Real Business Cycles

Jesús Fernández-Villaverde University of Pennsylvania

Business Cycle

- U.S. economy fluctuates over time.
- How can we build models to think about it?
- Do we need different models than before to do so? Traditionally the answer was yes. Nowadays the answer is no.
- We will focus on equilibrium models of the cycle.

Business Cycles and Economic Growth

- How different are long-run growth and the business cycle?

Changes in Output per Worker	Secular Growth	Business Cycle
Due to changes in capital	$1 / 3$	0
Due to changes in labor	0	$2 / 3$
Due to changes in productivity	$2 / 3$	$1 / 3$

- We want to use the same models with a slightly different focus.

Stochastic Neoclassical Growth Model

- Cass (1965) and Koopmans (1965).
- Brock and Mirman (1972).
- Kydland and Prescott (1982).
- Hansen (1985).
- King, Plosser, and Rebelo (1988a,b).

References

- King, Plosser, and Rebelo (1988a,b).
- Chapter by Cooley and Prescott in Cooley's Frontier of Business Cycle Research (in fact, you want to read the whole book).
- Chapter by King and Rebelo (Resurrection Real Business Cycle Models) in Handbook of Macroeconomics.
- Chapter 12 in Ljungqvist and Sargent.

Preferences

- Preferences:

$$
\begin{aligned}
& \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t} u\left(c_{t}\left(s^{t}\right), l_{t}\left(s^{t}\right)\right) \\
& \quad \text { for } c_{t}\left(s^{t}\right) \geq 0, l_{t}\left(s^{t}\right) \in(0,1)
\end{aligned}
$$

where n is population growth.

- Standard technical assumptions (continuity, differentiability, Inada conditions, etc...).
- However, those still leave many degrees of freedom.
- Restrictions imposed by economic theory and empirical observation.

Restrictions on Preferences

Three observations:

1. Risk premium relatively constant \Rightarrow CRRA utility function.
2. Consumption grows at a roughly constant rate.
3. Stationary hours after the $\mathrm{SWW} \Rightarrow$ Marginal rate of substitution between labor and consumption must be linear in consumption.

$$
\begin{gathered}
\frac{u_{c}}{u_{l}}=w_{t}\left(s^{t}\right) \Rightarrow \\
c_{t}\left(s^{t}\right) f\left(l_{t}\left(s^{t}\right)\right)=w_{t}\left(s^{t}\right) \Rightarrow \\
\mu^{t} c_{0} f\left(l_{t}\left(s^{t}\right)\right)=\mu^{t} w_{0}
\end{gathered}
$$

Explanation: income and substitution effect cancel out.

Parametric Family

- Only parametric that satisfy conditions (King, Plosser, and Rebelo, 1988a, b):

$$
\begin{aligned}
& \frac{(c v(l))^{1-\gamma}-1}{1-\gamma} \text { if } \gamma>0, \gamma \neq 1 \\
& \log c+\log v(l) \text { if } \gamma=1
\end{aligned}
$$

- Restrictions on $v(l)$:

1. $v \in C^{2}$
2. Depending on γ :
(a) If $\gamma=1, \log v(l)$ must be increasing and concave.
(b) If $\gamma<1, v^{1-\gamma}$ must be increasing and concave.
(c) If $\gamma>1, v^{1-\gamma}$ must be decreasing and convex.
3. $-\gamma v(l) v^{\prime \prime}(l)>(1-2 \gamma)\left[v^{\prime}(l)\right]^{2}$ to ensure overall concavity of u.

Three Useful Examples

1. CRRA-Cobb Douglass:

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t} \frac{\left(c_{t}\left(s^{t}\right)^{\theta}\left(1-l_{t}\left(s^{t}\right)\right)^{1-\theta}\right)^{1-\gamma}-1}{1-\gamma}
$$

2. Log-log (limit as $\gamma \rightarrow 1$):

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}\left\{\log c_{t}\left(s^{t}\right)+\psi \log \left(1-l_{t}\left(s^{t}\right)\right)\right\}
$$

3. Log-CRRA

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}\left\{\log c_{t}\left(s^{t}\right)-\psi \frac{l_{t}\left(s^{t}\right)^{1+\gamma}}{1+\gamma}\right\}
$$

Household Problem

- Let me pick log-log for simplicity:

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}\left\{\log c_{t}\left(s^{t}\right)+\psi \log \left(1-l_{t}\left(s^{t}\right)\right)\right\}
$$

- Budget constraint:

$$
c_{t}\left(s^{t}\right)+x_{t}\left(s^{t}\right)=w_{t}\left(s^{t}\right) l_{t}\left(s^{t}\right)+r_{t}\left(s^{t}\right) k_{t}\left(s^{t-1}\right), \forall t>0
$$

- Complete markets and Arrow securities.
- We can price any security.

Problem of the Firm I

- Neoclassical production function in per capita terms:

$$
y_{t}\left(s^{t}\right)=e^{z_{t}} k_{t}\left(s^{t-1}\right)^{\alpha}\left((1+\mu)^{t} l_{t}\left(s^{t}\right)\right)^{1-\alpha}
$$

- Note: labor-augmenting technological change (Phelps, 1966).
- We are setting up a model where the firm rents the capital from the household.
- However, we could also have a model where firms own the capital and the households own shares of the firms.
- Both environments are equivalent with complete markets.

Problem of the Firm II

- By profit maximization:

$$
\begin{aligned}
\alpha e^{z_{t}} k_{t}\left(s^{t-1}\right)^{\alpha-1}\left((1+\mu)^{t} l_{t}\left(s^{t}\right)\right)^{1-\alpha} & =r_{t}\left(s^{t}\right) \\
(1-\alpha) e^{z_{t}} k_{t}\left(s^{t-1}\right)^{\alpha}\left((1+\mu)^{t} l_{t}\left(s^{t}\right)\right)^{-\alpha} & =w_{t}\left(s^{t}\right)
\end{aligned}
$$

- Investment x_{t} induces a law of motion for capital:

$$
(1+n) k_{t+1}\left(s^{t}\right)=(1-\delta) k_{t}\left(s^{t-1}\right)+x_{t}\left(s^{t}\right)
$$

Evolution of the technology

- $s_{t}=z_{t}$
- z_{t} changes over time.
- It follows the $\operatorname{AR}(1)$ process:

$$
\begin{gathered}
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t} \\
\varepsilon_{t} \sim \mathcal{N}(0,1)
\end{gathered}
$$

- Interpretation of μ and ρ.

