Random Matching Models

Jesús Fernández-Villaverde ${ }^{1}$
December 4, 2021
${ }^{1}$ University of Pennsylvania

Introduction

Motivation

- Trade in the labor market is a decentralized economic activity:

1. It takes time and effort.
2. It is uncoordinated.

- Central points:

1. Matching arrangements.
2. Productivity opportunities constantly arise and disappear.

Empirical observations

- Huge amount of labor turnover.
- Pioneers in this research: Davis and Haltiwanger.
- Micro data:

1. Current population survey (CPS)
2. Job opening and labor turnover survey (JOLTS): 16.000 establishments, monthly.
3. Business employment dynamics (BED): entry and exit of establishments.
4. Longitudinal employer household dynamics (LEHD): matched data.

Basic accounting identity

- For each period t and level of aggregation i :

$$
\begin{aligned}
\text { Net Employment Change } & =\underbrace{}_{\text {Workers Flows }^{\text {Hires }_{t i}-\text { Separations }_{t i}}} \\
& =\underbrace{\text { Creation }_{t i}-\text { Destruction }_{t i}}_{\text {Jobs Flows }}
\end{aligned}
$$

- Difficult to distinguish between voluntary and involuntary separations.

Four models of random matching

- Pissarides (1985).
- Mortensen and Pissarides (1994).
- Burdett and Mortensen (1998).
- Moen (1997).

Model I: Pissarides

Setup

- Pissarides (1985).
- Continuous time.
- Constant and exogenous interest rate r : stationary world.
- No capital (we will change this later).

Workers

- Continuum of measure L of worker. A law of large numbers hold in the economy.
- Workers are identical.
- Linear preferences (risk neutrality).
- Thus, worker maximizes total discounted income:

$$
\int_{0}^{\infty} e^{-r t} y(t) d t
$$

where r is the interest rate and $y(t)$ is income per period.

Firms

- Endogenous number of small firms:

1. One firm=one job.
2. Competitive producers of the final output at price p.

- Free entry into production:

1. Perfectly elastic supply of firm operators.
2. Zero-profit condition.

- Vacancy cost $c>0$ per unit of time.

Matching function, I

- L workers, u unemployment rate, and v vacancy rate.
- How do we determine how many matches do we have?
- Define matching function:

$$
f L=m(u L, v L)
$$

where f is the rate of jobs created.

- Increasing in both argument, concave, and constant returns to scale.
- Why CRS?

1. Argument against decreasing returns to scale: submarkets.
2. But possibly increasing returns to scale (we will come back to this).

- Then, $f=m(u, v)$.

Matching function, II

- All matches are random.
- Microfoundation of the matching function? Butters (1977).
- Empirical evidence:

$$
f_{t}=e^{\varepsilon_{t}} u_{t}^{0.72} v_{t}^{0.28}
$$

- ε_{t} is the sum of:

1. High frequency noise.
2. Very low frequency movement (for example, demographics).

What if increasing returns to scale?

- Multiple equilibria:

1. High activity equilibrium.
2. Low activity equilibrium.

- Diamond (1982), Howitt and McAfee (1987).
- In any case, a matching function implies externalities and opens door to inefficiencies.

Properties of matching function, I

- Define vacancy unemployment ratio (or market tightness) as $\theta=\frac{v}{u}$.
- Then:

$$
q(\theta)=m\left(\frac{u}{v}, 1\right)=m\left(\frac{1}{\theta}, 1\right)
$$

- We can show:

1. $q^{\prime}(\theta) \leq 0$.
2. $\frac{q^{\prime}(\theta)}{q(\theta)} \theta \in[-1,0]$.

Properties of matching function, II

- Since $\frac{f}{v}=\frac{m(u, v)}{v}=q(\theta)$, we have:

1. $q(\theta)$ is the (Poisson) rate at which vacant jobs become filled.
2. Mean duration of a vacancy is $\frac{1}{q(\theta)}$.

- Since $\frac{f}{u}=\frac{m(u, v)}{u}=\theta q(\theta)$, we have:

1. $\theta q(\theta)$ is the (Poisson) rate at which unemployed workers find a job.
2. Mean duration of unemployment is $\frac{1}{\theta q(\theta)}$.

