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Jesús Fernández-Villaverde1

November 16, 2021

1University of Pennsylvania



Introduction



Neoclassical growth model

• Original contribution of Ramsey (1928). That is why sometimes it is known as the Ramsey model.

• Completed by David Cass (1965) and Tjalling Koopmans (1965). That is why some times it is known

as the Cass-Koopmans model.

• William Brock and Leonard Mirman (1972) introduced uncertainty.

• Finn Kydland and Edward Prescott (1982) used it to create the real business cycle research agenda.
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Environment



Utility function

• Representative household with a utility function:

u (c (t))

Definition

u (c) is strictly increasing, concave, twice continuously differentiable with derivatives u′ and u′′, and

satisfies Inada conditions:

lim
c→0

u′ (c) = ∞

lim
c→∞

u′ (c) = 0
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Dynastic structure

• Population evolves:

L (t) = exp (nt)

with L0 = 1.

• Intergenerational altruism.

• Intertemporal utility function:

U (0) =

∫ ∞
0

e−(ρ−n)tu (c (t)) dt

• ρ: subjective discount rate, such that ρ > n.

• ρ− n: “effective” discount rate.
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Budget constraint

• Asset evolution:

ȧ = (r − δ − n) a + w − c

• Who owns the capital in the economy? Role of complete markets.

• Modigliani-Miller theorems.

• Arrow securities.

• No-Ponzi game condition:

lim
t→∞

a (t) exp

(
−
∫ t

0

(r(s)− δ − n) ds

)
= 0

• Historical examples.

4



Production side

• Cobb-Douglas aggregate production function:

Y = KαL1−α

• Per capita terms:

y = kα

• From the first order condition of firm with respect to capital k:

r = αkα−1

w = kα − kαkα−1 = (1− α) kα

• Interest rate:

r − δ
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Aggregate consistency conditions

• Asset market clearing:

a = k

• Implicitly, labor market clearing.

• Resource constraint:

k̇ = kα − c − (n + δ) k
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Competitive equilibrium



Competitive equilibrium I

A competitive equilibrium is a sequence of per capita allocations {c (t) , k (t)}∞t=0 and input prices

{r (t) ,w (t)}∞t=0 such that:

• Given input prices, {r (t) ,w (t)}∞t=0, the representative household maximizes its utility:

max
{c(t),a(t)}∞t=0

∫ ∞
0

e−(ρ−n)tu (c (t)) dt

s.t. ȧ = (r − δ − n) a + w − c

lim
t→∞

a (t) exp

(
−
∫ t

0

(r(s)− δ − n) ds

)
= 0

a0 = k0
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Competitive equilibrium II

• Input prices, {r (t) ,w (t)}∞t=0, are equal to the marginal productivities:

r (t) = αk (t)α−1

w (t) = (1− α) k (t)α

• Markets clear:

a (t) = k (t)

k̇ = k (t)α − c (t)− (n + δ) k (t)
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Solving the model



Household maximization

• We can come back now to the problem of the household.

• We build the Hamiltonian:

H (a, c , µ) = u (c (t)) + µ (t) ((r (t)− n − δ) a (t)− w (t)− c (t))

where:

1. a (t) is the state variable.

2. c (t) is the control variable.

3. µ (t) is the current-value co-state variable.
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Necessary conditions

1. Partial derivative of the Hamiltonian with respect to controls is equal to zero:

Hc (a, c , µ) = u′ (c (t))− µ (t) = 0

2. Partial derivative of the Hamiltonian with respect to states is:

Ha (a, c , µ) = µ (t) (r (t)− n − δ) = (ρ− n)µ (t)− µ̇ (t)

3. Partial derivative of the Hamiltonian with respect to co-states is:

Hµ (a, c , µ) = (r (t)− n − δ) a (t)− c (t) = ȧ (t)

4. Transversality condition:

lim
t→∞

e−ρtµ (t) a (t) = 0
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Working with the necessary conditions I

• From the second condition:

µ (r − n − δ) = (ρ− n)µ− µ̇⇒

(r − n − δ) = (ρ− n)− µ̇

µ
⇒

µ̇

µ
= − (r − δ − ρ)

• From the first condition:

u′ (c) = µ

and taking derivatives with respect to time:

u′′ (c) ċ = µ̇⇒
u′′ (c)

u′ (c)
ċ =

µ̇

µ
= − (r − δ − ρ)
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Working with the necessary conditions II

• Now, we can combine both expression:

−σ ċ
c

= − (r − δ − ρ)

where

σ = −u′′ (c)

u′ (c)
c =

d log (c (s) /c (t))

d log (u′ (c (s)) /u′ (c (t)))

is the (inverse of) elasticity of intertemporal substitution (EIS).

• Thus:
ċ

c
=

1

σ
(r − δ − ρ)

This expression is known as the consumer Euler equation.
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CRRA

• In the previous equation, we have implicitly assumed that σ is a constant.

• This will be only true of a class of utility functions.

• Constant Relative Risk Aversion (CRRA):

c1−σ − 1

1− σ
for σ 6= 1

log c for σ = 1

(you need to take limits and apply L’Hôpital’s rule).

