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Business Cycle

� U.S. economy uctuates over time.

� How can we build models to think about it?

� Do we need di�erent models than before to do so? Traditionally the
answer was yes. Nowadays the answer is no.

� We will focus on equilibrium models of the cycle.
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Business Cycles and Economic Growth

� How di�erent are long-run growth and the business cycle?

Changes in Output per Worker Secular Growth Business Cycle
Due to changes in capital 1/3 0
Due to changes in labor 0 2/3
Due to changes in productivity 2/3 1/3

� We want to use the same models with a slightly di�erent focus.
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Stochastic Neoclassical Growth Model

� Cass (1965) and Koopmans (1965).

� Brock and Mirman (1972).

� Kydland and Prescott (1982).

� Hansen (1985).

� King, Plosser, and Rebelo (1988a,b).
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References

� King, Plosser, and Rebelo (1988a,b).

� Chapter by Cooley and Prescott in Cooley's Frontier of Business Cycle
Research (in fact, you want to read the whole book).

� Chapter by King and Rebelo (Resurrection Real Business Cycle Mod-
els) in Handbook of Macroeconomics.

� Chapter 12 in Ljungqvist and Sargent.
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Preferences

� Preferences:

E0
1X
t=0

�t (1 + n)t u
�
ct
�
st
�
; lt
�
st
��

for ct
�
st
�
� 0; lt

�
st
�
2 (0; 1)

where n is population growth.

� Standard technical assumptions (continuity, di�erentiability, Inada con-
ditions, etc...).

� However, those still leave many degrees of freedom.

� Restrictions imposed by economic theory and empirical observation.
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Restrictions on Preferences

Three observations:

1. Risk premium relatively constant)CRRA utility function.

2. Consumption grows at a roughly constant rate.

3. Stationary hours after the SWW)Marginal rate of substitution be-
tween labor and consumption must be linear in consumption.
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Explanation: income and substitution e�ect cancel out.
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Parametric Family

� Only parametric that satisfy conditions (King, Plosser, and Rebelo,
1988a,b):

(cv (l))1� � 1
1� 

if  > 0,  6= 1

log c+ log v (l) if  = 1

� Restrictions on v (l) :
1. v 2 C2

2. Depending on :
(a) If  = 1, log v (l) must be increasing and concave.

(b) If  < 1, v1� must be increasing and concave.

(c) If  > 1, v1� must be decreasing and convex.

3. �v (l) v00 (l) > (1� 2)
�
v0 (l)

�2 to ensure overall concavity of u:
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Three Useful Examples

1. CRRA-Cobb Douglass:
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2. Log-log (limit as  ! 1):
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3. Log-CRRA
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Household Problem

� Let me pick log-log for simplicity:
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� Budget constraint:
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� Complete markets and Arrow securities.

� We can price any security.
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Problem of the Firm I

� Neoclassical production function in per capita terms:
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� Note: labor-augmenting technological change (Phelps, 1966).

� We are setting up a model where the �rm rents the capital from the
household.

� However, we could also have a model where �rms own the capital and
the households own shares of the �rms.

� Both environments are equivalent with complete markets.
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Problem of the Firm II

� By pro�t maximization:
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� Investment xt induces a law of motion for capital:
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Evolution of the technology

� st = zt

� zt changes over time.

� It follows the AR(1) process:

zt = �zt�1 + �"t

"t � N (0; 1)

� Interpretation of � and �:
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Arrow-Debreu Equilibrium

A Arrow-Debreu equilibrium are prices fbpt(st); bwt(st); brt(st)g1t=0;st2St and
allocations fĉt(st); blt(st); bkt(st)g1t=0;st2St such that:
1. Given fp̂t(st)g1t=0;st2St; fĉt(s

t); blt(st); bkt(st)g1t=0;st2St solves
max
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t) � 0 for all t
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2. Firms pick fblt(st); bkt(st)g1t=0;st2St to minimize costs:
�eztbkt �st�1���1 �(1 + �)t blt �st��1�� = brt �st�

(1� �) eztbkt �st�1�� �(1 + �)t blt �st���� = bwt �st�
3. Markets clear:

bct(st) + (1 + n) bkt+1 �st� =
eztbkt �st�1�� �(1 + �)t blt �st��1�� + (1� �) bkt �st�1�

for all t; all st 2 St
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Sequential Markets Equilibrium I.

