Measure Theory

Jesús Fernández-Villaverde University of Pennsylvania

Why Bother with Measure Theory?

- Kolmogorov (1933).
- Foundation of modern probability.
- Deals easily with:

1. Continuous versus discrete probabilities. Also mixed probabilities.
2. Univariate versus multivariate.
3. Independence.
4. Convergence.

Introduction to Measure Theory

- Measure theory is an important field for economists.
- We cannot do in a lecture what it will take us (at least) a whole semester.
- Three sources:

1. Read chapters 7 and 8 in SLP.
2. Excellent reference: A User's Guide to Measure Theoretic Probability, by David Pollard.
3. Take math classes!!!!!!!!!!!!!!

σ-Algebra

- Let S be a set and let \mathcal{S} be a family of subsets of $S . \mathcal{S}$ is a σ-algebra if

1. $\emptyset, S \in \mathcal{S}$.
2. $A \in \mathcal{S} \Rightarrow A^{c}=S \backslash A \in \mathcal{S}$.
3. $A_{n} \in \mathcal{S}, n=1,2, \ldots, \Rightarrow \cup_{n=1}^{\infty} A_{n} \in \mathcal{S}$.

- (S, \mathcal{S}) : measurable space.
- $A \in \mathcal{S}$: measurable set.

Borel Algebra

- Define a collection \mathcal{A} of subsets of S.
- σ-algebra generated by \mathcal{A} : the intersection of all σ-algebra containing \mathcal{A} is a σ-algebra.
- σ-algebra generated by \mathcal{A} is the smallest σ-algebra containing \mathcal{A}.
- Example: let \mathcal{B} be the collection of all open balls (or rectangles) of \mathbb{R}^{l} (or a restriction of).
- Borel algebra: the σ-algebra generated by \mathcal{B}.
- Borel set: any set in \mathcal{B}.

Measures

- Let (S, \mathcal{S}) be a measurable space.
- Measure: an extended real-valued function $\mu: \mathcal{S} \rightarrow \mathbb{R}_{\infty}$ such that:

1. $\mu(\emptyset)=0$.
2. $\mu(A) \geq 0, \forall A \in \mathcal{S}$.
3. If $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a countable, disjoint sequence of subsets in \mathcal{S}, then $\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$.

- If $\mu(S)<\infty$, then μ is finite.
- (S, \mathcal{S}, μ) : measurable space.

Probability Measures

- Probability measure: μ such that $\mu(S)=1$.
- Probability space: (S, \mathcal{S}, μ) where μ is a probability measure.
- Event: each $A \in \mathcal{S}$.
- Probability of an event: $\mu(A)$.
- $B(S, \mathcal{S})$: space all probability measures on (S, \mathcal{S}).

Almost Everywhere

- Given (S, \mathcal{S}, μ), a proposition holds almost μ-everywhere (μ-a.e.), if \exists a set $A \in \mathcal{S}$ with $\mu(A)=0$, such that the proposition holds on A^{c}.
- If μ is a probability measure, we often use the phrase almost surely (a.s.) instead of almost everywhere.

Completion

- Let (S, \mathcal{S}, μ) be a measure space.
- Define the family of subsets of any set with measure zero:

$$
\mathcal{C}=\{C \subset S: C \subseteq A \text { for some } A \in \mathcal{S} \text { with } \mu(A)=0\}
$$

- Completion of \mathcal{S} is the family \mathcal{S}^{\prime} :

$$
\mathcal{S}^{\prime}=\left\{B^{\prime} \subseteq S: B^{\prime}=\left(B \cup C_{1}\right) \backslash C_{2}, B \in \mathcal{S}, C_{1}, C_{2} \in \mathcal{C}\right\}
$$

- $\mathcal{S}^{\prime}(\mu)$: completion of \mathcal{S} with respect to measure μ.

Universal σ-Algebra

- $\mathcal{U}=\cap_{\mu \in B(S, \mathcal{S})} \mathcal{S}^{\prime}(\mu)$.
- Note:

1. \mathcal{U} is a σ-algebra.
2. $\mathcal{B} \subset \mathcal{U}$.

- Universally measurable space is a measurable space with its universal σ-algebra.
- Universal σ-algebras avoid a problem of Borel σ-algebras: projection of Borel sets are not necessarily measurable with respect to \mathcal{B}.

Measurable Function

- Measurable function into \mathbb{R} : given a measurable space (S, \mathcal{S}), a realvalued function $f: S \rightarrow \mathbb{R}$ is measurable with respect to \mathcal{S} (or \mathcal{S}-measurable) if

$$
\{s \in \mathcal{S}: f(s) \leq a\} \in \mathcal{S}, \forall a \in \mathbb{R}
$$

- Measurable function into a measurable space: given two measurable spaces (S, \mathcal{S}) and (T, \mathcal{T}), the function $f: S \rightarrow T$ is measurable if:

$$
\{s \in \mathcal{S}: f(s) \in A\} \in \mathcal{S}, \forall A \in \mathcal{T}
$$

- If we set $(T, \mathcal{T})=(\mathbb{R}, \mathcal{B})$, the second definition nests the first.
- Random variable: a measurable function in a probability space.

Measurable Selection

- Measurable selection: given two measurable spaces (S, \mathcal{S}) and (T, \mathcal{T}) and a correspondence Γ of S into T, the function $h: S \rightarrow T$ is a measurable selection from Γ is h is measurable and:

$$
h(s) \in \Gamma(s), \forall s \in \mathcal{S}
$$

- Measurable Selection Theorem: Let $S \subseteq \mathbb{R}^{l}$ and $T \subseteq \mathbb{R}^{m}$ and \mathcal{S} and \mathcal{T} be their universal σ-algebras. Let $\Gamma: S \rightarrow T$ be a (nonempty) compact-valued and u.h.c. correspondence. Then, \exists a measurable selection from Γ.

