Measure Theory

Jesús Fernández-Villaverde University of Pennsylvania

Why Bother with Measure Theory?

- Kolmogorov (1933).
- Foundation of modern probability.
- Deals easily with:
 - 1. Continuous versus discrete probabilities. Also mixed probabilities.
 - 2. Univariate versus multivariate.
 - 3. Independence.
 - 4. Convergence.

Introduction to Measure Theory

- Measure theory is an important field for economists.
- We cannot do in a lecture what it will take us (at least) a whole semester.
- Three sources:
 - 1. Read chapters 7 and 8 in SLP.
 - 2. Excellent reference: A User's Guide to Measure Theoretic Probability, by David Pollard.
 - 3. Take math classes!!!!!!!!!!!!

$\sigma-{\sf Algebra}$

Let S be a set and let S be a family of subsets of S. S is a σ-algebra if

1. $\emptyset, S \in \mathcal{S}$.

- 2. $A \in S \Rightarrow A^c = S \setminus A \in S$.
- 3. $A_n \in S$, $n = 1, 2, ..., \Rightarrow \cup_{n=1}^{\infty} A_n \in S$.
- (S, \mathcal{S}) : measurable space.
- $A \in S$: measurable set.

Borel Algebra

- Define a collection \mathcal{A} of subsets of S.
- σ-algebra generated by A: the intersection of all σ-algebra containing A is a σ-algebra.
- σ -algebra generated by \mathcal{A} is the smallest σ -algebra containing \mathcal{A} .
- Example: let B be the collection of all open balls (or rectangles) of ℝ^l (or a restriction of).
- Borel algebra: the σ -algebra generated by \mathcal{B} .
- Borel set: any set in \mathcal{B} .

Measures

- Let (S, \mathcal{S}) be a measurable space.
- Measure: an extended real-valued function $\mu : S \to \mathbb{R}_{\infty}$ such that:

1.
$$\mu(\emptyset) = 0.$$

2.
$$\mu(A) \geq 0, \forall A \in \mathcal{S}.$$

- 3. If $\{A_n\}_{n=1}^{\infty}$ is a countable, disjoint sequence of subsets in S, then $\mu\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\mu(A_n).$
- If $\mu(S) < \infty$, then μ is finite.
- (S, S, μ) : measurable space.

Probability Measures

- Probability measure: μ such that $\mu(S) = 1$.
- Probability space: (S, S, μ) where μ is a probability measure.
- Event: each $A \in \mathcal{S}$.
- Probability of an event: $\mu(A)$.
- B(S, S): space all probability measures on (S, S).

Almost Everywhere

- Given (S, S, μ), a proposition holds almost μ−everywhere (μ−a.e.), if
 ∃ a set A ∈ S with μ(A) = 0, such that the proposition holds on A^c.
- If μ is a probability measure, we often use the phrase almost surely (a.s.) instead of almost everywhere.

Completion

- Let (S, \mathcal{S}, μ) be a measure space.
- Define the family of subsets of any set with measure zero:

$$C = \{C \subset S : C \subseteq A \text{ for some } A \in S \text{ with } \mu(A) = 0\}$$

• Completion of S is the family S':

$$\mathcal{S}' = \left\{ B' \subseteq S : B' = (B \cup C_1) \setminus C_2, B \in \mathcal{S}, C_1, C_2 \in \mathcal{C} \right\}$$

• $\mathcal{S}'(\mu)$: completion of \mathcal{S} with respect to measure μ .

Universal σ -Algebra

- $\mathcal{U} = \cap_{\mu \in B(S,\mathcal{S})} \mathcal{S}'(\mu)$.
- Note:
 - 1. \mathcal{U} is a σ -algebra.
 - 2. $\mathcal{B} \subset \mathcal{U}$.
- Universally measurable space is a measurable space with its universal $\sigma-$ algebra.
- Universal σ -algebras avoid a problem of Borel σ -algebras: projection of Borel sets are not necessarily measurable with respect to \mathcal{B} .

Measurable Function

 Measurable function into ℝ: given a measurable space (S, S), a realvalued function f : S → ℝ is measurable with respect to S (or S-measurable) if

$$\{s \in \mathcal{S} : f(s) \leq a\} \in \mathcal{S}, \ \forall \ a \in \mathbb{R}$$

• Measurable function into a measurable space: given two measurable spaces (S, S) and (T, T), the function $f : S \to T$ is measurable if:

$$\{s \in \mathcal{S} : f(s) \in A\} \in \mathcal{S}, \ \forall \ A \in \mathcal{T}$$

- If we set $(T, \mathcal{T}) = (\mathbb{R}, \mathcal{B})$, the second definition nests the first.
- Random variable: a measurable function in a probability space.

Measurable Selection

Measurable selection: given two measurable spaces (S, S) and (T, T) and a correspondence Γ of S into T, the function h : S → T is a measurable selection from Γ is h is measurable and:

$$h\left(s
ight)\in\mathsf{\Gamma}\left(s
ight)$$
 , $orall\,s\in\mathcal{S}$

Measurable Selection Theorem: Let S ⊆ ℝ^l and T ⊆ ℝ^m and S and T be their universal σ-algebras. Let Γ:S → T be a (nonempty) compact-valued and u.h.c. correspondence. Then, ∃ a measurable selection from Γ.