Externalities

- Note that $q(\theta)$ and $\theta q(\theta)$ depend on market tightness.
- This is called a search or congestion externality.
- Think about a party where you take 5 friends.
- Prices and wages do not play a direct role for the rates.
- Competitive vs. search equilibria.

Job creation and destruction

- Job creation: a firm and a worker match and they agree on a wage.
- Job creation in a period: $f L=u \theta q(\theta) L$.
- Job creation rate: $\frac{\mu \theta q(\theta)}{1-u}$.
- Job destruction: exogenous at (Poisson) rate λ.
- Job destruction in a period: $\lambda(1-u) L$.
- Job destruction rate: $\frac{\lambda(1-u)}{1-u}$.

Evolution of unemployment

- Evolution of unemployment:

$$
\dot{u}=\lambda(1-u)-u \theta q(\theta)
$$

- In steady state:

$$
\lambda(1-u)=u \theta q(\theta)
$$

or

$$
u=\frac{\lambda}{\lambda+\theta q(\theta)}
$$

- This relation is a downward-slopping and convex to the origin curve: the Beveridge Curve.

Figure 1: Beveridge Curve

Sources: Bureau of Labor Statistics' Job Openings and Labor Turnover Survey and author's calculations.

Labor contracts and firm's value functions

- Wage w.
- Hours fixed and normalized to 1 .
- Either part can break the contract at any time without cost.
- J is the value function of an occupied job.
- V is the value function of a vacant job.
- Then, in a stationary equilibrium:

$$
\begin{gathered}
r V=-c+q(\theta)(J-V) \\
r J=p-w-\lambda J
\end{gathered}
$$

- Note $J=\frac{p-w}{r+\lambda}$ and $J^{\prime}=-\frac{1}{r+\lambda}$.

Job creation condition

- Because of free entry

$$
\begin{gathered}
V=0 \\
J=\frac{c}{q(\theta)}
\end{gathered}
$$

- Then:

$$
\begin{aligned}
& p-w-(r+\lambda) J=0 \Rightarrow \\
& p-w-(r+\lambda) \frac{c}{q(\theta)}=0
\end{aligned}
$$

- This equation is know as the job creation condition.
- Interpretation.

Workers, I

- Value of not working: z.
- Includes leisure, UI, home production.
- Because of linearity of preferences, we can ignore extra income.
- U is the value function of unemployed worker.
- W is the value function of employed worker.
- Then:

$$
\begin{gathered}
r U=z+\theta q(\theta)(W-U) \\
r W=w+\lambda(U-W)
\end{gathered}
$$

- Notice $W=\frac{w}{r+\lambda}+\frac{\lambda}{r+\lambda} U$ and $W^{\prime}=\frac{1}{r+\lambda}$.

Workers, II

- With some algebra:

$$
\begin{gathered}
(r+\theta q(\theta)) U-\theta q(\theta) W=z \\
-\lambda U+(r+\lambda) W=w
\end{gathered}
$$

and

$$
\begin{aligned}
U & =\frac{(r+\lambda) z+\theta q(\theta) w}{(r+\theta q(\theta))(r+\lambda)-\lambda \theta q(\theta)}=\frac{\lambda z+\theta q(\theta) w+r z}{r^{2}+r \theta q(\theta)+\lambda r} \\
W & =\frac{(r+\theta q(\theta)) w+\lambda z}{(r+\theta q(\theta))(r+\lambda)-\lambda \theta q(\theta)}=\frac{\lambda z+\theta q(\theta) w+r w}{r^{2}+r \theta q(\theta)+\lambda r}
\end{aligned}
$$

- Clearly, for $r>0, W>U$ if and only if $w>z$.
- If $r=0, W=U$.