� We introduce Arrow securities.

� Household problem:
�
ct(s

t); lt(s
t); kt(s

t);
n
at+1(s
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o
st+12S
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�
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�
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ct(s
t) � 0 for all t; st 2 St

at+1(s
t; st+1) � �At+1(st+1) for all t; st 2 St

� Role of At+1(st+1):
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Sequential Markets Equilibrium II

A SM equilibrium is prices for Arrow securities f bQt(st; st+1)g1t=0;st2St;st+12S,
allocations

�
ĉit(s

t); blt(st); bkt(st); nât+1(st; st+1)ost+12S
�1
t=0;st2St

and in-

put prices f bwt(st); brt(st)g1t=0;st2St; such that:
1. Given f bQt(st; st+1)g1t=0;st2St;st+12S and f bwt(st); brt(st)g1t=0;st2St�

ĉt(s
t); blt(st); bkt(st); nât+1(st; st+1)ost+12S

�1
t=0;st2St

solve the prob-

lem of the household.

2. Firms pick fblt(st); bkt(st)g1t=0;st2St to minimize costs:
�eztbkt �st�1���1 �(1 + �)t blt �st��1�� = brt �st�

(1� �) eztbkt �st�1�� �(1 + �)t blt �st���� = bwt �st�
3. Markets clear for all t; all st 2 St

bct(st)+(1 + n) bkt+1 �st� = eztbkt �st�1�� �(1 + �)t blt �st��1��+(1� �) bkt �st�1�
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Recursive Competitive Equilibrium

� Often, it is convenient to use a third alternative competitive equilib-
rium concept: Recursive Competitive Equilibrium (RCE).

� Developed by Mehra and Prescott (1980).

� RCE emphasizes the idea of de�ning an equilibrium as a set of func-
tions that depend on the state of the model.

� Two interpretation for states:

1. Pay-o� relevant states: capital, productivity, .....

2. Other states: promised utility, reputation, ....

� Recursive notation: x and x0.
18



.

Value Function for the Household

� Individual state: k:

� Aggregate states: K and z:

� Recursive problem:

v (k;K; z) = max
c;x;l

n
log c+  log (1� l) + � (1 + n)Ev

�
k0;K0; z0

�
jz
o

s:t: c+ x = r (K; z) k + w (K; z) l

(1 + n) k0 = (1� �) k + x

(1 + n)K0 = (1� �)K +X (K; z)

z0 = �z + �"0
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De�nition of Recursive Competitive Equilibrium

A RCE for our economy is a value function v (k;K; z), households policy
functions, c (k;K; z) ; x (k;K; z) ; and l (k;K; z), aggregate policy func-
tions C (K; z) ; X (K; z), and L (K; z), and price functions r (K; z) and
w (K; z) such that those functions satisfy:

1. Recursive problem of the household.

2. Firms maximize:

�ezK��1 ((1 + �)L (K; z))1�� = r (K; z)

(1� �) ezK� ((1 + �)L (K; z))�� = w (K; z)

3. Consistency of individual and aggregate policy functions, c (k;K; z) =
C (K; z), x (k;K; z) = X (K; z), l (k;K; z) = L (K; z) ; 8 (K; z) :

4. Aggregate resource constraint:

C (K; z) +X (K; z) = ezK� ((1 + �)L (K; z))1�� ; 8 (K; z)
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Equilibrium Conditions
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Scaling the Economy I

� Economy has long-run growth rate equal to (n+ �).

� Per capita terms, the economy grows at a rate �.

� Hence, the model is non-stationary and we need to rescale it.