Arrow-Debreu Equilibrium

A Arrow-Debreu equilibrium are prices $\left\{\widehat{p}_{t}\left(s^{t}\right), \widehat{w}_{t}\left(s^{t}\right), \widehat{r}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$ and allocations $\left\{\hat{c}_{t}\left(s^{t}\right), \widehat{l}_{t}\left(s^{t}\right), \widehat{k}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$ such that:

1. Given $\left\{\hat{p}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty},\left\{\hat{c}_{t}\left(s^{t}\right), \widehat{l}_{t}\left(s^{t}\right), \widehat{k}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$ solves

$$
\begin{aligned}
& \max _{\left\{\hat{c}_{t}\left(s^{t}\right), \widehat{l}_{t}\left(s^{t}\right), \widehat{k}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}\left\{\log c_{t}\left(s^{t}\right)+\psi \log \left(1-l_{t}\left(s^{t}\right)\right)\right\}}^{\text {s.t. } \sum_{t=0}^{\infty} \sum_{s^{t} \in S^{t}} \hat{p}_{t}\left(s^{t}\right)\left(c_{t}\left(s^{t}\right)+(1+n) k_{t+1}\left(s^{t}\right)\right)} \begin{array}{l}
\leq \sum_{t=0}^{\infty} \sum_{s^{t} \in S^{t}} \widehat{p}_{t}\left(s^{t}\right)\left(\widehat{w}_{t}\left(s^{t}\right) l_{t}\left(s^{t}\right)+\left(\widehat{r}_{t}\left(s^{t}\right)+1-\delta\right) k_{t+1}\left(s^{t}\right)\right) \\
c_{t}\left(s^{t}\right) \geq 0 \text { for all } t
\end{array}, ~ \$ l
\end{aligned}
$$

2. Firms pick $\left\{\hat{l}_{t}\left(s^{t}\right), \widehat{k}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$ to minimize costs:

$$
\begin{aligned}
\alpha e^{z_{t}} \hat{k}_{t}\left(s^{t-1}\right)^{\alpha-1}\left((1+\mu)^{t} \widehat{l}_{t}\left(s^{t}\right)\right)^{1-\alpha} & =\widehat{r}_{t}\left(s^{t}\right) \\
(1-\alpha) e^{z_{t}} \widehat{k}_{t}\left(s^{t-1}\right)^{\alpha}\left((1+\mu)^{t} \widehat{l}_{t}\left(s^{t}\right)\right)^{-\alpha} & =\widehat{w}_{t}\left(s^{t}\right)
\end{aligned}
$$

3. Markets clear:

$$
\begin{gathered}
\hat{c}_{t}\left(s^{t}\right)+(1+n) \widehat{k}_{t+1}\left(s^{t}\right)= \\
e^{z} \widehat{k}_{t}\left(s^{t-1}\right)^{\alpha}\left((1+\mu)^{t} \hat{l}_{t}\left(s^{t}\right)\right)^{1-\alpha}+(1-\delta) \widehat{k}_{t}\left(s^{t-1}\right) \\
\text { for all } t, \text { all } s^{t} \in S^{t}
\end{gathered}
$$

Sequential Markets Equilibrium I.

- We introduce Arrow securities.
- Household problem: $\left\{c_{t}\left(s^{t}\right), l_{t}\left(s^{t}\right), k_{t}\left(s^{t}\right),\left\{a_{t+1}\left(s^{t}, s_{t+1}\right)\right\}_{s_{t+1} \in S}\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$ solve

$$
\begin{gathered}
\max \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}\left\{\log c_{t}\left(s^{t}\right)+\psi \log \left(1-l_{t}\left(s^{t}\right)\right)\right\} \\
\text { s.t. } c_{t}^{i}\left(s^{t}\right)+(1+n) k_{t+1}\left(s^{t}\right)+\sum_{s_{t+1} \mid s^{t}} \widehat{Q}_{t}\left(s^{t}, s_{t+1}\right) a_{t+1}\left(s^{t}, s_{t+1}\right) \\
\leq \widehat{w}_{t}\left(s^{t}\right) l_{t}\left(s^{t}\right)+\left(\widehat{r}_{t}\left(s^{t}\right)+1-\delta\right) k_{t+1}\left(s^{t}\right)+a_{t}\left(s^{t}\right) \\
c_{t}\left(s^{t}\right) \geq 0 \text { for all } t, s^{t} \in S^{t} \\
a_{t+1}\left(s^{t}, s_{t+1}\right) \geq-A_{t+1}\left(s^{t+1}\right) \text { for all } t, s^{t} \in S^{t}
\end{gathered}
$$

- Role of $A_{t+1}\left(s^{t+1}\right)$.

Sequential Markets Equilibrium II

A SM equilibrium is prices for Arrow securities $\left\{\widehat{Q}_{t}\left(s^{t}, s_{t+1}\right)\right\}_{t=0, s^{t} \in S^{t}, s_{t+1} \in S^{\infty}}^{\infty}$ allocations $\left\{\hat{c}_{t}^{i}\left(s^{t}\right), \widehat{l}_{t}\left(s^{t}\right), \widehat{k}_{t}\left(s^{t}\right),\left\{\hat{a}_{t+1}\left(s^{t}, s_{t+1}\right)\right\}_{s_{t+1} \in S}\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$ and input prices $\left\{\widehat{w}_{t}\left(s^{t}\right), \widehat{r}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$, such that:

1. Given $\left\{\widehat{Q}_{t}\left(s^{t}, s_{t+1}\right)\right\}_{t=0, s^{t} \in S^{t}, s_{t+1} \in S}^{\infty}$ and $\left\{\widehat{w}_{t}\left(s^{t}\right), \widehat{r}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$

$$
\left\{\hat{c}_{t}\left(s^{t}\right), \widehat{l}_{t}\left(s^{t}\right), \widehat{k}_{t}\left(s^{t}\right),\left\{\hat{a}_{t+1}\left(s^{t}, s_{t+1}\right)\right\}_{s_{t+1} \in S}\right\}_{t=0, s^{t} \in S^{t}}^{\infty} \text { solve the prob- }
$$

lem of the household.
2. Firms pick $\left\{\widehat{l}_{t}\left(s^{t}\right), \widehat{k}_{t}\left(s^{t}\right)\right\}_{t=0, s^{t} \in S^{t}}^{\infty}$ to minimize costs:

$$
\begin{aligned}
\alpha e^{z_{t}} \widehat{k}_{t}\left(s^{t-1}\right)^{\alpha-1}\left((1+\mu)^{t} \widehat{l}_{t}\left(s^{t}\right)\right)^{1-\alpha} & =\widehat{r}_{t}\left(s^{t}\right) \\
(1-\alpha) e^{z_{t}} \widehat{k}_{t}\left(s^{t-1}\right)^{\alpha}\left((1+\mu)^{t} \widehat{l}_{t}\left(s^{t}\right)\right)^{-\alpha} & =\widehat{w}_{t}\left(s^{t}\right)
\end{aligned}
$$

3. Markets clear for all t, all $s^{t} \in S^{t}$

$$
\widehat{c}_{t}\left(s^{t}\right)+(1+n) \widehat{k}_{t+1}\left(s^{t}\right)=e^{z_{t}} \widehat{k}_{t}\left(s^{t-1}\right)^{\alpha}\left((1+\mu)^{t} \widehat{l}_{t}\left(s^{t}\right)\right)^{1-\alpha}+(1-\delta) \widehat{k}_{t}\left(s^{t-1}\right)
$$

Recursive Competitive Equilibrium

- Often, it is convenient to use a third alternative competitive equilibrium concept: Recursive Competitive Equilibrium (RCE).
- Developed by Mehra and Prescott (1980).
- RCE emphasizes the idea of defining an equilibrium as a set of functions that depend on the state of the model.
- Two interpretation for states:

1. Pay-off relevant states: capital, productivity,
2. Other states: promised utility, reputation,

- Recursive notation: x and x^{\prime}.