Measurable Simple Functions

- M(S, S): space of measurable, extended real-valued functions on S.
- $M^+(S, \mathcal{S})$: subset of nonnegative functions.
- Measurable simple function:

$$\phi(s) = \sum_{i=1}^{n} a_i \chi_{A_i}(s)$$

• Importance: for any measurable function f, $\exists \{\phi_n\}$ such that $\phi_n(s) \rightarrow f$ pointwise.

Integrals

• Integral of ϕ with respect to μ :

$$\int_{S} \phi(s) \mu(ds) = \sum_{i=1}^{n} a_{i} \mu(A_{i})$$

• Integral of $f \in M^+(S, S)$ with respect to μ :

$$\int_{S} f(s) \mu(ds) = \sup_{\phi(s) \in M^{+}(S,S)} \int_{S} \phi(s) \mu(ds)$$

such that $0 \leq \phi \leq f$.

• Integral of $f \in M^+(S, \mathcal{S})$ over A with respect to μ :

$$\int_{A} f(s) \mu(ds) = \int_{S} f(s) \chi_{A}(s) \mu(ds)$$

Positive and Negative Parts

- We define the previous results with positive functions.
- How do we extend to the general case?
- f^+ : positive part of a function

$$f^{+}(s) = \begin{cases} f(s) \text{ if } f(s) \ge 0\\ 0 \text{ if } f(s) < 0 \end{cases}$$

• f^- : negative part of a function

$$f^{-}(s) = \begin{cases} -f(s) \text{ if } f(s) \leq 0\\ 0 \text{ if } f(s) > 0 \end{cases}$$

Integrability

 Let (S, S, μ) be a measure space and let f be measurable, real-valued function on S. If f⁺ and f⁻ both have finite integrals with respect to μ, then f is integrable and the integral is given by

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

• If $A \in S$, the integral of f over A with respect to μ :

$$\int_A f d\mu = \int_A f^+ d\mu - \int_A f^- d\mu$$

Transition Functions

Transition function: given a measurable space (Z, Z), a function Q : Z × Z → [0, 1] such that:

1. For $\forall z \in Z$, $Q(z, \cdot)$ is a probability measure on (Z, \mathcal{Z}) .

2. For $\forall A \in \mathbb{Z}$, $Q(\cdot, A)$ is \mathbb{Z} -measurable.

- $(Z^t, \mathcal{Z}^t) = (Z \times ... \times Z, \mathcal{Z} \times ... \times \mathcal{Z})$ (t times).
- Then, for any rectangle $B = A_1 \times ... \times A_t \in \mathcal{Z}^t$, define:

$$\mu^{t}(z_{0},B) = \int_{A_{1}} \dots \int_{A_{t-1}} \int_{A_{t}} Q(z_{t-1},dz_{t}) Q(z_{t-2},dz_{t-1}) \dots Q(z_{0},dz_{1})$$

Two Operators

• For any \mathcal{Z} -measurable function f, define:

$$\left(Tf
ight)\left(z
ight)=\int f\left(z'
ight)Q\left(z,dz'
ight)$$
 , $orall s\in\mathcal{S}$

Interpretation: expected value of f next period.

• For any probability measure λ on (Z, \mathcal{Z}) , define:

$$\left(T^{*}\lambda
ight)\left(A
ight)=\int Q\left(z,A
ight)\lambda\left(dz
ight)$$
 , $orall A\in\mathcal{Z}$

Interpretation: probability that the state will be in A next period.

Basic Properties

- T maps the space of bounded Z-measurable functions, B(Z, Z), into itself.
- T* maps the space of probability measures on (Z, Z), Λ(Z, Z), into itself.
- T and T^* are adjoint operators:

$$\int (Tf)(z) \lambda (dz) = \int f(z') (T^*\lambda) (dz'), \ \forall \lambda \in \Lambda (Z, \mathcal{Z})$$

for any function $f \in B(Z, \mathbb{Z})$.

Two Properties

- A transition function Q on (Z, Z) has the Feller property if the associated operator T maps the space of bounded continuous function on Z into itself.
- A transition function Q on (Z, \mathbb{Z}) is monotone if for every nondecreasing function f, Tf is also non-decreasing.

Consequences of our Two Properties

• If $Z \subset \mathbb{R}^l$ is compact and Q has the Feller property, then \exists a probability measure λ^* that is invariant under Q:

$$\lambda^* = (T^*\lambda^*)(A) = \int Q(z, A) \lambda^*(dz)$$

Weak convergence: a sequence {λ_n} converges weakly to λ (λ_n ⇒ λ) if

$$\lim_{n \to \infty} \int f d\lambda_n = \int f d\lambda, \ \forall f \in C(S)$$

 If Q is monotone, has the Feller property, and there is enough "mixing" in the distribution, there is a unique invariant probability measure λ*, and T*nλ₀ ⇒ λ* for ∀λ₀ ∈ Λ (Z, Z).