Asset Pricing

Jesús Fernández-Villaverde

University of Pennsylvania

February 12, 2016

Modern Asset Pricing

- How do we value an arbitrary stream of future cash-flows?
- Equilibrium approach to the computation of asset prices. Rubinstein (1976) and Lucas (1978) tree model.
- Absence of arbitrage: Harrison and Kreps (1979).
- Importance for macroeconomists:
(1) Quantities and prices.
(2) Financial markets equate savings and investment.
(3) Intimate link between welfare cost of fluctuations and asset pricing.
(4) Effect of monetary policy.
- We will work with a sequential markets structure with a complete set of Arrow securities.

Household Utility

- Representative agent.
- Preferences:

$$
U(c)=\sum_{t=0}^{\infty} \sum_{s^{t} \in S^{t}} \beta^{t} \pi\left(s^{t}\right) u\left(c_{t}\left(s^{t}\right)\right)
$$

- Budget constraints:

$$
\begin{gathered}
c_{t}\left(s^{t}\right)+\sum_{s_{t+1} \mid s^{t}} Q_{t}\left(s^{t}, s_{t+1}\right) a_{t+1}\left(s^{t}, s_{t+1}\right) \leq e_{t}\left(s^{t}\right)+a_{t}\left(s^{t}\right) \\
-a_{t+1}\left(s^{t+1}\right) \leq A_{t+1}\left(s^{t+1}\right)
\end{gathered}
$$

Problem of the Household

- We write the Lagrangian:

$$
\sum_{t=0}^{\infty} \sum_{s^{t} \in S^{t}}\left\{\begin{array}{c}
\beta^{t} \pi\left(s^{t}\right) u\left(c_{t}\left(s^{t}\right)\right) \\
e_{t}\left(s^{t}\right)+a_{t}\left(s^{t}\right)-c_{t}\left(s^{t}\right) \\
\left.\left.-\lambda_{t}\left(s^{t}\right)\left(\begin{array}{c}
\\
-\sum_{t+1} Q_{t}\left(s^{t}, s_{t+1}\right) a_{t+1}\left(s^{t}, s_{t+1}\right) \\
+v_{t}\left(s^{t}\right)\left(A_{t+1}\left(s^{t+1}\right)+a_{t+1}\left(s^{t+1}\right)\right)
\end{array}\right\}\right\}, ~\right\} ~
\end{array}\right\}
$$

- We take first order conditions with respect to $c\left(s^{t}\right)$ and $a_{t+1}\left(s^{t}, s_{t+1}\right)$ for all s^{t}.
- Because of an Inada condition on $u, v_{t}\left(s^{t}\right)=0$.

Solving the Problem

- FOCs for all s^{t} :

$$
\begin{aligned}
\beta^{t} \pi\left(s^{t}\right) u^{\prime}\left(c_{t}\left(s^{t}\right)\right)-\lambda_{t}\left(s^{t}\right) & =0 \\
-\lambda_{t}\left(s^{t}\right) Q_{t}\left(s^{t}, s_{t+1}\right)+\lambda_{t+1}\left(s_{t+1}, s^{t}\right) & =0
\end{aligned}
$$

- Then:

$$
Q_{t}\left(s^{t}, s_{t+1}\right)=\beta \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}
$$

- Fundamental equation of asset pricing.
- Intuition.

Interpretation

- The FOC is an equilibrium condition, not an explicit solution (we have endogenous variables in both sides of the equation).
- We need to evaluate consumption in equilibrium to obtain equilibrium prices.
- In our endowment set-up, this is simple.
- In production economies, it requires a bit more work.
- However, we already derived a moment condition that can be empirically implemented.

The j-Step Problem I

- How do we price claims further into the future?
- Create a new security $a_{t+j}\left(s^{t}, s_{t+j}\right)$.
- For $j>1$:

$$
Q_{t}\left(s^{t}, s_{t+j}\right)=\beta^{j} \pi\left(s_{t+j} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+j}\left(s^{t+j}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}
$$

- We express this price in terms of the prices of basic Arrow securities.

The j-Step Problem II

- Manipulating expression:

$$
\begin{gathered}
Q_{t}\left(s^{t}, s_{t+j}\right)= \\
=\beta^{j} \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \pi\left(s_{t+j} \mid s^{t+1}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)} \frac{u^{\prime}\left(c_{t+j}\left(s^{t+j}\right)\right)}{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)} \\
=\sum_{s_{t+1} \mid s^{t}} Q_{t}\left(s^{t}, s_{t+1}\right) Q_{t+1}\left(s^{t+1}, s_{t+j}\right)
\end{gathered}
$$

- Iterating:

$$
Q_{t}\left(s^{t}, s_{t+j}\right)=\prod_{\tau=t}^{j-1} \sum_{s_{\tau+1} \mid s^{\tau}} Q_{t+\tau}\left(s^{\tau}, s_{\tau+1}\right)
$$

The Stochastic Discount Factor

- Stochastic discount factor (SDF):

$$
m_{t}\left(s^{t}, s_{t+1}\right)=\beta \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}
$$

- Note that:

$$
\begin{aligned}
\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) & =\sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) m_{t}\left(s^{t}, s_{t+1}\right) \\
& =\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}
\end{aligned}
$$

- Interpretation of the SDF: discounting corrected by asset-specific risk.

The Many Names of the Stochastic Discount Factor

The Stochastic discount factor is also known as:
(1) Pricing kernel.
(2) Marginal rate of substitution.
(3) Change of measure.
(4) State-dependent density.