Value Function for the Household

- Individual state: k.
- Aggregate states: K and z.
- Recursive problem:

$$
\begin{gathered}
v(k, K, z)=\max _{c, x, l}\left\{\log c+\psi \log (1-l)+\beta(1+n) \mathbb{E} v\left(k^{\prime}, K^{\prime}, z^{\prime}\right) \mid z\right\} \\
\text { s.t. } c+x=r(K, z) k+w(K, z) l \\
(1+n) k^{\prime}=(1-\delta) k+x \\
(1+n) K^{\prime}=(1-\delta) K+X(K, z) \\
z^{\prime}=\rho z+\sigma \varepsilon^{\prime}
\end{gathered}
$$

Definition of Recursive Competitive Equilibrium

A RCE for our economy is a value function $v(k, K, z)$, households policy functions, $c(k, K, z), x(k, K, z)$, and $l(k, K, z)$, aggregate policy functions $C(K, z), X(K, z)$, and $L(K, z)$, and price functions $r(K, z)$ and $w(K, z)$ such that those functions satisfy:

1. Recursive problem of the household.
2. Firms maximize:

$$
\begin{aligned}
\alpha e^{z} K^{\alpha-1}((1+\mu) L(K, z))^{1-\alpha} & =r(K, z) \\
(1-\alpha) e^{z} K^{\alpha}((1+\mu) L(K, z))^{-\alpha} & =w(K, z)
\end{aligned}
$$

3. Consistency of individual and aggregate policy functions, $c(k, K, z)=$ $C(K, z), x(k, K, z)=X(K, z), l(k, K, z)=L(K, z), \forall(K, z)$.
4. Aggregate resource constraint:

$$
C(K, z)+X(K, z)=e^{z} K^{\alpha}((1+\mu) L(K, z))^{1-\alpha}, \forall(K, z)
$$

Equilibrium Conditions

$$
\begin{gathered}
\frac{1}{c_{t}\left(s^{t}\right)}=\beta \mathbb{E}_{t} \frac{1}{c_{t+1}\left(s^{t+1}\right)}\left(r_{t+1}\left(s^{t+1}\right)+1-\delta\right) \\
\psi \frac{c_{t}\left(s^{t}\right)}{1-l_{t}\left(s^{t}\right)}=w_{t}\left(s^{t}\right) \\
r_{t}\left(s^{t}\right)=\alpha e^{z} k_{t}\left(s^{t-1}\right)^{\alpha-1}\left((1+\mu)^{t} l_{t}\left(s^{t}\right)\right)^{1-\alpha} \\
w_{t}\left(s^{t}\right)=(1-\alpha) e^{z_{t}} k_{t}\left(s^{t-1}\right)^{\alpha}(1+\mu)^{(1-\alpha) t} l_{t}\left(s^{t}\right)^{-\alpha} \\
c_{t}\left(s^{t}\right)+(1+n) k_{t+1}\left(s^{t}\right)= \\
e^{z_{t}} k_{t}\left(s^{t-1}\right)^{\alpha}\left((1+\mu)^{t} l_{t}\left(s^{t}\right)\right)^{1-\alpha}+(1-\delta) k_{t}\left(s^{t-1}\right) \\
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t}
\end{gathered}
$$

Scaling the Economy I

- Economy has long-run growth rate equal to $(n+\mu)$.
- Per capita terms, the economy grows at a rate μ.
- Hence, the model is non-stationary and we need to rescale it.
- General condition: transform every non-stationary variable into a stationary one by dividing it by $(1+\mu)^{t}$

$$
\widetilde{x}_{t}\left(s^{t}\right)=\frac{x_{t}\left(s^{t}\right)}{(1+\mu)^{t}}
$$

Scaling the Economy II

We can rewrite the preferences (and adding a suitable constant):

$$
\begin{array}{r}
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t} \frac{\left(c_{t}\left(s^{t}\right) v\left(l_{t}\left(s^{t}\right)\right)\right)^{1-\gamma}-1}{1-\gamma} \\
=\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t} \frac{\left((1+\mu)^{t} \widetilde{c}_{t}\left(s^{t}\right) v\left(l_{t}\left(s^{t}\right)\right)\right)^{1-\gamma}-1}{1-\gamma} \Rightarrow \\
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}(1+\mu)^{t(1-\gamma)} \frac{\left(\widetilde{c}_{t}\left(s^{t}\right) v\left(l_{t}\left(s^{t}\right)\right)\right)^{1-\gamma}-1}{1-\gamma}
\end{array}
$$

Scaling the Economy III

We can rewrite the preferences (and adding a suitable constant):and

$$
\begin{gathered}
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}\left\{\log c_{t}\left(s^{t}\right)+\log v\left(l_{t}\left(s^{t}\right)\right)\right\} \\
=\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}\left\{\log (1+\mu)^{t} \widetilde{c_{t}}\left(s^{t}\right)+\log v\left(l_{t}\left(s^{t}\right)\right)\right\} \Rightarrow \\
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}(1+n)^{t}\left\{\log \widetilde{c}_{t}\left(s^{t}\right)+\log v\left(l_{t}\left(s^{t}\right)\right)\right\}
\end{gathered}
$$

Scaling the Economy IV

- The resource constraint, diving both sides by $(1+\mu)^{t}$

$$
\begin{gathered}
\widetilde{c}_{t}\left(s^{t}\right)+(1+n)(1+\mu) \widetilde{k}_{t+1}\left(s^{t}\right)= \\
e^{z_{t}} \widetilde{k}_{t}\left(s^{t-1}\right)^{\alpha} l_{t}\left(s^{t}\right)^{1-\alpha}+(1-\delta) \widetilde{k}_{t}\left(s^{t-1}\right)
\end{gathered}
$$

- Input prices:

$$
\begin{gathered}
r_{t}\left(s^{t}\right)=\alpha e^{z_{t}} \widetilde{k}_{t}\left(s^{t-1}\right)^{\alpha-1} l_{t}\left(s^{t}\right)^{1-\alpha} \\
\widetilde{w}_{t}\left(s^{t}\right)=(1-\alpha) e^{z_{t}} \widetilde{k}_{t}\left(s^{t-1}\right)^{\alpha} l_{t}\left(s^{t}\right)^{-\alpha}
\end{gathered}
$$