Measurable Simple Functions

- $M(S, \mathcal{S})$: space of measurable, extended real-valued functions on S.
- $M^{+}(S, \mathcal{S})$: subset of nonnegative functions.
- Measurable simple function:

$$
\phi(s)=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}(s)
$$

- Importance: for any measurable function $f, \exists\left\{\phi_{n}\right\}$ such that $\phi_{n}(s) \rightarrow$ f pointwise.

Integrals

- Integral of ϕ with respect to μ :

$$
\int_{S} \phi(s) \mu(d s)=\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right)
$$

- Integral of $f \in M^{+}(S, \mathcal{S})$ with respect to μ :

$$
\int_{S} f(s) \mu(d s)=\sup _{\phi(s) \in M^{+}(S, \mathcal{S})} \int_{S} \phi(s) \mu(d s)
$$

such that $0 \leq \phi \leq f$.

- Integral of $f \in M^{+}(S, \mathcal{S})$ over A with respect to μ :

$$
\int_{A} f(s) \mu(d s)=\int_{S} f(s) \chi_{A}(s) \mu(d s)
$$

Positive and Negative Parts

- We define the previous results with positive functions.
- How do we extend to the general case?
- f^{+}: positive part of a function

$$
f^{+}(s)=\left\{\begin{array}{c}
f(s) \text { if } f(s) \geq 0 \\
0 \text { if } f(s)<0
\end{array}\right.
$$

- f^{-}: negative part of a function

$$
f^{-}(s)=\left\{\begin{array}{c}
-f(s) \text { if } f(s) \leq 0 \\
0 \text { if } f(s)>0
\end{array}\right.
$$

Integrability

- Let (S, \mathcal{S}, μ) be a measure space and let f be measurable, real-valued function on S. If f^{+}and f^{-}both have finite integrals with respect to μ, then f is integrable and the integral is given by

$$
\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu
$$

- If $A \in \mathcal{S}$, the integral of f over A with respect to μ :

$$
\int_{A} f d \mu=\int_{A} f^{+} d \mu-\int_{A} f^{-} d \mu
$$

Transition Functions

- Transition function: given a measurable space (Z, \mathcal{Z}), a function Q : $Z \times \mathcal{Z} \rightarrow[0,1]$ such that:

1. For $\forall z \in Z, Q(z, \cdot)$ is a probability measure on (Z, \mathcal{Z}).
2. For $\forall A \in \mathcal{Z}, Q(\cdot, A)$ is \mathcal{Z}-measurable.

- $\left(Z^{t}, \mathcal{Z}^{t}\right)=(Z \times \ldots \times Z, \mathcal{Z} \times \ldots \times \mathcal{Z})(t$ times $)$.
- Then, for any rectangle $B=A_{1} \times \ldots \times A_{t} \in \mathcal{Z}^{t}$, define:
$\mu^{t}\left(z_{0}, B\right)=\int_{A_{1}} \ldots \int_{A_{t-1}} \int_{A_{t}} Q\left(z_{t-1}, d z_{t}\right) Q\left(z_{t-2}, d z_{t-1}\right) \ldots Q\left(z_{0}, d z_{1}\right)$

Two Operators

- For any \mathcal{Z}-measurable function f, define:

$$
(T f)(z)=\int f\left(z^{\prime}\right) Q\left(z, d z^{\prime}\right), \forall s \in \mathcal{S}
$$

Interpretation: expected value of f next period.

- For any probability measure λ on (Z, \mathcal{Z}), define:

$$
\left(T^{*} \lambda\right)(A)=\int Q(z, A) \lambda(d z), \forall A \in \mathcal{Z}
$$

Interpretation: probability that the state will be in A next period.

Basic Properties

- T maps the space of bounded \mathcal{Z}-measurable functions, $B(Z, \mathcal{Z})$, into itself.
- T^{*} maps the space of probability measures on $(Z, \mathcal{Z}), \Lambda(Z, \mathcal{Z})$, into itself.
- T and T^{*} are adjoint operators:

$$
\int(T f)(z) \lambda(d z)=\int f\left(z^{\prime}\right)\left(T^{*} \lambda\right)\left(d z^{\prime}\right), \forall \lambda \in \Lambda(Z, \mathcal{Z})
$$

for any function $f \in B(Z, \mathcal{Z})$.

Two Properties

- A transition function Q on (Z, \mathcal{Z}) has the Feller property if the associated operator T maps the space of bounded continuous function on Z into itself.
- A transition function Q on (Z, \mathcal{Z}) is monotone if for every nondecreasing function $f, T f$ is also non-decreasing.

Consequences of our Two Properties

- If $Z \subset \mathbb{R}^{l}$ is compact and Q has the Feller property, then \exists a probability measure λ^{*} that is invariant under Q :

$$
\lambda^{*}=\left(T^{*} \lambda^{*}\right)(A)=\int Q(z, A) \lambda^{*}(d z)
$$

- Weak convergence: a sequence $\left\{\lambda_{n}\right\}$ converges weakly to $\lambda\left(\lambda_{n} \Rightarrow \lambda\right)$ if

$$
\lim _{n \rightarrow \infty} \int f d \lambda_{n}=\int f d \lambda, \forall f \in C(S)
$$

- If Q is monotone, has the Feller property, and there is enough "mixing" in the distribution, there is a unique invariant probability measure λ^{*}, and $T^{* n} \lambda_{0} \Rightarrow \lambda^{*}$ for $\forall \lambda_{0} \in \Lambda(Z, \mathcal{Z})$.