• Why is it called CRRA?
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Applying equilibrium conditions

• First, note that r = αkα−1. Then:

ċ

c
=

1

σ

(
αkα−1 − δ − ρ

)

• Second, k = a. Then:

ȧ = (r − δ − n) a + w − c ⇒
k̇ =

(
αkα−1 − δ − n

)
k + w − c ⇒

k̇ = kα − c − (n + δ) k

where in the last step we use the fact that kα = αkα−1k + w .
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System of differential equations



System of differential equations

• We have two differential equations:

ċ

c
=

1

σ

(
αkα−1 − δ − ρ

)
k̇ = kα − c − (n + δ) k

on two variables, k and c , plus the transversality condition:

lim
t→∞

e−ρtµa = lim
t→∞

e−ρtµk = 0

• How do we solve it?
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Steady state

• We search for a steady state where ċ = k̇ = 0.

• Then:

1

σ

(
α (k∗)α−1 − δ − ρ

)
= 0

(k∗)α − c∗ − (n + δ) k∗ = 0

• System of two equations on two unknowns k∗ and c∗ with solution:

k∗ =

(
α

ρ+ δ

) 1
1−α

c∗ = (k∗)α − (n + δ) k∗

• Note that EIS does not enter into the steady state. In fact, the form of the utility function is

irrelevant!

16



Transitional dynamics

• The neoclassical growth model does not have a closed-form solution.

• We can do three things:

1. Use a phase diagram.

2. Solve an approximated version of the model where we linearize the equations.

3. Use the computer to approximate the solution numerically.
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Phase diagram

System of Differential Equations Transitional Dynamics

Phase Diagram
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Comparative statics: lower discount rate

19



Linearization I

• We can linearize the system:

ċ

c
=

1

σ

(
αkα−1 − δ − ρ

)
k̇ = kα − c − (n + δ) k

• We get:

ċ ' c∗α (α− 1) (k∗)α−2

σ
(k − k∗) +

α (k∗)α−1 − δ − ρ
σ

(c − c∗)

=
c∗

σ

(
α (α− 1) (k∗)α−2

)
(k − k∗)

and:

k̇ '
(
α (k∗)α−1 − n − δ

)
(k − k∗)− (c − c∗)

= (ρ− n) (k − k∗)− (c − c∗)
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Linearization II

• The behavior of the linearized system is given by the roots (eigenvalues) ξ of:

det

(
ρ− n − ξ −1
c∗

σ

(
α (α− 1) (k∗)α−2

)
−ξ

)

• Solving:

−ξ (ρ− n − ξ) +
c∗

σ

(
α (α− 1) (k∗)α−2

)
= 0⇒

ξ2 − ξ (ρ− n) +
c∗

σ

(
α (α− 1) (k∗)α−2

)
= 0

• Thus:

ξ =

(ρ− n)±
√

1− 4
(
α (α− 1) (k∗)α−2

)
2

and since α (α− 1) < 1, we have one positive and one negative eigenvalue⇒one stable manifold.
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Linearization III

• We will call ξ1 the positive eigenvalue and ξ2 the negative one.

• With some results in differential equations, we can show:

k = k∗ + η1e
ξ1t + η2e

ξ2t ⇒
k − k∗ = η1e

ξ1t + η2e
ξ2t

where η1 and η2 are arbitrary constants of integration.

• It must be that η1 = 0. If η1 > 0, we will violate the transversality condition and η1 < 0 will take kt
to 0.

• Then, η2 is determined by:

η2 = k0 − k∗

• Hence:

k =
(
1− eξ2t

)
k∗ + eξ2tk0 ⇒

k − k∗ = η2e
ξ2t = (k0 − k∗) eξ2t
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Linearization IV

• Also:

ċ =
c∗

σ

(
α (α− 1) (k∗)α−2

)
(k − k∗)

or

c =
c∗

σ

(
α (α− 1) (k∗)α−2

) η2

ξ2
eξ2t + c∗

where the constant c∗ ensures that we converge to the steady state.

• Since y = kα, we get:

log y = α log
(
k∗ + (k0 − k∗) eξ2t

)
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Linearization V

• Taking time derivatives and making y = y0:

ẏ

y0
=

α

k∗ + (k0 − k∗) eξ2t

(
(k0 − k∗) ξ2e

ξ2t
)

= αξ2 − αξ2
k∗

k0

= αξ2 − αξ2

(
y∗

y0

) 1
α

• This suggest to go to the data and run convergence regressions of the form:

gi,t,t−1 = b0 + b1 log yi,t−1 + εi,t

• We need to be careful about interpreting the coefficient b̂1.

• Where does the error come from?
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Selecting parameter values

• In general, computers cannot approximate the solution for arbitrary parameter values.

• How do we determine the parameter values?

• Two main approaches:

1. Calibration.

2. Statistical methods: Methods of Moments, ML, Bayesian.

• Advantages and disadvantages.
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Calibration as an empirical methodology

• Emphasized by Lucas (1980) and Kydland and Prescott (1982).

• Two sources of information:

1. Well accepted microeconomic estimates.

2. Matching long-run properties of the economy.

• Problems of 1 and 2.