Pricing Redundant Securities I

- With our framework we can price any security (the j-step pricing was one of those cases).
- Contract that pays $x_{t+1}\left(s^{t+1}\right)$ in event s^{t+1} :

$$
\begin{aligned}
p_{t}\left(s_{t+1}, s^{t}\right) & =\beta \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)} x_{t+1}\left(s^{t+1}\right) \\
& =\pi\left(s_{t+1} \mid s^{t}\right) m_{t}\left(s^{t}, s_{t+1}\right) x_{t+1}\left(s^{t+1}\right) \\
& =Q_{t}\left(s^{t}, s_{t+1}\right) x_{t+1}\left(s^{t+1}\right)
\end{aligned}
$$

Pricing Redundant Securities II

- Contract that pays $x_{t+1}\left(s^{t+1}\right)$ in each event s^{t+1} (sum of different contracts that pay in one event):

$$
\begin{aligned}
p_{t}\left(s^{t}\right) & =\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)} x_{t+1}\left(s^{t+1}\right) \\
& =\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) x_{t+1}\left(s^{t+1}\right)
\end{aligned}
$$

- Note: we do not and we cannot take the expectation with respect to the price $Q_{t}\left(s^{t}, s_{t+1}\right)$.

Example I: Uncontingent One-Period Bond at Discount

- Many bonds are auctioned or sold at discount:

$$
\begin{aligned}
b_{t}\left(s^{t}\right) & =\sum_{s_{t+1} \mid s^{t}} Q_{t}\left(s^{t}, s_{t+1}\right)=\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)} \\
& =\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)
\end{aligned}
$$

- Then, the risk-free rate:

$$
R_{t}^{f}\left(s^{t}\right)=\frac{1}{b_{t}\left(s^{t}\right)}=\frac{1}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}
$$

or $\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) R^{f}\left(s^{t}\right)=1$.

Example II: One-Period Bond

- Other bonds are sold at face value:

$$
\begin{aligned}
1 & =\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)} R_{t}^{b}\left(s^{t}\right) \\
& =\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) R_{t}^{b}\left(s^{t}\right)
\end{aligned}
$$

- As before, if the bond is risk-free:

$$
1=\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) R_{t}^{f}\left(s^{t}\right)
$$

Example III: Zero-Cost Portfolio

- Short-sell an uncontingent bond and take a long position in a bond:

$$
\begin{aligned}
0 & =\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}\left(R_{t}^{b}\left(s^{t}\right)-R_{t}^{f}\left(s^{t}\right)\right) \\
& =\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) R_{t}^{e}\left(s^{t}\right)
\end{aligned}
$$

where $R_{t}^{e}\left(s^{t}\right)=R_{t}^{b}\left(s^{t}\right)-R_{t}^{f}\left(s^{t}\right)$.

- $R_{t}^{e}\left(s^{t}\right)$ is known as the excess return. Key concept in empirical work.
- Why do we want to focus on excess returns? Different forces may drive the risk-free interest rate and the risk premia.

Example IV: Stock

- Buy at price $p_{t}\left(s^{t}\right)$, delivers a dividend $d_{t+1}\left(s^{t+1}\right)$, sell at $p_{t+1}\left(s^{t+1}\right)$:
$p_{t}\left(s^{t}\right)=\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}\left(p_{t+1}\left(s^{t+1}\right)+d_{t+1}\left(s^{t+1}\right)\right)$
- Often, we care about the price-dividend ratio (usually a stationary variable that we may want to forecast):

$$
\begin{gathered}
\frac{p_{t}\left(s^{t}\right)}{d_{t}\left(s^{t}\right)}= \\
\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}\left(\frac{p_{t+1}\left(s^{t+1}\right)}{d_{t+1}\left(s^{t+1}\right)}+1\right) \frac{d_{t+1}\left(s^{t+1}\right)}{d_{t}\left(s^{t}\right)}
\end{gathered}
$$

Example V: Options

- Call option: right to buy an asset at price K_{1}. Price of asset $J\left(s^{t+1}\right)$
$\operatorname{co}_{t}\left(s^{t}\right)=\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \max \left(\left(J\left(s^{t+1}\right)-K_{1}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}, 0\right)$
- Put option: right to sell an asset at price K_{1}. Price of asset $J\left(s^{1}\right)$

$$
p o_{t}\left(s^{t}\right)=\sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \max \left(\left(K_{1}-J\left(s^{t+1}\right)\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}, 0\right)
$$

Example VI: Nominal Assets

- What happens if the price level, $P\left(s^{t}\right)$ changes over time?
- We can focus on real returns:

$$
\begin{aligned}
& \frac{p_{t}\left(s^{t}\right)}{P_{t}\left(s^{t}\right)}=\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)} \frac{x_{t+1}\left(s^{t+1}\right)}{P_{t+1}\left(s^{t+1}\right)} \Rightarrow \\
& p_{t}\left(s^{t}\right)=\beta \sum_{s^{1} \in S^{1}} \pi\left(s^{1}\right) \frac{u^{\prime}\left(c\left(s^{1}\right)\right)}{u^{\prime}\left(c\left(s_{0}\right)\right)} \frac{P_{t}\left(s^{t}\right)}{P_{t+1}\left(s^{t+1}\right)} x_{t+1}\left(s^{t+1}\right)
\end{aligned}
$$