Wage determination, I

- We can solve Nash Bargaining solution:

$$
w=\arg \max (W-U)^{\beta}(J-V)^{1-\beta}
$$

- First order conditions:

$$
\beta \frac{W^{\prime}}{W-U}=-(1-\beta) \frac{J^{\prime}}{J-V}
$$

- Since $W^{\prime}=-J^{\prime}=\frac{1}{r+\lambda}$ and $V=0$:

$$
W=U+\beta(\underbrace{W-U+J}_{\text {surplus of the relation }})=U+\beta S
$$

- Also:

$$
W-U=\frac{\beta}{1-\beta} J=\frac{\beta}{1-\beta} \frac{c}{q(\theta)}
$$

Wage determination, II

- Since $J=\frac{p-w}{r+\lambda}$ and $W=\frac{w}{r+\lambda}+\frac{\lambda}{r+\lambda} U$

$$
\frac{w}{r+\lambda}-\frac{r}{r+\lambda} U=\beta\left(\frac{w}{r+\lambda}-\frac{r}{r+\lambda} U+\frac{p-w}{r+\lambda}\right) \Rightarrow w=r U+\beta(p-r U)
$$

- Interpretation.
- Now, notice:

$$
\begin{gathered}
w=r U+\beta(p-r U) \Rightarrow \\
w=(1-\beta) r U+\beta p \Rightarrow \\
w=(1-\beta)(z+\theta q(\theta)(W-U))+\beta p \Rightarrow \\
w=(1-\beta)\left(z+\theta q(\theta) \frac{\beta}{1-\beta} \frac{c}{q(\theta)}\right)+\beta p \Rightarrow \\
w=(1-\beta) z+\beta(p+\theta c)
\end{gathered}
$$

- The last condition is known as the wage equation.

Steady state

- Three equations:

$$
\begin{gathered}
w=(1-\beta) z+\beta \theta c+\beta p \\
p-w-(r+\lambda) \frac{c}{q(\theta)}=0 \\
u=\frac{\lambda}{\lambda+\theta q(\theta)}
\end{gathered}
$$

- Combine the first two conditions:

$$
\begin{gathered}
(1-\beta)(p-z)-\frac{r+\lambda+\beta \theta q(\theta)}{q(\theta)} c=0 \\
u=\frac{\lambda}{\lambda+\theta q(\theta)}
\end{gathered}
$$

that we can plot in the Beveridge Diagram.

Comparative statics

- Raise z: higher unemployment because less surplus to firms. Relation with unemployment insurance.
- Changes in matching function.
- Changes in Nash parameter.
- Dynamics?

Efficiency, I

- Can the equilibrium achieve social efficiency despite search externalities?
- Social planner:

$$
\begin{gathered}
\max _{u, \theta} \int_{0}^{\infty} e^{-r t}(p(1-u)+z u-c \theta u) d t \\
\text { s.t. } u=\frac{\lambda}{\lambda+\theta q(\theta)}
\end{gathered}
$$

- The social planner faces the same matching frictions as the agents.
- First-order conditions of the Hamiltonian:

$$
\begin{gathered}
-e^{-r t}(p-z+c \theta)+\mu(\lambda+\theta q(\theta))-\dot{\mu}=0 \\
-e^{-r t} c u+\mu u q(\theta)(1-\eta(\theta))=0
\end{gathered}
$$

where μ is the multiplier and $\eta(\theta)$ is (minus) the elasticity of $q(\theta)$.

Efficiency, II

- From the second equation:

$$
\mu=e^{-r t} \frac{c u}{u q(\theta)(1-\eta(\theta))}
$$

- Now:

$$
\begin{gathered}
e^{-r t} c u=\mu u q(\theta)(1-\eta(\theta)) \\
-r t+\log c u=\log \mu+\log u q(\theta)(1-\eta(\theta))
\end{gathered}
$$

and taking time derivatives:

$$
-r=\frac{\dot{\mu}}{\mu} \Rightarrow-\dot{\mu}=r \mu
$$

and

$$
\begin{aligned}
& -e^{-r t}(p-z+c \theta)+\mu(\lambda+\theta q(\theta))-\dot{\mu}=0 \Rightarrow \\
& -e^{-r t}(p-z+c \theta)+\mu(r+\lambda+\theta q(\theta))=0
\end{aligned}
$$

Efficiency, III

- Thus, we get:

$$
\begin{aligned}
-e^{-r t}(p-z+c \theta)+e^{-r t} \frac{c u(r+\lambda+\theta q(\theta))}{u q(\theta)(1-\eta(\theta))} & =0 \Rightarrow \\
(1-\eta(\theta))(p-z)-\frac{r+\lambda+\eta(\theta) \theta q(\theta)}{q(\theta)} c & =0
\end{aligned}
$$

- Remember that the market job creation condition:

$$
(1-\beta)(p-z)-\frac{r+\lambda+\beta \theta q(\theta)}{q(\theta)} c=0
$$

- Both conditions are equal if, and only if, $\eta(\theta)=\beta$.