• References:

1. Browning, Hansen, and Heckman (1999) chapter in Handbook of Macroeconomics.

2. Debate in Journal of Economic Perspectives, Winter 1996: Kydland and Prescott, Hansen and

Heckman, Sims.
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Calibration of the standard model

• Parameters: n, α, δ, ρ, and σ.

• n: population growth in the data.

• α: capital income. Proprietor’s income?

• δ: in steady state

δk∗ = x∗ ⇒ δ =
x∗

k∗

• ρ: in steady state

r∗ = α

(
α

ρ+ δ

) α
1−α−1

− δ

Then, we take r∗ from the data and given α and δ, we find ρ.

• σ: from microeconomic evidence.
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Running the model in the computer

• We have the system:

ċ

c
=

1

σ

(
αkα−1 − δ − ρ

)
k̇ = kα − c − (n + δ) k

• Many methods to solve it.

• A simple one is a shooting algorithm.

• A popular alternative: Runge-Kutta methods.
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A shooting algorithm

• Approximate the system by:

c(t+∆t)−c(t)
∆t

c (t)
=

1

σ

(
αk (t)α−1 − δ − ρ

)
k (t + ∆t)− k (t)

∆t
= k (t)α − c (t)− (n + δ) k (t)

for a small ∆t.

• Steps:

1. Given k (0) , guess c (0).

2. Trace dynamic system for a long t.

3. Is k (t) → k∗? If yes, we got the right c (0). If k (t) → ∞, raise c (0), if k (t) → 0, lower c (0).

• Intuition: phase diagram.
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Savings rate



Savings rate I

• We can actually work on our system of differential equations a bit more to show a more intimate

relation between the Solow and the neoclassical growth model.

• The savings rate is defined as:

s (t) = 1− c (t)

y (t)

• Now
d (c (t) /y (t))

dt

1

c (t) /y (t)
=

ċ

c
− ẏ

y
=

ċ

c
− α k̇

k
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Savings rate II

• If we substitute in the differential equations for ċ
c and k̇:

d (c (t) /y (t))

dt

1

c (t) /y (t)

=
1

σ

(
αkα−1 − δ − ρ

)
− α

(
kα−1 − c

k
− n − δ

)
=

1

σ

(
αkα−1 − δ − ρ

)
− α

(
kα−1 − c

y
kα−1 − n − δ

)
= − 1

σ
(δ + ρ) + α (n + δ) +

(
1

σ
− 1 +

c

y

)
αkα−1

• Then:

d (c (t) /y (t))

dt

1

c (t) /y (t)
= − 1

σ
(δ + ρ) + α (n + δ) +

(
1

σ
− 1 +

c

y

)
αkα−1

k̇ = kα − c − (n + δ) k

is another system of differential equations. 32



Savings rate III

• This system implies that the saving rate is monotone (always increasing, always decreasing, or

constant).

• We find the locus d(c(t)/y(t))
dt = 0:(

1

σ
− 1 +

c

y

)
αkα−1 =

1

σ
(δ + ρ)− α (n + δ)⇒

c

y
= 1− 1

σ
+

(
1

σ
(δ + ρ)− α (n + δ)

)
1

α
k1−α

• Hence, if:
1

σ
(δ + ρ) = α (n + δ)

the savings rate is constant, and we are back into the basic Solow model!
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Optimal growth



The social planner’s problem

• The Social planner’s problem can be written as:

max
{c(t),k(t)}∞t=0

∫ ∞
0

e−(ρ−n)tu (c (t)) dt

s.t. k̇ = k (t)α − c (t)− (n + δ) k (t)

lim
t→∞

k (t) exp

(
−
∫ t

0

(r(s)− δ − n) ds

)
= 0

k0 given

• Interpretation of r here.

• This problem is very similar to the household’s problem.

• We can also apply the optimality principle to the Hamiltonian:

H (a, c , µ) = u (c (t)) + µ (t) (k (t)α − c (t)− (n + δ) k (t))
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Necessary conditions

1. Partial derivative of the Hamiltonian with respect to controls is equal to zero:

Hc (a, c , µ) = u′ (c (t))− µ (t) = 0

2. Partial derivative of the Hamiltonian with respect to states is:

Ha (a, c , µ) = µ (t)
(
αk (t)α−1 − n − δ

)
= (ρ− n)µ (t)− µ̇ (t)

3. Partial derivative of the Hamiltonian with respect to co-states is:

Hµ (a, c , µ) = k (t)α − c (t)− (n + δ) k (t) = k̇ (t)

4. Transversality condition:

lim
t→∞

e−ρtµ (t) k (t) = 0
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Comparing the necessary conditions

• Following very similar steps than in the problem of the consumer we find:

ċ

c
=

1

σ

(
αkα−1 − δ − ρ

)
k̇ = kα − c − (n + δ) k

lim
t→∞

e−ρtµ (t) k (t) = 0

• From the household problem:

ċ

c
=

1

σ

(
αkα−1 − δ − ρ

)
k̇ = kα − c − (n + δ) k

lim
t→∞

e−ρtµ (t) k (t) = 0

• Both problems have the same necessary conditions!
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