Example VII: Term Structure of Interest Rates

- The risk-free rate j periods ahead is:

$$
R_{t j}^{f}\left(s^{t}\right)=\left[\beta^{j} \mathbb{E}_{t} \frac{u^{\prime}\left(c_{t+j}\left(s^{t+j}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}\right]^{-1}
$$

- And the yield to maturity is:

$$
R_{t j}^{f y}\left(s^{t}\right)=\left(R_{t j}^{f}\left(s^{t}\right)\right)^{\frac{1}{j}}=\beta^{-1}\left[u^{\prime}\left(c_{t}\left(s^{t}\right)\right)\left(\mathbb{E}_{t} u^{\prime}\left(c_{t+j}\left(s^{t+j}\right)\right)\right)^{-1}\right]^{\frac{1}{j}}
$$

- Structure of the yield curve:
(1) Average shape (theory versus data).
(2) Equilibrium dynamics.
- Equilibrium models versus affine term structure models.

Non Arbitrage

- A lot of financial contracts are equivalent.
- From previous results, we derive a powerful idea: absence of arbitrage.
- In fact, we could have built our theory from absence of arbitrage up towards equilibrium.
- Empirical evidence regarding non arbitrage.
- Possible limitations to non arbitrage conditions: liquidity constraints, short-sales restrictions, incomplete markets,
- Related idea: spanning of non-traded assets.

A Numerical Example

- Are there further economic insights that we can derive from our conditions?
- We start with a simple numerical example.
- $u(c)=\log c$.
- $\beta=0.99$.
- $e\left(s^{0}\right)=1, e\left(s_{1}=\right.$ high $)=1.1, e\left(s_{1}=\right.$ low $)=0.9$.
- $\pi\left(s_{1}=\right.$ high $)=0.5, \pi\left(s_{2}=\right.$ low $)=0.5$.
- Equilibrium prices:

$$
\begin{gathered}
q\left(s^{0}, s_{1}=\text { high }\right)=0.99 * 0.5 * \frac{\frac{1}{1.1}}{\frac{1}{1}}=0.45 \\
q\left(s^{0}, s_{1}=\text { low }\right) \\
=0.99 * 0.5 * \frac{\frac{1}{0.9}}{\frac{1}{1}}=0.55 \\
q\left(s^{0}\right)=0.45+0.55=1
\end{gathered}
$$

- Note how the price is different from a naive adjustment by expectation and discounting:

$$
\begin{aligned}
q_{\text {naive }}\left(s^{0}, s_{1}=\text { high }\right) & =0.99 * 0.5 * 1=0.495 \\
q_{\text {naive }}\left(s^{0}, s_{1}=\text { low }\right) & =0.99 * 0.5 * 1=0.495 \\
q_{\text {naive }}\left(s^{0}\right) & =0.495+0.495=0.99
\end{aligned}
$$

-Why is $q\left(s^{0}, s_{1}=\right.$ high $)<q\left(s^{0}, s_{1}=\right.$ low $)$?
(1) Discounting β.
(2) Ratio of marginal utilities: $\frac{u^{\prime}\left(c\left(s^{1}\right)\right)}{u^{\prime}\left(c\left(s_{0}\right)\right)}$.

Risk Correction

- We recall three facts:
(1) $p_{t}\left(s^{t}\right)=\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) x_{t+1}\left(s^{t+1}\right)$.
(2) $\operatorname{cov}_{t}(x, y)=\mathbb{E}_{t}(x y)-\mathbb{E}_{t}(x) \mathbb{E}_{t}(y)$.
(3) $\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)=1 / R_{t}^{f}\left(s^{t}\right)$.
- Then:

$$
\begin{aligned}
p_{t}\left(s^{t}\right) & =\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) \mathbb{E}_{t} x_{t+1}\left(s^{t+1}\right)+\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), x_{t+1}\left(s^{t+1}\right)\right) \\
& =\frac{\mathbb{E}_{t} x_{t+1}\left(s^{t+1}\right)}{R_{t}^{f}\left(s^{t}\right)}+\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), x_{t+1}\left(s^{t+1}\right)\right) \\
& =\frac{\mathbb{E}_{t} x_{t+1}\left(s^{t+1}\right)}{R_{t}^{f}\left(s^{t}\right)}+\operatorname{cov}_{t}\left(\beta \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}, x_{t+1}\left(s^{t+1}\right)\right) \\
& =\frac{\mathbb{E}_{t} x_{t+1}\left(s^{t+1}\right)}{R_{t}^{f}\left(s^{t}\right)}+\beta \frac{\operatorname{cov}\left(u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right), x_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}
\end{aligned}
$$

Covariance and Risk Correction I

Three cases:
(1) If $\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), x_{t+1}\left(s^{t+1}\right)\right)=0 \Rightarrow p_{t}\left(s^{t}\right)=\frac{\mathbb{E}_{t} x_{t+1}\left(s^{t+1}\right)}{R_{t}^{t}\left(s^{t}\right)}$, no adjustment for risk.
(2) If $\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), x_{t+1}\left(s^{t+1}\right)\right)>0 \Rightarrow p_{t}\left(s^{t}\right)>\frac{\mathbb{E}_{t} x_{t+1}\left(s^{t+1}\right)}{R_{t}^{t}\left(s^{t}\right)}$, premium for risk (insurance).
(3) If $\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), x_{t+1}\left(s^{t+1}\right)\right)<0 \Rightarrow p_{t}\left(s^{t}\right)<\frac{\mathbb{E}_{t} x_{t+1}\left(s^{t+1}\right)}{R_{t}^{t}\left(s^{t}\right)}$, discount for risk (speculation).