A New Competitive Equilibrium

- We can define a competitive equilibrium in the rescaled economy.
- Equilibrium conditions (log case):

$$
\begin{gathered}
\frac{(1+\mu)}{\widetilde{c}_{t}\left(s^{t}\right)}=\beta \mathbb{E}_{t} \frac{1}{\widetilde{c}_{t+1}\left(s^{t+1}\right)}\left(r_{t+1}\left(s^{t+1}\right)+1-\delta\right) \\
\psi \frac{\widetilde{c}_{t}\left(s^{t}\right)}{1-l_{t}\left(s^{t}\right)}=\widetilde{w}_{t}\left(s^{t}\right) \\
r_{t}\left(s^{t}\right)=\alpha e^{z_{t}} \widetilde{k}_{t}\left(s^{t-1}\right)^{\alpha-1} l_{t}\left(s^{t}\right)^{1-\alpha} \\
\widetilde{w}_{t}\left(s^{t}\right)=(1-\alpha) e^{z_{t}} \widetilde{k}_{t}\left(s^{t-1}\right)^{\alpha} l_{t}\left(s^{t}\right)^{-\alpha} \\
\widetilde{c}_{t}\left(s^{t}\right)+(1+n)(1+\mu) \widetilde{k}_{t+1}\left(s^{t}\right)=e^{z_{t}} \widetilde{k}_{t}\left(s^{t-1}\right)^{\alpha} l_{t}\left(s^{t}\right)^{1-\alpha}+(1-\delta) \widetilde{k}_{t}\left(s^{t-}\right. \\
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t}
\end{gathered}
$$

Existence and Welfare Theorems

- There is a unique equilibrium in this economy once we impose the right transversality condition.
- Both welfare theorems hold.
- We can move back and forth between the market equilibrium and the social planner's problem.

Behavior of the Model

- We want to characterize behavior of the model.
- Three type of dynamics:

1. Balanced growth path.
2. Transitional dynamics (Cass, 1965, and Koopmans, 1965).
3. Ergodic behavior.

Stochastic Behavior

- We have an initial shock: productivity changes.
- We have a transmission mechanism: intertemporal substitution and capital accumulation.
- We can look at a simulation from this economy.
- Why only a simulation?
- To simulate the model we need:

1. To select parameter values.
2. To compute the solution of the model.

Selecting Parameter Values

- How do we determine the parameter values?
- Two main approaches:

1. Calibration.
2. Statistical methods: Methods of Moments, ML, Bayesian.

- Advantages and disadvantages.

Calibration as an Empirical Methodology

- Emphasized by Lucas (1980) and Kydland and Prescott (1982).
- Two sources of information:

1. Well accepted microeconomic estimates.
2. Matching long-run properties of the economy.

- Problems of 1 . and 2.
- References:

1. Browning, Hansen and Heckman (1999) chapter in Handbook of Macroeconomics.
2. Debate in Journal of Economic Perspectives, Winter 1996: Kydland and Prescott, Hansen and Heckman, Sims.

Calibration of the Standard Model

- Parameters: $\beta, \psi, \alpha, \delta, \mu, n, \rho, \sigma$.
- n : population growth in the data.
- μ : per capita long run growth.
- α : capital income. Proprietor's income?

Balanced Growth Path

- Equilibrium conditions in the BGP:

$$
\begin{gathered}
\frac{1+\mu}{\widetilde{c}}=\beta \frac{1}{\widetilde{c}}(r+1-\delta) \\
\psi \frac{\widetilde{c}}{1-l}=\widetilde{w} \\
r=\alpha \widetilde{k}^{\alpha-1} l^{1-\alpha} \\
\widetilde{w}=(1-\alpha) \widetilde{k}^{\alpha} l^{-\alpha} \\
\widetilde{c}+(1+n)(1+\mu) \widetilde{k}=\widetilde{k}^{\alpha} l^{1-\alpha}+(1-\delta) \widetilde{k}
\end{gathered}
$$

- A system of 5 equations on 5 unknowns.

Three Conditions of the Balanced Growth Path

- First:

$$
r=\alpha \frac{\widetilde{y}}{\widetilde{k}}=\frac{1+\mu}{\beta}-1+\delta
$$

- Also:

$$
\begin{gathered}
(1+n)(1+\mu) \widetilde{k}=(1-\delta) \widetilde{k}+\widetilde{x} \Rightarrow \\
\delta=\frac{\widetilde{x}}{\widetilde{k}}+1-(1+n)(1+\mu)
\end{gathered}
$$

- Finally,

$$
\psi \frac{\widetilde{c}}{1-l}=(1-\alpha) \frac{\widetilde{y}}{l} \Rightarrow \frac{\widetilde{c}}{\widetilde{y}}=\frac{1-\alpha}{\psi} \frac{1-l}{l}
$$

Using the Three Conditions to Calibrate the Model

- First, we use data on hours of work to find

$$
\psi=(1-\alpha) \frac{\widetilde{y}}{\widetilde{c}} \frac{1-l}{l}
$$

- Second, give data and

$$
\delta=\frac{\widetilde{x}}{\widetilde{k}}+1-(1+n)(1+\mu)
$$

we determine δ.

- Finally, we get β :

$$
\beta=(1+\mu)\left(\alpha \frac{\widetilde{y}}{\widetilde{k}}+1-\delta\right)^{-1}
$$

Frisch Elasticity I

- Define the Frisch Elasticity as:

$$
\left.\frac{d \log l}{d \log w}\right|_{c \text { constant }}
$$

- For our parametric family:

1. $\frac{\left(c^{\theta}(1-l)^{1-\theta}\right)^{1-\gamma}-1}{1-\gamma}: \frac{1-l}{l}$.
2. $\log c+\psi \log (1-l): \frac{1-l}{l}$.
3. $\log c-\psi \frac{l^{1+\gamma}}{1+\gamma}: 1 / \gamma$.

Frisch Elasticity II

- Empirical evidence is that $l \approx 1 / 3$ (Ghez and Becker, 1975).
- Then, our Frisch Elasticity is 2.
- Empirical evidence:

1. Traditional view: MaCurdy (1981), Altonji (1986), Browning, Deaton and Irish (1985) between 0 and 0.5.
2. Revisionist view: between 0.5 and 1.6 (Browning, Hansen, and Heckman, 1999). Some estimates (Imai and Keane, 2004) even higher (3.8).

