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Introducing Uncertainty in Dynamic Programming

� Stochastic dynamic programming presents a very exible framework
to handle multitude of problems in economics.

� We generalize the results of deterministic dynamic programming.

� Problem: taking care of measurability.

2



References

� Read chapter 9 of SLP!!!!!!!!!!!!!!

� Problem of SLP: based on Borel sets. Raises issues of measurability.

See page 253 and 254 of SLP.

� Bertsekas and Shreve (Stochastic Optimal Control, 1978) redo much
of the theory with universal measurability

� Read chapter 10 of SLP: it is full of economic applications.
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Environment

� (X;X ): universally measurable space for the endogenous state.

� (Z;Z): universally measurable space for the exogenous state.

� (S;S): (X;X )� (Z;Z) :

� Q: stationary transition function for (Z;Z).

� � : X � Z ! X: correspondence constraint.

� A = f(x; y; z) 2 X �X � Z : y 2 � (x; z)g: graph of �.

� F : A! R: one-period return function.

� �: discount factor.
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Plans

� �t : Zt ! X for t = 1; 2; :::: sequence of measurable functions.

� � = (�0 2 X;�t): plan.

� Interpretation of a plan: contingent decision rules.

� A plan � is feasible from s0 2 S if:
1. �0 2 � (s0) :
2. �t 2 �

�
�t�1

�
zt�1

�
; zt

�
for zt 2 Zt, t = 1; 2; :::

� � (s0): set of all feasible plans from s0 2 S:

� If � does not depend on t but only on zt, we call the plan stationary
or Markov.
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Some Preliminary Results I

� Assumption 1:

1. � is non-empty valued.

2. A is (X � X � Z)�measurable.

3. 9 a measurable selection h : S ! X s.t. h (s) 2 � (s) for 8s 2 S.

� Lemma 1: under previous assumption, � (s0) is nonempty for 8s0 2 S.

� Lemma 2: A = (X � X � Z) is a ��algebra.

� Corollary 1: F
�
�t�1

�
zt�1

�
; �t

�
zt
�
; zt

�
is Zt�measurable.
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Some Preliminary Results II

� Given Q on (Z;Z) and s0 2 S,

�t (z0; �) : Zt ! [0; 1] , t = 1; 2; :::

� Assumption 2: F : A ! R is A�measurable and either (a) or (b)
holds:

a. F � 0 or F � 0:
b. For each (x0; z0) = s0 2 S and each plan � 2 � (s0),

F
�
�t�1

�
zt�1

�
; �t

�
zt
�
; zt

�
is �t (z0; �)� integrable, t = 1; 2; :::

and the limit:

F (x0; �0; z0)+ lim
t!1

1X
t=1

Z
Zt
�tF

�
�t�1

�
zt�1

�
; �t

�
zt
�
; zt

�
�t (z0; �)

exists (though it may be plus or minus in�nity).
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Sequential Problem

� De�ne un (�; s0) : � (s0)! R; n = 0; 1; ::: by:

u0 (�; s0) = F (x0; �0; z0)

un (�; s0) = F (x0; �0; z0)

+
nX
t=1

Z
Zt
�tF

�
�t�1

�
zt�1

�
; �t

�
zt
�
; zt

�
�t
�
z0; dz

t
�

� De�ne u (�; s0) : � (s0)! R1 by

u (�; s0) = lim
n!1un (�; s0)

� De�ne v� : S ! R1 by

v� (s) = sup
�2�(s)

u (�; s0)
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Recursive Problem

� Functional equation:

v (s) = v (x; z) = sup
y2�(x;z)

�
F (x; y; z) + �

Z
v
�
y; z0

�
Q
�
z; dz0

��

� Associate with the functional equation, we have a policy correspon-
dence:

G (x; z) =
�
y 2 � (x; z) : v (x; z) = F (x; y; z) + �

Z
v
�
y; z0

�
Q
�
z; dz0

��
� If G is nonempty and if there is a sequence of measurable selections
g1; ::: from G, we have the plan generated by G from s0:

�0 = g0 (s0)

�t
�
zt
�
= gt

h
�t�1

�
zt�1

�
; zt

i
, 8zt 2 Zt, t = 1; 2; :::
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Transversality Condition

� In general, dynamic programming problems require two boundary con-
ditions: an initial condition and a �nal condition.