� General condition: transform every non-stationary variable into a sta-

tionary one by dividing it by (1 + �)t

ext �st� = xt
�
st
�

(1 + �)t
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Scaling the Economy II

We can rewrite the preferences (and adding a suitable constant):
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Scaling the Economy III

We can rewrite the preferences (and adding a suitable constant):and
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log ect �st�+ log v �lt �st��o

24



Scaling the Economy IV

� The resource constraint, diving both sides by (1 + �)t

ect �st�+ (1 + n) (1 + �) ekt+1 �st� =
eztekt �st�1�� lt �st�1�� + (1� �) ekt �st�1�

� Input prices:

rt
�
st
�
= �eztekt �st�1���1 lt �st�1��

ewt �st� = (1� �) eztekt �st�1�� lt �st���
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A New Competitive Equilibrium

� We can de�ne a competitive equilibrium in the rescaled economy.

� Equilibrium conditions (log case):

(1 + �)ect (st) = �Et
1ect+1 �st+1�

�
rt+1

�
st+1

�
+ 1� �

�
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1� lt (st)
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�
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ewt �st� = (1� �) eztekt �st�1�� lt �st���
ect �st�+ (1 + n) (1 + �) ekt+1 �st� = eztekt �st�1�� lt �st�1�� + (1� �) ekt �st�1�

zt = �zt�1 + �"t
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Existence and Welfare Theorems

� There is a unique equilibrium in this economy once we impose the

right transversality condition.

� Both welfare theorems hold.

� We can move back and forth between the market equilibrium and the

social planner's problem.
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Behavior of the Model

� We want to characterize behavior of the model.

� Three type of dynamics:

1. Balanced growth path.

2. Transitional dynamics (Cass, 1965, and Koopmans, 1965).

3. Ergodic behavior.
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Stochastic Behavior

� We have an initial shock: productivity changes.

� We have a transmission mechanism: intertemporal substitution and
capital accumulation.

� We can look at a simulation from this economy.

� Why only a simulation?

� To simulate the model we need:

1. To select parameter values.

2. To compute the solution of the model.
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Selecting Parameter Values

� How do we determine the parameter values?

� Two main approaches:

1. Calibration.

2. Statistical methods: Methods of Moments, ML, Bayesian.

� Advantages and disadvantages.
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Calibration as an Empirical Methodology

� Emphasized by Lucas (1980) and Kydland and Prescott (1982).

� Two sources of information:
1. Well accepted microeconomic estimates.

2. Matching long-run properties of the economy.

� Problems of 1. and 2.

� References:
1. Browning, Hansen and Heckman (1999) chapter in Handbook of

Macroeconomics.

2. Debate in Journal of Economic Perspectives, Winter 1996: Kyd-

land and Prescott, Hansen and Heckman, Sims.
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Calibration of the Standard Model

� Parameters: �,  , �, �, �, n, �, �:

� n: population growth in the data.

� �: per capita long run growth.

� �: capital income. Proprietor's income?
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Balanced Growth Path

� Equilibrium conditions in the BGP:

1 + �ec = �
1ec (r + 1� �)

 
ec

1� l
= ew

r = �ek��1l1��ew = (1� �) ek�l��ec+ (1 + n) (1 + �) ek = ek�l1�� + (1� �) ek
� A system of 5 equations on 5 unknowns.

33



Three Conditions of the Balanced Growth Path

� First:
r = �

eyek = 1 + �

�
� 1 + �

� Also:

(1 + n) (1 + �) ek = (1� �) ek + ex)
� =

exek + 1� (1 + n) (1 + �)

� Finally,

 
ec

1� l
= (1� �)

ey
l
)

ecey = 1� �

 

1� l

l
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Using the Three Conditions to Calibrate the Model

� First, we use data on hours of work to �nd

 = (1� �)
eyec 1� l

l

� Second, give data and

� =
exek + 1� (1 + n) (1 + �)

we determine �.

� Finally, we get �:

� = (1 + �)
�
�
eyek + 1� �

��1
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Frisch Elasticity I

� De�ne the Frisch Elasticity as:

d log l

d logw

�����
c constant

� For our parametric family:

1.

�
c�(1�l)1��

�1�
�1

1� : 1�ll :

2. log c+  log (1� l): 1�ll :

3. log c�  l
1+

1+ : 1=:
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Frisch Elasticity II

� Empirical evidence is that l � 1=3 (Ghez and Becker, 1975).

� Then, our Frisch Elasticity is 2.