Equivalence between Utility Functions

- With $\log c_{t}+\psi \log \left(1-l_{t}\right)$, the static FOC is:

$$
\psi \frac{c_{t}}{1-l_{t}}=w_{t}
$$

while with $\log c_{t}-\psi \frac{l_{t}^{1+\gamma}}{1+\gamma}$, the static FOC is

$$
\psi c_{t} l_{t}^{\gamma}=w_{t}
$$

- Loglinearize both expressions:

$$
\begin{gathered}
\psi \frac{c}{1-l} \widehat{c}_{t}+\psi \frac{c l}{(1-l)^{2}} \widehat{l}_{t}=w \widehat{w}_{t} \Rightarrow \\
\widehat{c}_{t}+\frac{l}{1-l} \widehat{l}_{t}=\widehat{w}_{t}
\end{gathered}
$$

$$
\begin{aligned}
\psi c l^{\gamma}\left(\widehat{c}_{t}+\gamma \widehat{l}_{t}\right) & =w \widehat{w}_{t} \Rightarrow \\
\widehat{c}_{t}+\gamma \widehat{l}_{t} & =\widehat{w}_{t}
\end{aligned}
$$

- If we calibrate the model to $l \approx 1 / 3$:

$$
\widehat{c}_{t}+\frac{1}{2} \widehat{l}_{t}=\widehat{w}_{t}
$$

and hence, both utility functions are equivalent if we make $\gamma=\frac{l}{1-l}$. In the case $l \approx 1 / 3, \gamma=1 / 2$.

Solow Residual

- Last step is to calibrate

$$
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t}
$$

- Obtain the Solow residual after a time trend has been removed.
- Estimate ρ and σ by OLS.
- Problems of estimate.

Solution Methods

- Value function iteration.
- Projection.
- Perturbation:

1. Generalization of linearization.
2. Dynare.

General Structure of Linearized System

- There are many linear solvers. Fundamental equivalence.
- "A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily" by Harald Uhlig.
- Given m states x_{t}, n controls y_{t}, and k exogenous stochastic processes z_{t+1}, we have:

$$
\begin{gathered}
A x_{t}+B x_{t-1}+C y_{t}+D z_{t}=0 \\
E_{t}\left(F x_{t+1}+G x_{t}+H x_{t-1}+J y_{t+1}+K y_{t}+L z_{t+1}+M z_{t}\right)=0 \\
E_{t} z_{t+1}=N z_{t}
\end{gathered}
$$

where C is of size $l \times n, l \geq n$ and of rank n, that F is of size ($m+n-l$) $\times n$, and that N has only stable eigenvalues.

Policy Functions I

We guess policy functions of the form:

$$
\begin{aligned}
x_{t} & =P x_{t-1}+Q z_{t} \\
y_{t} & =R x_{t-1}+S z_{t}
\end{aligned}
$$

where P, Q, R, and S are matrices such that the computed equilibrium is stable.

Policy Functions I

For simplicity, suppose $l=n$. See Uhlig for general case (I have never be in the situation where $l=n$ did not hold).

Then:

1. P satisfies the matrix quadratic equation:

$$
\left(F-J C^{-1} A\right) P^{2}-\left(J C^{-1} B-G+K C^{-1} A\right) P-K C^{-1} B+H=0
$$

The equilibrium is stable iff $\max (\operatorname{abs}(\operatorname{eig}(P)))<1$.
2. R is given by:

$$
R=-C^{-1}(A P+B)
$$

3. Q satisfies:

$$
\begin{gathered}
N^{\prime} \otimes\left(F-J C^{-1} A\right)+I_{k} \otimes\left(J R+F P+G-K C^{-1} A\right) \operatorname{vec}(Q) \\
=\operatorname{vec}\left(\left(J C^{-1} D-L\right) N+K C^{-1} D-M\right)
\end{gathered}
$$

4. S satisfies:

$$
S=-C^{-1}(A Q+D)
$$

How to Solve Quadratic Equations

To solve

$$
\Psi P^{2}-\Gamma P-\Theta=0
$$

for the $m \times m$ matrix P :

1. Define the $2 m \times 2 m$ matrices:

$$
\equiv=\left[\begin{array}{ll}
\Gamma & \Theta \\
I_{m} & 0_{m}
\end{array}\right], \text { and } \Delta=\left[\begin{array}{ll}
\Psi & 0_{m} \\
0_{m} & I_{m}
\end{array}\right]
$$

2. Let s be the generalized eigenvector and λ be the corresponding generalized eigenvalue of \equiv with respect to Δ. Then we can write $s^{\prime}=\left[\lambda x^{\prime}, x^{\prime}\right]$ for some $x \in \Re^{m}$.
3. If there are m generalized eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ together with generalized eigenvectors s_{1}, \ldots, s_{m} of \equiv with respect to Δ, written as $s^{\prime}=\left[\lambda x_{i}^{\prime}, x_{i}^{\prime}\right]$ for some $x_{i} \in \Re^{m}$ and if $\left(x_{1}, \ldots, x_{m}\right)$ is linearly independent, then:

$$
P=\Omega \wedge \Omega^{-1}
$$

is a solution to the matrix quadratic equation where $\Omega=\left[x_{1}, \ldots, x_{m}\right]$ and $\Lambda=\left[\lambda_{1}, \ldots, \lambda_{m}\right]$. The solution of P is stable if $\max \left|\lambda_{i}\right|<1$. Conversely, any diagonalizable solution P can be written in this way.

Comparison with US economy

- Simulated Economy output fluctuations are around 70% as big as observed fluctuations.
- Consumption is less volatile than output.
- Investment is much more volatile.
- Behavior of hours.

Assessment of the Basic Real Business Model

- It accounts for a substantial amount of the observed fluctuations.
- It accounts for the covariances among a number of variables.
- It has some problems accounting for the behavior of the hours worked.
- More important question: where do productivity shocks come from?

Negative Productivity Shocks

- The model implies that half of the quarters we have negative technology shocks.
- Is this plausible? What is a negative productivity shocks?
- Role of trend: negative shocks also include growth of technology below the trend.
- s.d. of shocks is 0.007 . Mean quarter productivity growth is 0.0047 (to give us a 1.9% growth per year).
- As a consequence, we would only observe negative technological shocks when $\varepsilon_{t}<-0.0047$.
- This happens in the model around 25% of times. Comparison with the data.

Some Policy Implications

- The basic model is Pareto-efficient.
- Fluctuations are the optimal response to a changing environment.
- Fluctuations are not a sufficient condition for inefficiencies or for government intervention.
- In fact in this model the government can only worsen the allocation.
- Recessions have a "cleansing" effect.