Hosios' rule

- Imagine that matching function is $m=A u^{\eta} v^{1-\eta}$.
- Then $\eta(\theta)=\eta$.
- We have that efficiency is satisfied if $\eta=\beta$.
- This result is know as the Hosios Rule (Hosios, 1990):

1. If $\eta>\beta$ equilibrium unemployment is below its social optimum.
2. If $\eta<\beta$ equilibrium unemployment is above its social optimum.

- Intuition: externalities equal to share of surplus.

Introducing capital

- Production function $f(k)$ per worker with depreciation rate δ.
- Arbitrage condition in capital market $f^{\prime}(k)=(r+\delta)$.
- We have four equations:

$$
\begin{gathered}
f^{\prime}(k)=(r+\delta) \\
w=(1-\beta) z+\beta \theta c+\beta p(f(k)-(r+\delta) k) \\
p(f(k)-(r+\delta) k)-w-(r+\lambda) \frac{c}{q(\theta)}=0 \\
u=\frac{\lambda}{\lambda+\theta q(\theta)}
\end{gathered}
$$

Model II: Mortensen and

Pissarides

Setup

- Mortensen and Pissarides (1994).
- Similar to previous model but we endogeneize job destruction.
- Why? Empirical Evidence from Davis, Haltiwanger, and Schuh (1996).
- Productivity of a job $p x$ where x is the idiosyncratic component.
- New x's arrive with Poisson rate λ.
- Distribution is $G(\cdot)$.
- Distribution is memoriless and with bounded support $[0,1]$.
- Initial draw is $x=1$. Why?

Policy function of the firm

- Value function for a job is $J(x)$.
- Then:

1. If $J(x) \geq 0$, the job is kept.
2. If $J(x)<0$, the job is destroyed.

- There is an R such that $J(R)=0$.
- This R is the reservation productivity.

Flows into unemployment

- A law of large numbers hold for the economy.
- Job destruction: $\lambda G(R)(1-u)$.
- Unemployment evolves:

$$
\dot{u}=\lambda G(R)(1-u)-u \theta q(\theta)
$$

- In steady state:

$$
u=\frac{\lambda G(R)}{\lambda G(R)+\theta q(\theta)}
$$

Value functions

- Value functions for the firm:

$$
\begin{aligned}
r V & =-c+q(\theta)(J(1)-V) \\
r J(x) & =p x-w(x)+\lambda \int_{R}^{1} J(s) d G(s)-\lambda J(x)
\end{aligned}
$$

- Value functions for the worker:

$$
\begin{aligned}
r U & =z+\theta q(\theta)(W(1)-U) \\
r W(x) & =w(x)+\lambda \int_{R}^{1} W(s) d G(s)+\lambda G(R) U-\lambda W(x)
\end{aligned}
$$

- Because of free entry, $V=0$ and $J(1)=\frac{c}{q(\theta)}$.
- Also, by Nash bargaining:

$$
W(x)-U=\beta(W(x)-U+J(x))
$$

Equilibrium equations

$$
\begin{gathered}
u=\frac{\lambda G(R)}{\lambda G(R)+\theta q(\theta)} \\
J(R)=0 \\
J(1)=\frac{c}{q(\theta)} \\
W(x)-U=\beta(W(x)-U+J(x))
\end{gathered}
$$

Solving the model, I

- First, repeating the same steps than in the Pissarides model:

$$
w(x)=(1-\beta) z+\beta(p x+\theta c)
$$

- Second:

$$
\begin{gathered}
W(R)-U=\beta(W(R)-U+J(R))=\beta(W(R)-U) \Rightarrow \\
W(R)=U
\end{gathered}
$$