� Empirical evidence:

1. Traditional view: MaCurdy (1981), Altonji (1986), Browning, Deaton

and Irish (1985) between 0 and 0.5.

2. Revisionist view: between 0.5 and 1.6 (Browning, Hansen, and

Heckman, 1999). Some estimates (Imai and Keane, 2004) even

higher (3.8).
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Equivalence between Utility Functions

� With log ct +  log (1� lt), the static FOC is:

 
ct

1� lt
= wt

while with log ct �  
l
1+
t
1+ , the static FOC is

 ctl

t = wt

� Loglinearize both expressions:

 
c

1� l
bct +  

cl

(1� l)2
blt = w bwt )

bct + l

1� l
blt = bwt
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 cl
�bct + blt� = w bwt )bct + blt = bwt

� If we calibrate the model to l � 1=3:

bct + 1
2
blt = bwt

and hence, both utility functions are equivalent if we make  = l
1�l.

In the case l � 1=3,  = 1=2:
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Solow Residual

� Last step is to calibrate

zt = �zt�1 + �"t

� Obtain the Solow residual after a time trend has been removed.

� Estimate � and � by OLS.

� Problems of estimate.
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Solution Methods

� Value function iteration.

� Projection.

� Perturbation:

1. Generalization of linearization.

2. Dynare.
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General Structure of Linearized System

� There are many linear solvers. Fundamental equivalence.

� \A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily"
by Harald Uhlig.

� Givenm states xt; n controls yt; and k exogenous stochastic processes

zt+1, we have:

Axt +Bxt�1 + Cyt +Dzt = 0

Et (Fxt+1 +Gxt +Hxt�1 + Jyt+1 +Kyt + Lzt+1 +Mzt) = 0

Etzt+1 = Nzt

where C is of size l � n; l � n and of rank n; that F is of size

(m+ n� l)� n; and that N has only stable eigenvalues.
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Policy Functions I

We guess policy functions of the form:

xt = Pxt�1 +Qzt

yt = Rxt�1 + Szt

where P; Q; R; and S are matrices such that the computed equilibrium is

stable.
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Policy Functions I

For simplicity, suppose l = n: See Uhlig for general case (I have never be

in the situation where l = n did not hold).

Then:

1. P satis�es the matrix quadratic equation:�
F � JC�1A

�
P 2�

�
JC�1B �G+KC�1A

�
P �KC�1B+H = 0

The equilibrium is stable i� max (abs (eig (P ))) < 1.

2. R is given by:

R = �C�1 (AP +B)
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3. Q satis�es:

N 0 

�
F � JC�1A

�
+ Ik 


�
JR+ FP +G�KC�1A

�
vec (Q)

= vec
��
JC�1D � L

�
N +KC�1D �M

�
4. S satis�es:

S = �C�1 (AQ+D)
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How to Solve Quadratic Equations

To solve

	P 2 � �P �� = 0

for the m�m matrix P :

1. De�ne the 2m� 2m matrices:

� =

"
� �
Im 0m

#
; and � =

"
	 0m
0m Im

#

2. Let s be the generalized eigenvector and � be the corresponding

generalized eigenvalue of � with respect to �: Then we can write

s0 =
�
�x0; x0

�
for some x 2 <m:
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3. If there arem generalized eigenvalues �1; �2; :::; �m together with gen-

eralized eigenvectors s1; :::; sm of � with respect to �; written as

s0 =
h
�x0i; x

0
i

i
for some xi 2 <m and if (x1; :::; xm) is linearly inde-

pendent, then:

P = 
�
�1

is a solution to the matrix quadratic equation where 
 = [x1; :::; xm]

and � = [�1; :::; �m]. The solution of P is stable if max j�ij < 1.

Conversely, any diagonalizable solution P can be written in this way.
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Comparison with US economy

� Simulated Economy output uctuations are around 70% as big as

observed uctuations.

� Consumption is less volatile than output.

� Investment is much more volatile.

� Behavior of hours.
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Assessment of the Basic Real Business Model

� It accounts for a substantial amount of the observed uctuations.

� It accounts for the covariances among a number of variables.

� It has some problems accounting for the behavior of the hours worked.