Asset Market Implications I

- We will have the fundamental asset pricing equation:

$$
Q_{t}\left(s^{t}, s_{t+1}\right)=\beta \pi\left(s_{t+1} \mid s^{t}\right) \frac{u^{\prime}\left(c_{t+1}\left(s^{t+1}\right), l_{t+1}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}\left(s^{t}\right), l_{t}\left(s^{t}\right)\right)}
$$

- If utility is separable and \log in consumption:

$$
Q_{t}\left(s^{t}, s_{t+1}\right)=\beta \pi\left(s_{t+1} \mid s^{t}\right) \frac{c_{t}\left(s^{t}\right)}{c_{t+1}\left(s^{t+1}\right)}
$$

- Now, $c_{t}\left(s^{t}\right)$ is the equilibrium consumption.
- Since $c_{t}\left(s^{t}\right)$ is smooth in the model, $Q_{t}\left(s^{t}, s_{t+1}\right)$ will also be smooth. Hence, we will have the standard equity premium puzzle.

Asset Market Implications II

- Return to invest in an uncontingent bond sold at face value 1 :

$$
\mathbb{E}_{t} \beta \frac{c_{t}\left(s^{t}\right)}{c_{t+1}\left(s^{t+1}\right)} R_{t}^{b}\left(s^{t}\right)
$$

- Return to invest in capital:

$$
\mathbb{E}_{t} \beta \frac{c_{t}\left(s^{t}\right)}{c_{t+1}\left(s^{t+1}\right)}\left(r_{t+1}\left(s^{t+1}\right)+1-\delta\right)
$$

- By non-arbitrage:

$$
\mathbb{E}_{t} \beta \frac{c\left(s^{t}\right)}{c_{t+1}\left(s^{t+1}\right)} R_{t}^{b}\left(s^{t}\right)=\mathbb{E}_{t} \beta \frac{c_{t}\left(s^{t}\right)}{c_{t+1}\left(s^{t+1}\right)}\left(r_{t+1}\left(s^{t+1}\right)+1-\delta\right)
$$

- Presence of capital ties down returns.

Further Extensions

- We can extend our model in several directions.
- Two objectives:

1. Fix empirical problems.
2. Address additional questions.

- Examples:

1. Indivisible labor supply.
2. Capacity utilization.
3. Investment Specific technological change.
4. Monopolistic Competition.

Lotteries

- Our first extension is to introduce lotteries: Rogerson (1988) and Hansen (1985).
- General procedure to deal with non-convexities.
- For example, an agent can either work 0 hours or l^{*} hours. Why?
- Extensive versus intensive margin.
- Then, expected utility:

$$
p u\left(c_{1}, l^{*}\right)+(1-p) u\left(c_{2}, 0\right)
$$

- Resource constrain in the economy (law of large numbers):

$$
p c_{1}+(1-p) c_{2}=c
$$

Aggregation

- First order condition: $u_{c}\left(c_{1}, l^{*}\right)=u_{c}\left(c_{2}, 0\right)$.
- For our \log-log utility function $\log c+\psi \log (1-l)$, we have

$$
c=c_{1}=c_{2}
$$

- Also, In the aggregate, we have that $l=p l^{*}$.
- Then, expected utility is

$$
\log c+p \psi \log \left(1-l^{*}\right)+(1-p) \log 1 \Rightarrow \log c+A l
$$

where $A=\psi \frac{\log \left(1-l^{*}\right)}{l^{*}}$.

- Note that this utility function belongs to the class $\log c-\psi \frac{l^{1+\gamma}}{1+\gamma}$ with $\gamma=0$, i.e., with infinite Frisch elasticity.

Capacity Utilization

- In benchmark model, the short run elasticity of capital is zero while in the long run is infinite.
- Empirical evidence of use of machinery, number of shifts, or electricity consumption.
- Modified production function:

$$
y_{t}\left(s^{t}\right)=e^{z_{t}}\left(u_{t}\left(s^{t}\right) k_{t}\left(s^{t-1}\right)\right)^{\alpha}\left((1+\mu)^{t} l_{t}\left(s^{t}\right)\right)^{1-\alpha}
$$

where u_{t} is the utilization rate.

- Depreciation:

$$
(1+n) k_{t+1}\left(s^{t}\right)=\left(1-\delta\left(u_{t}\left(s^{t}\right)\right)\right) k_{t}\left(s^{t-1}\right)+x_{t}\left(s^{t}\right)
$$

Combining Both Extensions

- We can generate 70 percent of aggregate fluctuations with a s.d. of 0.003 .
- How do we look at the Solow residual in this model?
- This implies negative technological growth in around 5 percent of quarters, roughly observation in the data.

Investment-Specific Technological Change

- Greenwood, Herkowitz, and Krusell (1997 and 2000): importance of technological change specific to new investment goods for understanding postwar U.S. growth and aggregate fluctuations.
- Observation: fall in the relative price of capital.
- Implications for NIPA.
- A simple way to model it:

$$
(1+n) k_{t+1}\left(s^{t}\right)=(1-\delta) k_{t}\left(s^{t-1}\right)+v_{t} x_{t}\left(s^{t}\right)
$$

where v_{t} is the inverse of the relative price of capital.

- Two different technological shocks with different implications.

Monopolistic Competition

- Final good producer with competitive behavior.
- Continuum of intermediate good producers with market power.
- Alternative formulations: continuum of goods in the utility function.
- Otherwise, the model is the same as the standard RBC model.

The Final Good Producer

- Production function:

$$
y_{t}\left(s_{t}\right)=\left(\int_{0}^{1}\left(y_{i t}\left(s_{t}\right)\right)^{\frac{\varepsilon-1}{\varepsilon}} d i\right)^{\frac{\varepsilon}{\varepsilon-1}}
$$

where ε controls the elasticity of substitution.

- Final good producer is perfectly competitive and maximize profits, taking as given all intermediate goods prices $p_{t i}\left(s_{t}\right)$ and the final good price $p_{t}\left(s_{t}\right)$.

Maximization Problem

- Thus, its maximization problem is:

$$
\max _{y_{i t}\left(s_{t}\right)} p_{t}\left(s_{t}\right) y_{t}\left(s_{t}\right)-\int_{0}^{1} p_{i t}\left(s_{t}\right) y_{i t}\left(s_{t}\right) d i
$$

- First order conditions are for $\forall i$:

$$
p_{t} \frac{\varepsilon}{\varepsilon-1}\left(\int_{0}^{1}\left(y_{i t}\left(s_{t}\right)\right)^{\frac{\varepsilon-1}{\varepsilon}} d i\right)^{\frac{\varepsilon}{\varepsilon-1}-1} \frac{\varepsilon-1}{\varepsilon}\left(y_{i t}\left(s_{t}\right)\right)^{\frac{\varepsilon-1}{\varepsilon}-1}-p_{i t}\left(s_{t}\right)=0
$$

Working with the First Order Conditions

- Dividing the first order conditions for two intermediate goods i and j, we get:

$$
\frac{p_{i t}\left(s_{t}\right)}{p_{j t}\left(s_{t}\right)}=\left(\frac{y_{i t}\left(s_{t}\right)}{y_{j t}\left(s_{t}\right)}\right)^{-\frac{1}{\varepsilon}}
$$

or:

$$
p_{j t}\left(s_{t}\right)=\left(\frac{y_{i t}\left(s_{t}\right)}{y_{j t}\left(s_{t}\right)}\right)^{\frac{1}{\varepsilon}} p_{i t}\left(s_{t}\right)
$$