- Third:

$$
\begin{aligned}
& r J(x)=p x-(1-\beta) z-\beta(p x+\theta c)+\lambda \int_{R}^{1} J(s) d G(s)-\lambda J(x) \Rightarrow \\
& \quad(r+\lambda) J(x)=(1-\beta) p x-(1-\beta) z-\beta \theta c+\lambda \int_{R}^{1} J(s) d G(s)
\end{aligned}
$$

Solving the model, II

- At $x=R$

$$
(r+\lambda) J(R)=(1-\beta) p R-(1-\beta) z-\beta \theta c+\lambda \int_{R}^{1} J(s) d G(s)=0
$$

- Thus:

$$
\begin{gathered}
(r+\lambda) J(x)=(1-\beta) p(x-R) \Rightarrow \\
(r+\lambda) J(1)=(1-\beta) p(1-R) \Rightarrow \\
(r+\lambda) \frac{c}{q(\theta)}=(1-\beta) p(1-R) \Rightarrow \\
\quad(1-\beta) p \frac{1-R}{r+\lambda}=\frac{c}{q(\theta)}
\end{gathered}
$$

Solving the model, III

- Notice that:

$$
(r+\lambda) J(x)=(1-\beta) p(x-R) \Rightarrow J(x)=\frac{(1-\beta)}{r+\lambda} p(x-R)
$$

- Then:

$$
\begin{gathered}
(r+\lambda) J(x)=(1-\beta)(p x-z)-\beta \theta c+\lambda \int_{R}^{1} J(s) d G(s) \Rightarrow \\
(r+\lambda) J(x)=(1-\beta)(p x-z)-\beta \theta c+\frac{\lambda(1-\beta) p}{r+\lambda} \int_{R}^{1}(s-R) d G(s)
\end{gathered}
$$

- Evaluate the previous expression at $x=R$ and using the fact that $J(R)=0$:

$$
\begin{aligned}
(r+\lambda) J(R)= & 0=(1-\beta)(p R-z)-\beta \theta c+\frac{\lambda(1-\beta) p}{r+\lambda} \int_{R}^{1}(s-R) d G(s) \Rightarrow \\
& R-\frac{z}{p}-\frac{\beta}{1-\beta} \theta c+\frac{\lambda}{r+\lambda} \int_{R}^{1}(s-R) d G(s)=0
\end{aligned}
$$

Solving the model, IV

- We have two equations on two unknowns, R and θ :

$$
\begin{gathered}
(1-\beta) p \frac{1-R}{r+\lambda}=\frac{c}{q(\theta)} \\
R-\frac{z}{p}-\frac{\beta}{1-\beta} \theta c+\frac{\lambda}{r+\lambda} \int_{R}^{1}(s-R) d G(s)=0
\end{gathered}
$$

- The first expression is known as the job creation condition.
- The second expression is known as the job destruction condition.
- Together with $u=\frac{\lambda G(R)}{\lambda G(R)+\theta q(\theta)}$ and $w(x)=(1-\beta) z+\beta(p x+\theta c)$, we complete the characterization of the equilibrium.

Efficiency

- Social welfare:

$$
\begin{gathered}
\max _{u, \theta} \int_{0}^{\infty} e^{-r t}(y+z u-c \theta u) d t \\
\text { s.t. } u
\end{gathered}=\frac{\lambda G(R)}{\lambda G(R)+\theta q(\theta)}
$$

where y is the average product per person in the labor market.

- The evolution of y is given by:

$$
\dot{y}=p \theta q(\theta) u+\lambda(1-u) \int_{R}^{1} p s d G(s)-\lambda y
$$

- Again, Hosios' rule.

Model III: Burdett and

Mortensen

Motivation

- Burdett and Mortensen (1998).
- Wage dispersion: different wages for the same work.
- Violates the law of one price.
- What is same work? Observable and unobservable heterogeneity.
- Evidence of wage dispersion: Mincerian regression

$$
w_{i}=X_{i}^{\prime} \beta+\varepsilon_{i}
$$

- Typical Mincerian regression accounts for 25-30\% of variation in the data.