� More important question: where do productivity shocks come from?
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Negative Productivity Shocks

� The model implies that half of the quarters we have negative technol-
ogy shocks.

� Is this plausible? What is a negative productivity shocks?

� Role of trend: negative shocks also include growth of technology below
the trend.

� s.d. of shocks is 0.007. Mean quarter productivity growth is 0.0047
(to give us a 1.9% growth per year).

� As a consequence, we would only observe negative technological shocks
when "t < �0:0047.

� This happens in the model around 25% of times. Comparison with

the data.
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Some Policy Implications

� The basic model is Pareto-e�cient.

� Fluctuations are the optimal response to a changing environment.

� Fluctuations are not a su�cient condition for ine�ciencies or for gov-
ernment intervention.

� In fact in this model the government can only worsen the allocation.

� Recessions have a \cleansing" e�ect.
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Asset Market Implications I

� We will have the fundamental asset pricing equation:

Qt(s
t; st+1) = ��

�
st+1j st

� u0 �ct+1 �st+1� ; lt+1 �st+1��
u0 (ct (st) ; lt (st))

� If utility is separable and log in consumption:

Qt(s
t; st+1) = ��

�
st+1j st

� ct
�
st
�

ct+1
�
st+1

�
� Now, ct

�
st
�
is the equilibrium consumption.

� Since ct
�
st
�
is smooth in the model, Qt(s

t; st+1) will also be smooth.

Hence, we will have the standard equity premium puzzle.
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Asset Market Implications II

� Return to invest in an uncontingent bond sold at face value 1:

Et�
ct
�
st
�

ct+1
�
st+1

�Rbt �st�

� Return to invest in capital:

Et�
ct
�
st
�

ct+1
�
st+1

� �rt+1 �st+1�+ 1� �
�

� By non-arbitrage:

Et�
c
�
st
�

ct+1
�
st+1

�Rbt �st� = Et� ct
�
st
�

ct+1
�
st+1

� �rt+1 �st+1�+ 1� �
�

� Presence of capital ties down returns.
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Further Extensions

� We can extend our model in several directions.

� Two objectives:

1. Fix empirical problems.

2. Address additional questions.

� Examples:

1. Indivisible labor supply.

2. Capacity utilization.

3. Investment Speci�c technological change.

4. Monopolistic Competition.
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Lotteries

� Our �rst extension is to introduce lotteries: Rogerson (1988) and
Hansen (1985).

� General procedure to deal with non-convexities.

� For example, an agent can either work 0 hours or l� hours. Why?

� Extensive versus intensive margin.

� Then, expected utility:

pu (c1; l
�) + (1� p)u (c2; 0)

� Resource constrain in the economy (law of large numbers):

pc1 + (1� p) c2 = c
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Aggregation

� First order condition: uc (c1; l�) = uc (c2; 0).

� For our log-log utility function log c+  log (1� l) ; we have

c = c1 = c2

� Also, In the aggregate, we have that l = pl�.

� Then, expected utility is

log c+ p log (1� l�) + (1� p) log 1) log c+Al

where A =  
log(1�l�)

l� :

� Note that this utility function belongs to the class log c�  l
1+

1+ with

 = 0, i.e., with in�nite Frisch elasticity.
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Capacity Utilization

� In benchmark model, the short run elasticity of capital is zero while in
the long run is in�nite.

� Empirical evidence of use of machinery, number of shifts, or electricity
consumption.

� Modi�ed production function:

yt
�
st
�
= ezt

�
ut
�
st
�
kt
�
st�1

��� �
(1 + �)t lt

�
st
��1��

where ut is the utilization rate.

� Depreciation:

(1 + n) kt+1
�
st
�
=
�
1� �

�
ut
�
st
���

kt
�
st�1

�
+ xt

�
st
�
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Combining Both Extensions

� We can generate 70 percent of aggregate uctuations with a s.d. of
0.003.

� How do we look at the Solow residual in this model?

� This implies negative technological growth in around 5 percent of quar-
ters, roughly observation in the data.
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Investment-Speci�c Technological Change

� Greenwood, Herkowitz, and Krusell (1997 and 2000): importance of
technological change speci�c to new investment goods for understand-

ing postwar U.S. growth and aggregate uctuations.