Covariance and Risk Correction II

- Risk adjustment is $\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), x_{t+1}\left(s^{t+1}\right)\right)$.
- Basic insight: risk premium is generated by covariances, no by variances.
- Why? Because of risk aversion. Investor cares about volatility of consumption, not about the volatility of asset.
- For an ε change in portfolio:

$$
\sigma^{2}(c+\varepsilon x)=\sigma^{2}(c)+2 \varepsilon \operatorname{cov}(c, x)+\varepsilon^{2} \sigma^{2}(x)
$$

Utility Function and the Risk Premium

- We also see how risk depends of marginal utilities:
(1) Risk-neutrality: if utility function is linear, you do not care about $\sigma^{2}(c)$.
(2) Risk-loving: if utility function is convex you want to increase $\sigma^{2}(c)$.
(3) Risk-averse: if utility function is concave you want to reduce $\sigma^{2}(c)$.
- It is plausible to assume that household are (basically) risk-averse.

A Small Detour

- Note that all we have said can be applied to the trivial case without uncertainty.
- In that situation, there is only one security, a bond, with price:

$$
Q=\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}
$$

- And the interest rate is:

$$
R=\frac{1}{Q}=\frac{1}{\beta} \frac{u^{\prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t+1}\right)}
$$

Pricing Securities in the Solow Model

- Assume CRRA utility, that we are in a BGP with growth rate g, and define $\beta=e^{-\delta}$.
- Then: $R=\frac{1}{\beta}\left(\frac{c}{(1+g) c}\right)^{-\gamma}=e^{\delta}(1+g)^{\gamma}$.
- Or in logs: $r \simeq \delta+\gamma g$, i.e., the real interest rate depends on the rate of growth of technology, the readiness of households to substitute intertemporally, and on the discount factor.
- Then, γ must be low to reconcile small international differences in the interest rate and big differences in g.

More on the Risk Free Rate I

- Assume that the growth rate of consumption is log-normally distributed.
- Note that with a CRRA utility function:

$$
R_{t}^{f}\left(s^{t}\right)=\frac{1}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}=\frac{1}{\beta \mathbb{E}_{t}\left(\frac{c\left(s^{t+1}\right)}{c\left(s^{t}\right)}\right)^{-\gamma}}=\frac{1}{\beta \mathbb{E}_{t}\left(e^{-\gamma \Delta \log c\left(s^{t+1}\right)}\right)}
$$

- Since $\mathbb{E}_{t}\left(e^{z}\right)=e^{\mathbb{E}_{t}(z)+\frac{1}{2} \sigma^{2}(z)}$ if z is normal:

$$
R_{t}^{f}\left(s^{t}\right)=\left[\beta e^{-\gamma \mathbb{E}_{t} \Delta \log c\left(s^{t+1}\right)+\frac{1}{2} \gamma^{2} \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right)}\right]^{-1}
$$

More on the Risk Free Rate II

- Taking logs:

$$
r_{t}^{f}\left(s^{t}\right)=\delta+\gamma \mathbb{E}_{t} \Delta \log c\left(s^{t+1}\right)-\frac{1}{2} \gamma^{2} \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right)
$$

- We can read this equation from right to left and from left to right!
- Rough computation (U.S. annual data, 1947-2005):
(1) $\mathbb{E}_{t} \Delta \log c\left(s^{t+1}\right)=0.0209$.
(2) $\sigma\left(\Delta \log c\left(s^{t+1}\right)\right)=0.011$.
(3) Number for γ ? benchmark \log utility $\gamma=1$.

Precautionary Savings

- Term $\frac{\gamma^{2}}{2} \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right)$ represents precautionary savings.
- Then, precautionary savings:

$$
\frac{1^{2}}{2}(0.011)^{2}=0.00006=0.006 \%
$$

decreases the interest rate by a very small amount.

- Why a decrease? General equilibrium effect: change in the ergodic distribution of capital.
- We will revisit this result when we talk about incomplete markets.
- Also, $\frac{\gamma^{2}}{2} \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right)$ is close to $\frac{\gamma}{2} \sigma^{2}\left(\log c\left(s^{t+1}\right)\right)$ (welfare cost of the business cycle):

$$
\sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right) \approx 0.33 * \sigma^{2}\left(\log c_{\operatorname{dev}}\left(s^{t+1}\right)\right)
$$

- We will come back to this in a few slides.

Quadratic Utility

- Precautionary term appears because we use a CRRA utility function.
- Suppose instead that we have a quadratic utility function (Hall, 1978)

$$
-\frac{1}{2}(a-c)^{2}
$$

- Then:

$$
R_{t}^{f}\left(s^{t}\right)=\frac{1}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}=\frac{1}{\beta \mathbb{E}_{t}\left(\frac{a-c\left(s^{t+1}\right)}{a-c\left(s^{t}\right)}\right)}
$$

Random Walk of Consumption I

- For a sufficiently big in relation with $c\left(s^{t+1}\right)$:

$$
\frac{a-c\left(s^{t+1}\right)}{a-c\left(s^{t}\right)} \simeq 1-\frac{1}{a} \Delta c\left(s^{t+1}\right)
$$

- Then:

$$
R_{t}^{f}\left(s^{t}\right)=\frac{1}{e^{-\delta}\left(1-\frac{1}{a} \mathbb{E}_{t} \Delta c\left(s^{t+1}\right)\right)}
$$

- Taking logs: $r_{t}^{f}\left(s^{t}\right)=\delta+\frac{1}{a} \mathbb{E}_{t} \Delta c\left(s^{t+1}\right)$.