Theoretical challenge

- Remember Diamond's paradox: elasticity of labor supply was zero for the firm.
- Not all the deviations from a competitive setting deliver wage dispersion.
- Wage dispersion you get from Mortensen-Pissarides is very small (Krusell, Hornstein, Violante, 2007).
- Main mechanism to generate wage dispersion: on-the-job search.

Environment

- Unit measure of identical workers.
- Unit measure of identical firms.
- Each worker is unemployed (state 0) or employed (state 1).
- Poisson arrival rate of new offers λ. Same for workers and unemployed agents.
- Offers come from an equilibrium distribution F.

Previous assumptions that we keep

- No recall of offers.
- Job-worker matches are destroyed at rate δ.
- Value of not working: z.
- Discount rate r.
- Vacancy cost c.

Value functions for workers

- Utility of unemployed agent:

$$
r V_{0}=z+\lambda\left[\int \max \left\{V_{0}, V_{1}\left(w^{\prime}\right)\right\} d F\left(w^{\prime}\right)-V_{0}\right]
$$

- Utility of worker employed at wage w :

$$
\begin{aligned}
r V_{1}(w)= & w+\lambda \int\left[\max \left\{V_{1}(w), V_{1}\left(w^{\prime}\right)\right\}-V_{1}(w)\right] d F\left(w^{\prime}\right) \\
& +\delta\left[V_{0}-V_{1}(w)\right]
\end{aligned}
$$

- As before, there is a reservation wage w_{R} such that $V_{0}=V_{1}\left(w_{R}\right)$.
- Clearly, $w_{R}=z$.

Firms' problem

- $G(w)$: distribution of workers.
- Wage posting: Butters (1977), Burdett and Judd (1983), and Mortensen (1990).
- The profit for a firm:

$$
\pi(p, w)=\frac{[u+(1-u) G(w)]}{r+\delta+\lambda(1-F(w))}(p-w)
$$

- Firm sets wages w to maximize $\pi(p, w)$. No symmetric pure strategy equilibrium.
- Firms will never post w lower than z.

Unemployment

- Steady state unemployment:

$$
\lambda(1-F(z)) u=\delta(1-u)
$$

- Then:

$$
u=\frac{\delta}{\delta+\lambda[1-F(z)]}=\frac{\delta}{\delta+\lambda}
$$

where we have used the fact that no firm will post wage lower than z and that F will not have mass points (equilibrium property that we have not shown yet).

Distribution of workers

- Workers gaining less than w :

$$
E(w)=(1-u) G(w)
$$

- Then:

$$
\dot{E}(w)=\lambda F(w) u-(\delta+\lambda[1-F(w)]) E(w)
$$

- In steady state:

$$
\begin{gathered}
E(w)=\frac{\lambda F(w)}{\delta+\lambda[1-F(w)]} u \Rightarrow \\
G(w)=\frac{E(w)}{1-u}=\frac{\delta F(w)}{\delta+\lambda[1-F(w)]}
\end{gathered}
$$

Solving for an equilibrium, I

- Equilibrium objects: $u, F(w), \lambda, G(w)$.
- Simple yet boring arguments show that $F(w)$ does not have mass points and has connected support.
- First, by free entry:

$$
\pi(p, z)=\frac{\delta}{\delta+\lambda} \frac{p-z}{r+\delta+\lambda}=c
$$

which we solve for λ.

- Hence, we also know $u=\frac{\delta}{\delta+\lambda}$.

Solving for an equilibrium, II

- Second, by the equality of profits and with some substitutions:

$$
\begin{aligned}
\pi(p, w) & =\frac{\left[\frac{\delta}{\delta+\lambda}+\left(\frac{\lambda}{\delta+\lambda}\right) \frac{\delta F(w)}{\delta+\lambda[1-F(w)]}\right]}{r+\delta+\lambda(1-F(w))}(p-w) \\
& =\frac{\delta}{\delta+\lambda[1-F(w)]} \frac{p-w}{r+\delta+\lambda(1-F(w))} \\
& =\frac{\delta}{\delta+\lambda} \frac{p-z}{r+\delta+\lambda}
\end{aligned}
$$

- Previous equality is a quadratic equation on $F(w)$.