� Observation: fall in the relative price of capital.

� Implications for NIPA.

� A simple way to model it:

(1 + n) kt+1
�
st
�
= (1� �) kt

�
st�1

�
+ vtxt

�
st
�

where vt is the inverse of the relative price of capital.

� Two di�erent technological shocks with di�erent implications.
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Monopolistic Competition

� Final good producer with competitive behavior.

� Continuum of intermediate good producers with market power.

� Alternative formulations: continuum of goods in the utility function.

� Otherwise, the model is the same as the standard RBC model.
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The Final Good Producer

� Production function:

yt (st) =

 Z 1
0
(yit (st))

"�1
" di

! "
"�1

where " controls the elasticity of substitution.

� Final good producer is perfectly competitive and maximize pro�ts,
taking as given all intermediate goods prices pti (st) and the �nal

good price pt (st).
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Maximization Problem

� Thus, its maximization problem is:

max
yit(st)

pt (st) yt (st)�
Z 1
0
pit (st) yit (st) di

� First order conditions are for 8i:

pt
"

"� 1

 Z 1
0
(yit (st))

"�1
" di

! "
"�1�1 "� 1

"
(yit (st))

"�1
" �1 � pit (st) = 0
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Working with the First Order Conditions

� Dividing the �rst order conditions for two intermediate goods i and j,
we get:

pit (st)

pjt (st)
=

 
yit (st)

yjt (st)

!�1"
or:

pjt (st) =

 
yit (st)

yjt (st)

!1
"

pit (st)

� Hence:

pjt (st) yjt (st) = pit (st) yit (st)
1
"

�
yjt (st)

�"�1
"

� Integrating out:Z 1
0
pjt (st) yjt (st) dj = pit (st) yit (st)

1
"

Z 1
0
y
"�1
"
jt dj = pit (st) yit (st)

1
"

�
yjt (st)

�"�1
"
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Input Demand Function

� By zero pro�ts (pt (st) yt (st) =
R 1
0 pjt (st) yjt (st) dj), we get:

pt (st) yt (st) = pit (st) yit (st)
1
"

�
yjt (st)

�"�1
"

) pt (st) = pit (st) yit (st)
1
" yt (st)

�1"

� Consequently, the input demand functions associated with this prob-
lem are:

yit (st) =

 
pit (st)

pt (st)

!�"
yt (st) 8i

� Interpretation.
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Price Level

� By the zero pro�t condition pt (st) yt (st) =
R 1
0 pit (st) yit (st) di and

plug-in the input demand functions:

pt (st) yt (st) =
Z 1
0
pit (st)

 
pit (st)

pt (st)

!�"
yt (st) di

) pt (st)
1�" =

Z 1
0
pit (st)

1�" di

� Thus:

pt (st) =

 Z 1
0
pit (st)

1�" di

! 1
1�"
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Intermediate Good Producers

� Continuum of intermediate goods producers.

� No entry/exit.

� Each intermediate good producer i has a production function

yit (st) = Atkit (st)
� lit (st)

1��

� At follows the AR(1) process:

logAt = � logAt�1 + zt
zt � N (0; �z)
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Maximization Problem I

� Intermediate goods producers solve a two-stages problem.

� First, given wt and rt, they rent lit and kit in perfectly competitive
factor markets in order to minimize real cost:

min
lit(st);kit(st)

fwt (st) lit (st) + rt (st) kit (st)g

subject to their supply curve:

yit = Atkit (st)
� lit (st)

1��

67



First Order Conditions

� The �rst order conditions for this problem are:

wt (st) = % (1� �)Atkit (st)
� lit (st)

��

rt (st) = %�Atkit (st)
��1 lit (st)

1��

where % is the Lagrangian multiplier or:

kit (st) =
�

1� �

wt (st)

rt (st)
lit (st)

� Note that ratio capital-labor only is the same for all �rms i:
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Real Cost

� The real cost of optimally using lit is:�
wt (st) lit (st) +

�

1� �
wt (st) lit (st)

�

� Simplifying: �
1

1� �

�
wt (st) lit (st)
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Marginal Cost I

� The �rm has constant returns to scale.