Random Walk of Consumption II

- We derived Hall's celebrated result:

$$
\mathbb{E}_{t} \Delta c\left(s^{t+1}\right)=a\left(r_{t}^{f}\left(s^{t}\right)-\delta\right)
$$

- Consumption is a random walk (possibly with a drift).
- For the general case, we have a random walk in marginal utilities:

$$
u^{\prime}\left(c_{t}\left(s^{t}\right)\right)=\beta R_{t}^{f}\left(s^{t}\right) \mathbb{E}_{t} u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)
$$

Harrison and Kreps (1979) equivalent martingale measure.

- Empirical implementation:
(1) GMM with additional regressors.
(2) Granger causality.

Precautionary Behavior

- Difference between risk-aversion and precautionary behavior. Leland (1968), Kimball (1990).
- Risk-aversion depends on the second derivative (concave utility).
- Precautionary behavior depends on the third derivative (convex marginal utility).
- Relation with linearization and certainty equivalence.

Random Walks I

- Random walks (or more precisely, martingales) are pervasive in asset pricing.
- Can we predict the market?
- Remember that the price of a share was:

$$
p_{t}\left(s^{t}\right)=\beta \sum_{s_{t+1} \mid s^{t}} \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}\left(p_{t+1}\left(s^{t+1}\right)+d_{t+1}\left(s^{t+1}\right)\right)
$$

or:

$$
p_{t}\left(s^{t}\right)=\beta \mathbb{E}_{t} \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}\left(p_{t+1}\left(s^{t+1}\right)+d_{t+1}\left(s^{t+1}\right)\right)
$$

Random Walks II

- Now, suppose that we are thinking about a short period of time ($\beta \approx 1$) and that firms do not distribute dividends (historically not a bad approximation because of tax reasons):

$$
p_{t}\left(s^{t}\right)=\mathbb{E}_{t} \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}\left(p_{t+1}\left(s^{t+1}\right)\right)
$$

- If in addition $\frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}$ does not change (either because utility is linear or because of low volatility of consumption):

$$
p_{t}\left(s^{t}\right)=\mathbb{E}_{t} p_{t+1}\left(s^{t+1}\right)=p_{t}\left(s^{t}\right)+\varepsilon_{t+1}
$$

- Prices follow a random walk: the best forecast of the price of a share tomorrow is today's price.
- Can we forecast future movements of the market? No!
- We can generalize the idea to other assets.
- Empirical evidence. Relation with market efficiency.

A Second Look at Risk Correction

- We can restate the previous result about martingale risk correction in terms of returns.
- The pricing condition for a contract i with price 1 and yield $R_{t}^{i}\left(s^{t+1}\right)$ is:

$$
1=\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) R_{t}^{i}\left(s^{t+1}\right)
$$

- Then:

$$
1=\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) \mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right)+\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), R_{t}^{i}\left(s^{t+1}\right)\right)
$$

- Multiplying by $-R_{t}^{f}\left(s^{t}\right)=-\left(\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)\right)^{-1}$:

$$
\begin{aligned}
\mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right)-R_{t}^{f}\left(s^{t}\right) & =-R_{t}^{f}\left(s^{t}\right) \operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), R_{t}^{i}\left(s^{t+1}\right)\right) \\
& =-R_{t}^{f}\left(s^{t}\right) \beta \frac{\operatorname{cov}\left(u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right), x_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)} \\
& =-\frac{\operatorname{cov}\left(u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right), x_{t+1}\left(s^{t+1}\right)\right)}{\mathbb{E}_{t} u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}
\end{aligned}
$$

Beta-Pricing Model

- Note:

$$
\begin{gathered}
\mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right)-R_{t}^{f}\left(s^{t}\right)=-R_{t}^{f}\left(s^{t}\right) \operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), R_{t}^{i}\left(s^{t+1}\right)\right) \Rightarrow \\
\mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right)=R_{t}^{f}\left(s^{t}\right)+ \\
+\left(\frac{\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), R_{t}^{i}\left(s^{t+1}\right)\right)}{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}\right)\left(-\frac{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}{\mathbb{E}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}\right) \\
=R_{t}^{f}\left(s^{t}\right)+\beta_{i, m, t} \lambda_{m, t}
\end{gathered}
$$

- Interpretation:
(1) $\beta_{i, m, t}$ is the quantity of risk of each asset (risk-free asset is the "zero-beta" asset).
(2) $\lambda_{m, t}$ is the market price of risk (same for all assets).