� Transversality condition plays the role of the second condition.

� To ensure the equivalence of the sequential and recursive problem, we
also need then a transversality condition:

lim
t!1

�t
Z
v
�
�t�1

�
zt�1

�
; zt

�
�t
�
z0; dz

t
�
= 0; 8� 2 � (s0) , s0 2 S
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Equivalence of Sequential and Recursive Problem

� Under our previous assumptions:

1. v = v�

2. Any plan �� generated by G obtains the supremum in v� (s) =
sup�2�(s) u (�; s0)

� Under our previous assumptions and an additional boundness condi-
tion, a plan is optimal only if it is generated a.e. by G:

� Our results are equivalent to theorems 4.2-4.5 in SLP for the deter-
ministic case.
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Bounded Returns

� As in the deterministic case, we want to show further results.

� Assumptions:

1. F is bounded and continuous.

2. � < 1:

3. X is a compact set in Rl and X is a universally measurable ��algebra.

4. Z is a compact set in Rk and Z is a universally measurable ��algebra.

5. Q has the Feller property.

� Intuition: integration will preserve properties of the return function.
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Results I

Under these assumptions, we can prove that:

1. The Bellman operator:

(Tf) (x; z) = sup
y2�(x;z)

�
F (x; y; z) + �

Z
v
�
y; z0

�
Q
�
z; dz0

��
has a unique �xed point.

2. Contractivity: kTnv0 � vk � �n kv0 � vk, n = 1; 2; :::

3. The policy correspondence

G (x; z) =
�
y 2 � (x; z) : v (x; z) = F (x; y; z) + �

Z
v
�
y; z0

�
Q
�
z; dz0

��
is non-empty, compact-valued, and u.h.c.

4. The value function will inherit increasing properties from F and Q.
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Concavity

� Assumption concavity 1: For each z 2 Z, F (�; �; z) : Az ! R satis�es:

F
�
� (x; y) + (1� �)

�
x0; y0

�
; z
�
� �F (x; y; z) + (1� �)F

�
x0; y0; z

�
8� 2 (0; 1) , 8 (x; y) ;

�
x0; y0

�
2 Az

and the inequality is strict if x 6= x0.

� Assumption concavity 2: For 8z 2 Z and 8x; x0 2 X, y 2 � (x; z) and
y0 2 �

�
x0; z

�
�y + (1� �) y0 2 �

�
�x+ (1� �)x0; z

�
; 8� 2 (0; 1)
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Results II

1. Under previous assumptions, v (�; z) : X ! R is strictly concave and
G (�; z) : X ! X is a continuous, single-valued function.

2. Let vn = Tvn�1 and

gn (x; z) = arg max
y2�(x;z)

�
F (x; y; z) + �

Z
v
�
y; z0

�
Q
�
z; dz0

��
for n = 1; 2; :::

Then, gn ! g uniformly.

3. If x0 2 int (X) and g (x0; z0) 2 int (� (x0; z0)), v (�; z0) is continu-
ously di�erentiable in x at x0 with derivatives given by:

vi (x0; z0) = Fi [x0; g (x0; z0) ; z0] ; i = 1; :::; l
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Unbounded Returns

� What if returns, like in most applications of interest in economics, are
unbounded?

� This was already an issue in the deterministic set-up.

� We can get most of the substance of previous results if F is constant

returns to scale.

� In the case of CRRA utility functions, we would need to do some

ad-hoc work.
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Policy Functions and Transition Functions I

� Let us imagine that the decision maker follows g (x; z) given an initial
condition s0:

� The policy function generates a sequence fstg :

� What do we know about fstg?

� Read chapters 11-14 of SLP.
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Policy Functions and Transition Functions II

� Let (X;X ), (Z;Z) ; and (S;S): (X;X )� (Z;Z) be universally mea-
surable spaces; let Q be a transition function on (Z;Z) ; and let
g : S ! X be a measurable function. Then:

P [(x; z) ; A�B] =
(
Q (z;B) if g (x; z) 2 A
0 otherwise

for 8x 2 X; z 2 Z;A 2 X ; and B 2 Z, de�nes a transition function
on (S;S).

� If g is continuous, then P has the Feller property.

� Characterizing long run behavior of the model.
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