� Then, we can �nd the real marginal cost mct (st) by setting the level
of labor and capital equal to the requirements of producing one unit

of good Atkit (st)
� lit (st)

1�� = 1

� Thus:

Atkit (st)
� lit (st)

1�� = At

 
�

1� �

wt (st)

rt (st)
lit (st)

!�
lit (st)

= At

 
�

1� �

wt (st)

rt (st)

!�
lit (st) = 1
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Marginal Cost II

� Then:

mct (st) =
�

1

1� �

�
wt (st)

1

At

 
�

1� �

wt (st)

rt (st)

!��

=
�

1

1� �

�1�� �1
�

�� 1

At
wt (st)

1�� rt (st)
�

� Note that the marginal cost does not depend on i.

� Also, from the optimality conditions of input demand, input prices

must satisfy:

kt (st) =
�

1� �

wt (st)

rt (st)
lt (st)
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Maximization Problem II

� The second part of the problem is to choose price that maximizes
discounted real pro�ts, i.e.,

max
pit(st)

( 
pit (st)

pt (st)
�mct (st)

!
yit (st)

)
subject to

yit (st) =

 
pit (st)

pt (st)

!�"
yt (st) ;

� First order condition: 
pit (st)

pt (st)

!�"
yt (st)

pt (st)
� "

 
pit (st)

pt (st)
�mct (st)

! 
pit (st)

pt (st)

!�"�1
yt (st)

pt (st)
= 0
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Mark-Up Condition

� From the �st order condition:

1� "

 
pit (st)

pt (st)
�mct (st)

! 
pit (st)

pt (st)

!�1
= 0)

pit (st) = " (pit (st)�mct (st) pt (st)))
pit (st) =

"

"� 1
mct (st) pt (st)

� Mark-up condition.

� Reasonable values for ":
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Aggregation I

� To derive an expression for aggregate output, remember that:
kit (st)

lit (st)
=

�

1� �

wt (st)

rt (st)

� Since this ratio is equivalent for all intermediate �rms, it must also be
the case that:

kit (st)

lit (st)
=
kt (st)

lt (st)
=

�

1� �

wt (st)

rt (st)

� If we substitute this condition in the production function of the inter-
mediate good �rm Atkit (st)

� lit (st)
1�� we derive:

yit = At

 
kit (st)

lit (st)

!�
lit (st) = At

 
kt (st)

lt (st)

!�
lit (st)
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Aggregation II

� The demand function for the �rm is:

yit (st) =

 
pit (st)

pt (st)

!�"
yt (st) 8i;

� Thus, we �nd the equality: 
pit (st)

pt (st)

!�"
yt (st) = At

 
kt (st)

lt (st)

!�
lit (st)

� If we integrate in both sides of this equation:

yt (st)
Z 1
0

 
pit (st)

pt (st)

!�"
di = At

 
kt (st)

lt (st)

!� Z 1
0
lit (st) di = Atkt (st)

� lt (st)
1��
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Aggregation III

� Then:
yt (st) =

At

vt (st)
kt (st)

� lt (st)
1��

where

vt (st) =
Z 1
0

 
pit (st)

pt (st)

!�"
di =

jt (st)
�"

pt (st)
�"

� But note that:

pt (st) =

 Z 1
0
pit (st)

1�" di

! 1
1�"

= pit (st)

since all intermediate good producers charge the same price.

� Then: vt (st) =
R 1
0

�
pit(st)
pt(st)

��"
di = 1 and:

yt = Atkt (st)
� lt (st)

1��
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Behavior of the Model

� Presence of monopolistic competition is, by itself, pretty irrelevant.

� Why? Constant mark-up.

� Similar to a tax.

� Solutions:

1. Shocks to mark-up (maybe endogenous changes).

2. Price rigidities.
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Further Extensions

� We can extend our model in many other directions.

� Examples we are not going to cover:

1. Fiscal Policy shocks (McGrattan, 1994).

2. Agents with Finite Lives (R��os-Rull, 1996).

3. Home Production (Benhabib, Rogerson, and Wright, 1991).
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