Mean-Variance Frontier I

- Yet another way to look at the FOC:

$$
1=\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) \mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right)+\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), R_{t}^{i}\left(s^{t+1}\right)\right)
$$

- Then:

$$
\begin{gathered}
1=\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) \mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right) \\
+\frac{\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), R_{t}^{i}\left(s^{t+1}\right)\right)}{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right) \sigma_{t}\left(R_{t}^{i}\left(s^{t+1}\right)\right)} \sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right) \sigma_{t}\left(R_{t}^{i}\left(s^{t+1}\right)\right)
\end{gathered}
$$

Mean-Variance Frontier II

- The coefficient of correlation between two random variables is:

$$
\rho_{m, R_{i}, t}=\frac{\operatorname{cov}_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right), R_{t}^{i}\left(s^{t+1}\right)\right)}{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right) \sigma_{t}\left(R_{t}^{i}\left(s^{t+1}\right)\right)}
$$

- Then, we have:

$$
\begin{aligned}
1= & \mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right) \mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right) \\
& +\rho_{m, R_{i}, t} \sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right) \sigma_{t}\left(R_{t}^{i}\left(s^{t+1}\right)\right)
\end{aligned}
$$

- Or:

$$
\mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right)=R_{t}^{f}\left(s^{t}\right)-\rho_{m, R_{i}, t} \frac{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)} \sigma_{t}\left(R_{t}^{i}\left(s^{t+1}\right)\right)
$$

Mean-Variance Frontier III

- Since $\rho_{m, R_{i}, t} \in[-1,1]$:

$$
\left|\mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right)-R_{t}^{f}\left(s^{t}\right)\right| \leq \frac{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)} \sigma_{t}\left(R_{t}^{i}\left(s^{t+1}\right)\right)
$$

- This relation is known as the Mean-Variance frontier: "How much return can you get for a given level of variance?"
- Any investor would hold assets within the mean-variance region.
- No assets outside the region will be hold.

Market Price of Risk I

- As we mentioned before, $\frac{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}$ is the market price of risk.
- Can we find a good approximation for the market price of risk?
- Empirical versus model motivated pricing kernels.
- Assume a CRRA utility function. Then:

$$
m_{t}\left(s^{t}, s_{t+1}\right)=\beta\left(\frac{c_{t+1}\left(s^{t+1}\right)}{c_{t}\left(s^{t}\right)}\right)^{-\gamma}
$$

A Few Mathematical Results

- Note that if z is normal

$$
\begin{gathered}
\mathbb{E}\left(e^{z}\right)=e^{\mathbb{E}(z)+\frac{1}{2} \sigma^{2}(z)} \\
\sigma^{2}\left(e^{z}\right)=\left(e^{\sigma^{2}(z)}-1\right) e^{2 \mathbb{E}(z)+\sigma^{2}(z)}
\end{gathered}
$$

hence

$$
\frac{\sigma\left(e^{z}\right)}{\mathbb{E}\left(e^{z}\right)}=\left(\frac{\sigma^{2}\left(e^{z}\right)}{\mathbb{E}\left(e^{z}\right)^{2}}\right)^{0.5}=\left(e^{\sigma^{2}(z)}-1\right)^{0.5}
$$

- Also $e^{x}-1 \simeq x$.

Market Price of Risk II

- If we set $z=\frac{1}{\beta} \log m_{t}\left(s^{t}, s_{t+1}\right)=-\gamma \log \left(\frac{c_{t+1}\left(s^{t+1}\right)}{c_{t}\left(s^{t}\right)}\right)$, we have:

$$
\begin{gathered}
\frac{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}=\left(e^{\gamma^{2} \sigma^{2}\left(\Delta \ln c\left(s^{t+1}\right)\right)}-1\right)^{0.5} \\
\simeq \gamma \sigma\left(\Delta \ln c\left(s^{t+1}\right)\right)
\end{gathered}
$$

- Price of risk depends on EIS and variance of consumption growth.
- This term already appeared in our formula for the risk-free rate:

$$
r_{t}^{f}\left(s^{t}\right)=\delta+\gamma \mathbb{E}_{t} \Delta \log c\left(s^{t+1}\right)-\frac{1}{2} \gamma^{2} \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right)
$$

- Also, a nearly identical term, $\frac{1}{2} \gamma \sigma^{2}\left(\ln c_{\operatorname{dev}}\left(s^{t+1}\right)\right)$, was our estimate of the welfare cost of the business cycle.

Link with Welfare Cost of Business Cycle I

- This link is not casual: welfare costs of uncertainty and risk price are two sides of the same coin.
- We can coax the cost of the business cycle from market data.
- In lecture 1, we saw that we could compute the cost of the business cycle by solving:

$$
\mathbb{E}_{t-1} u\left[\left(1+\Omega_{t-1}\right) c\left(s^{t}\right)\right]=u\left(\mathbb{E}_{t-1} c\left(s^{t}\right)\right)
$$

- Parametrize Ω_{t-1} as a function of $\alpha \in(0,1)$. Then:

$$
\mathbb{E}_{t-1} u\left[\left(1+\Omega_{t-1}(\alpha)\right) c\left(s^{t}\right)\right]=\mathbb{E}_{t-1} u\left(\alpha \mathbb{E}_{t-1} c\left(s^{t}\right)+(1-\alpha) c\left(s^{t}\right)\right)
$$

Link with Welfare Cost of Business Cycle II

- Take derivatives with respect to α and evaluate at $\alpha=0$

$$
\Omega_{t-1}^{\prime}(0)=\frac{\mathbb{E}_{t-1} u^{\prime}\left(c\left(s^{t}\right)\right)\left(\mathbb{E}_{t-1} c\left(s^{t}\right)-c\left(s^{t}\right)\right)}{\mathbb{E}_{t-1} c\left(s^{t}\right) u^{\prime}\left(c\left(s^{t}\right)\right)}
$$