- Hence:

$$
p_{j t}\left(s_{t}\right) y_{j t}\left(s_{t}\right)=p_{i t}\left(s_{t}\right) y_{i t}\left(s_{t}\right)^{\frac{1}{\varepsilon}}\left(y_{j t}\left(s_{t}\right)\right)^{\frac{\varepsilon-1}{\varepsilon}}
$$

- Integrating out:

$$
\int_{0}^{1} p_{j t}\left(s_{t}\right) y_{j t}\left(s_{t}\right) d j=p_{i t}\left(s_{t}\right) y_{i t}\left(s_{t}\right)^{\frac{1}{\varepsilon}} \int_{0}^{1} \frac{\frac{\varepsilon-1}{\varepsilon}}{y_{j t}} d j=p_{i t}\left(s_{t}\right) y_{i t}\left(s_{t}\right)^{\frac{1}{\varepsilon}}\left(y_{j t}\left(s_{t}\right)\right)^{\frac{\varepsilon-1}{\varepsilon}}
$$

Input Demand Function

- By zero profits $\left(p_{t}\left(s_{t}\right) y_{t}\left(s_{t}\right)=\int_{0}^{1} p_{j t}\left(s_{t}\right) y_{j t}\left(s_{t}\right) d j\right)$, we get:

$$
\begin{aligned}
p_{t}\left(s_{t}\right) y_{t}\left(s_{t}\right) & =p_{i t}\left(s_{t}\right) y_{i t}\left(s_{t}\right)^{\frac{1}{\varepsilon}}\left(y_{j t}\left(s_{t}\right)\right)^{\frac{\varepsilon-1}{\varepsilon}} \\
& \Rightarrow p_{t}\left(s_{t}\right)=p_{i t}\left(s_{t}\right) y_{i t}\left(s_{t}\right)^{\frac{1}{\varepsilon}} y_{t}\left(s_{t}\right)^{-\frac{1}{\varepsilon}}
\end{aligned}
$$

- Consequently, the input demand functions associated with this problem are:

$$
y_{i t}\left(s_{t}\right)=\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} y_{t}\left(s_{t}\right) \quad \forall i
$$

- Interpretation.

Price Level

- By the zero profit condition $p_{t}\left(s_{t}\right) y_{t}\left(s_{t}\right)=\int_{0}^{1} p_{i t}\left(s_{t}\right) y_{i t}\left(s_{t}\right) d i$ and plug-in the input demand functions:

$$
\begin{aligned}
p_{t}\left(s_{t}\right) y_{t}\left(s_{t}\right) & =\int_{0}^{1} p_{i t}\left(s_{t}\right)\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} y_{t}\left(s_{t}\right) d i \\
& \Rightarrow p_{t}\left(s_{t}\right)^{1-\varepsilon}=\int_{0}^{1} p_{i t}\left(s_{t}\right)^{1-\varepsilon} d i
\end{aligned}
$$

- Thus:

$$
p_{t}\left(s_{t}\right)=\left(\int_{0}^{1} p_{i t}\left(s_{t}\right)^{1-\varepsilon} d i\right)^{\frac{1}{1-\varepsilon}}
$$

Intermediate Good Producers

- Continuum of intermediate goods producers.
- No entry/exit.
- Each intermediate good producer i has a production function

$$
y_{i t}\left(s_{t}\right)=A_{t} k_{i t}\left(s_{t}\right)^{\alpha} l_{i t}\left(s_{t}\right)^{1-\alpha}
$$

- A_{t} follows the $\mathrm{AR}(1)$ process:

$$
\begin{aligned}
\log A_{t} & =\rho \log A_{t-1}+z_{t} \\
z_{t} & \sim \mathcal{N}\left(0, \sigma_{z}\right)
\end{aligned}
$$

Maximization Problem I

- Intermediate goods producers solve a two-stages problem.
- First, given w_{t} and r_{t}, they rent $l_{i t}$ and $k_{i t}$ in perfectly competitive factor markets in order to minimize real cost:

$$
\min _{l_{i t}\left(s_{t}\right), k_{i t}\left(s_{t}\right)}\left\{w_{t}\left(s_{t}\right) l_{i t}\left(s_{t}\right)+r_{t}\left(s_{t}\right) k_{i t}\left(s_{t}\right)\right\}
$$

subject to their supply curve:

$$
y_{i t}=A_{t} k_{i t}\left(s_{t}\right)^{\alpha} l_{i t}\left(s_{t}\right)^{1-\alpha}
$$

First Order Conditions

- The first order conditions for this problem are:

$$
\begin{aligned}
w_{t}\left(s_{t}\right) & =\varrho(1-\alpha) A_{t} k_{i t}\left(s_{t}\right)^{\alpha} l_{i t}\left(s_{t}\right)^{-\alpha} \\
r_{t}\left(s_{t}\right) & =\varrho \alpha A_{t} k_{i t}\left(s_{t}\right)^{\alpha-1} l_{i t}\left(s_{t}\right)^{1-\alpha}
\end{aligned}
$$

where ϱ is the Lagrangian multiplier or:

$$
k_{i t}\left(s_{t}\right)=\frac{\alpha}{1-\alpha} \frac{w_{t}\left(s_{t}\right)}{r_{t}\left(s_{t}\right)} l_{i t}\left(s_{t}\right)
$$

- Note that ratio capital-labor only is the same for all firms i.

Real Cost

- The real cost of optimally using $l_{i t}$ is:

$$
\left(w_{t}\left(s_{t}\right) l_{i t}\left(s_{t}\right)+\frac{\alpha}{1-\alpha} w_{t}\left(s_{t}\right) l_{i t}\left(s_{t}\right)\right)
$$

- Simplifying:

$$
\left(\frac{1}{1-\alpha}\right) w_{t}\left(s_{t}\right) l_{i t}\left(s_{t}\right)
$$

Marginal Cost I

- The firm has constant returns to scale.
- Then, we can find the real marginal cost $m c_{t}\left(s_{t}\right)$ by setting the level of labor and capital equal to the requirements of producing one unit of good $A_{t} k_{i t}\left(s_{t}\right)^{\alpha} l_{i t}\left(s_{t}\right)^{1-\alpha}=1$
- Thus:

$$
\begin{aligned}
A_{t} k_{i t}\left(s_{t}\right)^{\alpha} l_{i t}\left(s_{t}\right)^{1-\alpha} & =A_{t}\left(\frac{\alpha}{1-\alpha} \frac{w_{t}\left(s_{t}\right)}{r_{t}\left(s_{t}\right)} l_{i t}\left(s_{t}\right)\right)^{\alpha} l_{i t}\left(s_{t}\right) \\
& =A_{t}\left(\frac{\alpha}{1-\alpha} \frac{w_{t}\left(s_{t}\right)}{r_{t}\left(s_{t}\right)}\right)^{\alpha} l_{i t}\left(s_{t}\right)=1
\end{aligned}
$$

