing one or more dimensions of the problem. Which one?

14



Discretization

� In the case where we have a continuous state space, we need to dis-
cretize it into a grid.

� How do we do that?

� Dealing with curse of dimensionality.

� Do we let future states lie outside the grid?

15



New Approximated Problem

� Exact problem:

V (s) = max
a2A(s)

�
(1� �)u (s; a) + �

Z
V
�
s0
�
p
�
ds0js; a

��

� Approximated problem:

bV (s) = max
a2 bA(s)

24(1� �)u (s; a) + � NX
k=1

bV �
s0k
�
pN

�
s0kjs; a

�35

16



Grid Generation

� Huge literature on numerical analysis on how to e�ciently generate

grids.

� Two main issues:

1. How to select points sk:

2. How to approximate p by pN :

� Answer to second issue follows from answer to �rst problem.

� We can (and we will) combine strategies to generate grids.
17



Uniform Grid

� Decide how many points in the grid.

� Distribute them uniformly in the state space.

� What is the state space is not bounded?

� Advantages and disadvantages.

18



Non-uniform Grid

� Use economic theory or error analysis to evaluate where to accumulate
points.

� Standard argument: close to curvatures of the value function.

� Problem: this an heuristic argument.

� Self-con�rming equilibria in computations.

19



Quadrature Grid

� Tauchen and Hussey (1991).

� Motivation: quadrature points in integralsZ
f (s) p (s) ds '

NX
k=1

f (sk)wk

� Gaussian quadrature: we require previous equation to be exact for all
polynomials of degree less than or equal to 2N � 1:

20



Stochastic Grid

� Randomly chosen grids.

� Rust (1995): it breaks the curse of dimensionality. Why?

� How do we generate random numbers?

21



Interpolation

� Discretization also generates the need for interpolation.

� Simpler approach: linear interpolation.

� Problem: in one than more dimension, linear interpolation may not
preserve concavity.

� Shape-preserving splines: Schumaker scheme.

22



Multigrid Algorithms

� Old tradition in numerical analysis.

� Basic idea: solve �rst a problem in a coarser grid and use it as a guess

for more re�ned solution.

� Examples:

1. Di�erential equations.

2. Projection methods.

3. Dynamic programming (Chow and Tsitsiklis, 1991).

23



Applying the Algorithm

� After deciding initialization and discretization, we still need to imple-
ment each step:

V T (s) = max
a2A(s)

�
u (s; a) + �

Z
V T�1

�
s0
�
p
�
ds0js; a

��

� Two numerical operations:

1. Maximization.

2. Integral.

24



Maximization

� We need to apply the max operator.

� Most costly step of value function iteration.

� Brute force (always works): check all the possible choices in the grid.

� Sensibility: using a Newton or quasi-Newton algorithm.

25



Brute Force

� Some times we do not have any other alternative. Examples: problems
with discrete choices, constraints, non-di�erentiabilities, etc.

� Even if brute force is expensive, we can speed things up quite a bit:

1. Previous solution.

2. Monotonicity of choices.

3. Concavity (or quasi-concavity) of value and policy functions.

26



Newton or Quasi-Newton

� Much quicker.

� However:

1. Problem of global convergence.

2. We need to compute derivatives.

� We can mix brute force and Newton-type algorithms.

27



Accelerator

� Maximization is the most expensive part of value function iteration.

� Often, while we update the value function, optimal choices are not.

� This suggests a simple strategy: apply the max operator only from
time to time.

� How do we choose the optimal timing of the max operator?

28



How Do We Integrate?

� Exact integration.

� Approximations: Laplace's method.

� Quadrature.

� Monte Carlo simulations.

29



Convergence Assessment

� How do we assess convergence?

� By the contraction mapping property:


V � V k


1 � 1

1� �




V k+1 � V k


1
� Relation of value function iteration error with Euler equation error.

30



Error Analysis

� We can use errors in Euler equation to re�ne grid.

� How?

� Advantages of procedure.

� Problems.

31