Solving for an equilibrium, III

- To simplify the solution, set $r=0$. Then:

$$
F(w)=\frac{\delta+\lambda}{\delta}\left[1-\left(\frac{p-w}{p-z}\right)^{0.5}\right]
$$

- Now, we get:

$$
G(w)=\frac{\delta}{\lambda}\left[\left(\frac{p-w}{p-z}\right)^{0.5}-1\right]
$$

- Highest wage is $F\left(w^{\text {max }}\right)=1$

$$
w^{\max }=\left(1-\frac{\delta}{\delta+\lambda}\right)^{2} p+\left(\frac{\delta}{\delta+\lambda}\right)^{2} z
$$

- Empirical content.
- Modifications to fit the data.

Model IV: Moen

Competitive search

- Moen (1997).
- A market maker chooses a number of markets m and determines the wage w_{i} in each submarket.
- Workers and firms are free to move between markets.
- Two alternative interpretations:

1. Clubs charging an entry fee. Competition drives fees to zero.
2. Wage posting by firms.

Workers, I

- Value functions:

$$
\begin{aligned}
r U_{i} & =z+\theta_{i} q\left(\theta_{i}\right)\left(W_{i}-U_{i}\right) \\
r W_{i} & =w_{i}+\lambda\left(U_{i}-W_{i}\right)
\end{aligned}
$$

- Then:

$$
\begin{aligned}
W_{i} & =\frac{1}{r+\lambda} w_{i}+\frac{\lambda}{r+\lambda} U_{i} \\
r U_{i} & =z+\theta_{i} q\left(\theta_{i}\right)\left(\frac{w_{i}-r U_{i}}{r+\lambda}\right)
\end{aligned}
$$

- Workers will pick the highest U_{i}.

Workers, II

- In equilibrium, all submarkets should deliver the same U_{i}. Hence:

$$
\theta_{i} q\left(\theta_{i}\right)=\frac{r U-z}{w_{i}-r U}(r+\lambda)
$$

- Negative relation between wage and labor market tightness.
- If $w_{i}<r U$, the market will not attract workers and it will close.

Firms

- Value Functions:

$$
\begin{aligned}
r V_{i} & =-c+q\left(\theta_{i}\right)\left(J_{i}-V_{i}\right) \\
r J_{i} & =p-w_{i}-\lambda J_{i}
\end{aligned}
$$

- Thus:

$$
r V_{i}=-c+q\left(\theta_{i}\right)\left(\frac{p-w_{i}}{r+\lambda}-V_{i}\right)
$$

- Each firm solves

$$
\begin{gathered}
r V_{i}=\max _{w_{i}, \theta_{i}}\left(-c+q\left(\theta_{i}\right)\left(\frac{p-w_{i}}{r+\lambda}-V_{i}\right)\right) \\
\text { s.t. } r U_{i}=z+\theta_{i} q\left(\theta_{i}\right)\left(\frac{w_{i}-r U}{r+\lambda}\right)
\end{gathered}
$$

Equilibrium

- Impose equilibrium condition $V_{i}=0$ and solve the dual:

$$
\begin{aligned}
r U_{i}= & \max _{w_{i}, \theta_{i}}\left(z+\theta_{i} q\left(\theta_{i}\right) \frac{w_{i}-r U}{r+\lambda}\right) \\
& \text { s.t. } c=q\left(\theta_{i}\right) \frac{p-w_{i}}{r+\lambda}
\end{aligned}
$$

- Plugging the value of w_{i} from the constraint into the objective function:

$$
r U_{i}=\max _{\theta_{i}}\left(z-c \theta_{i}+\theta_{i} q\left(\theta_{i}\right) \frac{p-r U}{r+\lambda}\right)
$$

- Solution:

$$
c=q\left(\theta_{i}\right) \frac{p-r U}{r+\lambda}+\theta_{i} q^{\prime}\left(\theta_{i}\right) \frac{p-r U}{r+\lambda}
$$

which is unique if $\theta_{i} q\left(\theta_{i}\right)$ is concave.