- Dividing by $\beta / u^{\prime}\left(c\left(s^{t-1}\right)\right)$, we get $m\left(s^{t}\right)$

$$
\Omega_{t-1}^{\prime}(0)=\frac{\mathbb{E}_{t-1} m_{t}\left(s^{t-1}, s_{t}\right)\left(\mathbb{E}_{t-1} c\left(s^{t}\right)-c\left(s^{t}\right)\right)}{\mathbb{E}_{t-1} m_{t}\left(s^{t-1}, s_{t}\right) c\left(s^{t}\right)}
$$

- Rearranging and using the fact that $\Omega_{t-1}(0)=0$,

$$
1+\Omega_{t-1}^{\prime}(0)=\frac{\mathbb{E}_{t-1} m_{t}\left(s^{t-1}, s_{t}\right) \mathbb{E}_{t-1} c\left(s^{t}\right)}{\mathbb{E}_{t-1} m_{t}\left(s^{t-1}, s_{t}\right) c\left(s^{t}\right)}
$$

The Sharpe Ratio I

- Another way to represent the Mean-Variance frontier is:

$$
\left|\frac{\mathbb{E}_{t} R_{t}^{i}\left(s^{t+1}\right)-R_{t}^{f}\left(s^{t}\right)}{\sigma_{t}\left(R_{t}^{i}\left(s^{t+1}\right)\right)}\right| \leq \frac{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}
$$

- This relation is known as the Sharpe Ratio.
- It answers the question: "How much more mean return can I get by shouldering a bit more volatility in my portfolio?"
- Note again the market price of risk bounding the excess return over volatility.

The Sharpe Ratio II

- For a portfolio at the Mean-Variance frontier:

$$
\left|\frac{\mathbb{E}_{t} R_{t}^{m}\left(s^{t+1}\right)-R_{t}^{f}\left(s^{t}\right)}{\sigma_{t}\left(R_{t}^{m}\left(s^{t+1}\right)\right)}\right|=\frac{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}
$$

- Given a CRRA utility function, we derive before that, for excess returns at the frontier:

$$
\left|\frac{\mathbb{E}_{t} R_{t}^{m e}\left(s^{t+1}\right)}{\sigma_{t}\left(R_{t}^{m e}\left(s^{t+1}\right)\right)}\right| \simeq \gamma \sigma\left(\Delta \ln c\left(s^{t+1}\right)\right)
$$

- Alternatively (assuming $\mathbb{E}_{t} R_{t}^{m}\left(s^{t+1}\right)>R_{t}^{f}\left(s^{t}\right)$):

$$
\mathbb{E}_{t} R_{t}^{m e}\left(s^{t+1}\right) \simeq R_{t}^{f}\left(s^{t}\right)+\gamma \sigma\left(\Delta \ln c\left(s^{t+1}\right)\right) \sigma_{t}\left(R_{t}^{m}\left(s^{t+1}\right)\right)
$$

The Equity Premium Puzzle I

- Let us go to the data and think about the stock market (i.e. $R_{t}^{i}\left(s^{t+1}\right)$ is the yield of an index) versus the risk free asset (the U.S. treasury bill).
- Average return from equities in X th century: 6.7\%. From bills 0.9%. (data from Dimson, Marsh, and Staunton, 2002).
- Standard deviation of equities: 20.2%.
- Standard deviation of $\Delta \ln c\left(s^{t+1}\right): 1.1 \%$.

The Equity Premium Puzzle II

- Then:

$$
\left|\frac{6.7 \%-0.9 \%}{20.2 \%}\right|=0.29 \leq 0.011 \gamma
$$

that implies a γ of at least 26 !

- But we argued before that γ is at most 10 .
- This observation is known as the Equity Premium Puzzle (Mehra and Prescott, 1985).

The Equity Premium Puzzle III

- We can also look at the equity premium directly.
- Remember the beta formula:

$$
\mathbb{E}_{t} R_{t}^{m e}\left(s^{t+1}\right) \simeq R_{t}^{f}\left(s^{t}\right)+\gamma \sigma\left(\Delta \ln c\left(s^{t+1}\right)\right) \sigma_{t}\left(R_{t}^{m}\left(s^{t+1}\right)\right)
$$

- Then

$$
\gamma \sigma\left(\Delta \ln c\left(s^{t+1}\right)\right) \sigma_{t}\left(R_{t}^{m}\left(s^{t+1}\right)\right)=0.011 * 0.202 * \gamma=0.0022 * \gamma
$$

- For $\gamma=3$, the equity premium should be 0.0066 .

The Equity Premium Puzzle IV

- Things are actually worse than they look:
(1) Correlation between individual and aggregate consumption is not one.
(2) However, U.S. treasury bills are also risky (inflation risk).
- We can redo the derivation of the Sharpe Ratio in terms of excess returns:

$$
\left|\frac{\mathbb{E}_{t} R_{t}^{e}\left(s^{t+1}\right)}{\sigma_{t}\left(R_{t}^{e}\left(s^{t+1}\right)\right)}\right| \leq \frac{\sigma_{t}\left(m_{t}\left(s^{t}, s_{t+1}\right)\right)}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}
$$

The Equity Premium Puzzle V

- Build a excess return portfolio (Campbell, 2003):
(1) Mean: 8.1%
(2) Standard deviation: 15.3\%
- Then

$$
\left|\frac{8.1 \%}{15.3 \%}\right|=0.53 \leq 0.011 \gamma
$$

that implies a γ of at least 50!