Marginal Cost II

- Then:

$$
\begin{aligned}
m c_{t}\left(s_{t}\right) & =\left(\frac{1}{1-\alpha}\right) w_{t}\left(s_{t}\right) \frac{1}{A_{t}}\left(\frac{\alpha}{1-\alpha} \frac{w_{t}\left(s_{t}\right)}{r_{t}\left(s_{t}\right)}\right)^{-\alpha} \\
& =\left(\frac{1}{1-\alpha}\right)^{1-\alpha}\left(\frac{1}{\alpha}\right)^{\alpha} \frac{1}{A_{t}} w_{t}\left(s_{t}\right)^{1-\alpha} r_{t}\left(s_{t}\right)^{\alpha}
\end{aligned}
$$

- Note that the marginal cost does not depend on i.
- Also, from the optimality conditions of input demand, input prices must satisfy:

$$
k_{t}\left(s_{t}\right)=\frac{\alpha}{1-\alpha} \frac{w_{t}\left(s_{t}\right)}{r_{t}\left(s_{t}\right)} l_{t}\left(s_{t}\right)
$$

Maximization Problem II

- The second part of the problem is to choose price that maximizes discounted real profits, i.e.,

$$
\max _{p_{i t}\left(s_{t}\right)}\left\{\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}-m c_{t}\left(s_{t}\right)\right) y_{i t}\left(s_{t}\right)\right\}
$$

subject to

$$
y_{i t}\left(s_{t}\right)=\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} y_{t}\left(s_{t}\right)
$$

- First order condition:
$\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} \frac{y_{t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}-\varepsilon\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}-m c_{t}\left(s_{t}\right)\right)\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon-1} \frac{y_{t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}=0$

Mark-Up Condition

- From the fist order condition:

$$
\begin{gathered}
1-\varepsilon\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}-m c_{t}\left(s_{t}\right)\right)\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-1}=0 \Rightarrow \\
p_{i t}\left(s_{t}\right)=\varepsilon\left(p_{i t}\left(s_{t}\right)-m c_{t}\left(s_{t}\right) p_{t}\left(s_{t}\right)\right) \Rightarrow \\
p_{i t}\left(s_{t}\right)=\frac{\varepsilon}{\varepsilon-1} m c_{t}\left(s_{t}\right) p_{t}\left(s_{t}\right)
\end{gathered}
$$

- Mark-up condition.
- Reasonable values for ε.

Aggregation I

- To derive an expression for aggregate output, remember that:

$$
\frac{k_{i t}\left(s_{t}\right)}{l_{i t}\left(s_{t}\right)}=\frac{\alpha}{1-\alpha} \frac{w_{t}\left(s_{t}\right)}{r_{t}\left(s_{t}\right)}
$$

- Since this ratio is equivalent for all intermediate firms, it must also be the case that:

$$
\frac{k_{i t}\left(s_{t}\right)}{l_{i t}\left(s_{t}\right)}=\frac{k_{t}\left(s_{t}\right)}{l_{t}\left(s_{t}\right)}=\frac{\alpha}{1-\alpha} \frac{w_{t}\left(s_{t}\right)}{r_{t}\left(s_{t}\right)}
$$

- If we substitute this condition in the production function of the intermediate good firm $A_{t} k_{i t}\left(s_{t}\right)^{\alpha} l_{i t}\left(s_{t}\right)^{1-\alpha}$ we derive:

$$
y_{i t}=A_{t}\left(\frac{k_{i t}\left(s_{t}\right)}{l_{i t}\left(s_{t}\right)}\right)^{\alpha} l_{i t}\left(s_{t}\right)=A_{t}\left(\frac{k_{t}\left(s_{t}\right)}{l_{t}\left(s_{t}\right)}\right)^{\alpha} l_{i t}\left(s_{t}\right)
$$

Aggregation II

- The demand function for the firm is:

$$
y_{i t}\left(s_{t}\right)=\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} y_{t}\left(s_{t}\right) \quad \forall i
$$

- Thus, we find the equality:

$$
\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} y_{t}\left(s_{t}\right)=A_{t}\left(\frac{k_{t}\left(s_{t}\right)}{l_{t}\left(s_{t}\right)}\right)^{\alpha} l_{i t}\left(s_{t}\right)
$$

- If we integrate in both sides of this equation:
$y_{t}\left(s_{t}\right) \int_{0}^{1}\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} d i=A_{t}\left(\frac{k_{t}\left(s_{t}\right)}{l_{t}\left(s_{t}\right)}\right)^{\alpha} \int_{0}^{1} l_{i t}\left(s_{t}\right) d i=A_{t} k_{t}\left(s_{t}\right)^{\alpha} l_{t}\left(s_{t}\right)^{1-\alpha}$

Aggregation III

- Then:

$$
y_{t}\left(s_{t}\right)=\frac{A_{t} \cdot}{v_{t}\left(s_{t}\right)} k_{t}\left(s_{t}\right)^{\alpha} l_{t}\left(s_{t}\right)^{1-\alpha}
$$

where

$$
v_{t}\left(s_{t}\right)=\int_{0}^{1}\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} d i=\frac{j_{t}\left(s_{t}\right)^{-\varepsilon}}{p_{t}\left(s_{t}\right)^{-\varepsilon}}
$$

- But note that:

$$
p_{t}\left(s_{t}\right)=\left(\int_{0}^{1} p_{i t}\left(s_{t}\right)^{1-\varepsilon} d i\right)^{\frac{1}{1-\varepsilon}}=p_{i t}\left(s_{t}\right)
$$

since all intermediate good producers charge the same price.

- Then: $v_{t}\left(s_{t}\right)=\int_{0}^{1}\left(\frac{p_{i t}\left(s_{t}\right)}{p_{t}\left(s_{t}\right)}\right)^{-\varepsilon} d i=1$ and:

$$
y_{t}=A_{t} k_{t}\left(s_{t}\right)^{\alpha} l_{t}\left(s_{t}\right)^{1-\alpha}
$$

Behavior of the Model

- Presence of monopolistic competition is, by itself, pretty irrelevant.
- Why? Constant mark-up.
- Similar to a tax.
- Solutions:

1. Shocks to mark-up (maybe endogenous changes).
2. Price rigidities.

Further Extensions

- We can extend our model in many other directions.
- Examples we are not going to cover:

1. Fiscal Policy shocks (McGrattan, 1994).
2. Agents with Finite Lives (Ríos-Rull, 1996).
3. Home Production (Benhabib, Rogerson, and Wright, 1991).