Raising Risk Aversion

- A naive answer will be to address the equity premium puzzle by raising γ (Kandel and Stambaugh, 1991).
- We cannot really go ahead and set $\gamma=50$:
(1) Implausible intercountry differences in real interest rates.
(2) We would generate a risk-free rate puzzle (Weil, 1989).
(3) Problems in genera equilibrium.

The Risk-Free Rate Puzzle I

- Remember:

$$
r_{t}^{f}\left(s^{t}\right)=\delta+\gamma \mathbb{E}_{t} \Delta \log c\left(s^{t+1}\right)-\frac{1}{2} \gamma^{2} \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right)
$$

- $\Delta \log c\left(s^{t+1}\right)=0.0209, \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right)=(0.011)^{2}$ and $\gamma=10$:

$$
\begin{aligned}
& \gamma \mathbb{E}_{t} \Delta \log c\left(s^{t+1}\right)-\frac{1}{2} \gamma^{2} \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right) \\
& =10 * 2.09-0.5 * 100 *(0.011)^{2}=20.4 \%
\end{aligned}
$$

- Hence, even with $r_{t}^{f}\left(s^{t}\right)=4 \%$, we will need a $\delta=-16.4 \%$: a $\beta \gg 1$!

The Risk-Free Rate Puzzle II

- In fact, the risk-free rate puzzle is a problem by itself. Remember that rate of return on bills is 0.9%.
- $\Delta \log c\left(s^{t+1}\right)=0.0209, \sigma^{2}\left(\Delta \log c\left(s^{t+1}\right)\right)=(0.011)^{2}$ and $\gamma=1$:

$$
0.009=\delta+0.0209-\frac{1}{2}(0.011)^{2}
$$

- This implies

$$
\delta=0.009-0.0209+\frac{1}{2}(0.011)^{2}=-0.0118
$$

again, a $\beta>1$!

Answers to Equity Premium Puzzle

(1) Returns from the market have been odd. If return from bills had been around 4% and returns from equity 5%, you would only need a γ of 6.25. Some evidence related with the impact of inflation (this also helps with the risk-free rate puzzle).
(2) There were important distortions on the market. For example regulations and taxes.
(3) Habit persistence.
(4) Separating EIS from risk-aversion: Epstein-Zin preferences.
(5) The model is deeply wrong: behavioral.

Habit Persistence

- Assume that the utility function takes the form:

$$
\frac{\left(c_{t}-h c_{t-1}\right)^{1-\gamma}-1}{1-\gamma}
$$

- Interpretation. If $h=0$ we have our CRRA function back.
- External versus internal habit persistence.

Why Does Habit Help? I

- Suppose $c_{t+1}\left(s^{t+1}\right)=1.01, c_{t}\left(s^{t}\right)=c_{t-1}\left(s^{t-1}\right)=1$, and $\gamma=2$:

$$
\frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}=\frac{(1.01-h)^{-2}}{(1-h)^{-2}}
$$

- If $h=0$

$$
\frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}=\frac{(1.01)^{-2}}{(1)^{-2}}=0.9803
$$

- If $h=0.95$

$$
\frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right)\right)}=\frac{(1.01-0.95)^{-2}}{(0.05)^{-2}}=0.6944
$$

Why Does Habit Help? II

- In addition, there is an indirect effect, since we can raise γ without generating a risk-free rate puzzle.
- We will have:

$$
\begin{aligned}
R_{t}^{f}\left(s^{t}\right) & =\frac{1}{\mathbb{E}_{t} m_{t}\left(s^{t}, s_{t+1}\right)}=\frac{1}{\beta \mathbb{E}_{t}\left(\frac{c\left(s^{t+1}\right)-h c\left(s^{t}\right)}{c\left(s^{t}\right)-h c\left(s^{t-1}\right)}\right)^{-\gamma}} \\
& =\frac{1}{\beta \mathbb{E}_{t}\left(e^{-\gamma \Delta \log \left(c\left(s^{t+1}\right)-h c\left(s^{t}\right)\right)}\right)}
\end{aligned}
$$

Why Does Habit Help? II

- Now:

$$
\begin{aligned}
r_{t}^{f}\left(s^{t}\right)= & \delta+\gamma \mathbb{E}_{t} \Delta \log \left(c\left(s^{t+1}\right)-h c\left(s^{t}\right)\right) \\
& -\frac{1}{2} \gamma^{2} \sigma^{2}\left(\Delta \log \left(c\left(s^{t+1}\right)-h c\left(s^{t}\right)\right)\right)
\end{aligned}
$$

- Note that for h close to 1

$$
\mathbb{E}_{t} \Delta \log \left(c\left(s^{t+1}\right)-h c\left(s^{t}\right)\right) \approx \mathbb{E}_{t} \Delta \log \left(c\left(s^{t+1}\right)\right)
$$

- So we basically get a higher variance term, with a negative sign.
- Hence, we can increase the γ that will let us have a reasonable risk-free interest rate.

Lessons from the Equity Premium Puzzle

We want to build DSGE models where the market price of risk is:
(1) High.
(2) Time-varying.
(3) Correlated with the state of the economy.

We need to somehow fit together a low risk-free interest rate and a high return on risky assets.

Main Ideas of Asset Pricing

(1) Non-arbitrage.
(2) Risk-free rate is $r \simeq \delta+\gamma g+$ precautionary behavior.
(3) Risk is not important by itself: the key is covariance.
(4) Mean-Variance frontier.
(5) Equity Premium Puzzle.
(6) Random walk of asset prices.

