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Abstract

We propose a methodology to take dynamic stochastic general equilibrium (DSGE)

models to the data based on the combination of differentiable state-space models and

the Hamiltonian Monte Carlo (HMC) sampler. First, we introduce a method for im-

plicit automatic differentiation of perturbation solutions of DSGE models with respect

to the model’s parameters. We can use the resulting output for various tasks requiring

gradients, such as building an HMC sampler, to estimate first- and second-order ap-

proximations of DSGE models. The availability of derivatives also enables a general

filter-free method to estimate nonlinear, non-Gaussian DSGE models by sampling the

joint likelihood of parameters and latent states. We show that the gradient-based joint

likelihood sampling approach is superior in efficiency and robustness to standard

Metropolis-Hastings samplers by estimating a canonical real business cycle model,

a real small open economy model, and a medium-scale New Keynesian DSGE model.

*All errors are our own. We thank Cameron Pfiffer for extensive participation and feedback at earlier
stages of this project. We would also like to thank seminar participants at UBC, Georgetown, the Society
for Economic Dynamics 2021 meeting, and the China International Conference in Macroeconomics 2022 for
helpful comments and suggestions. Arnav Sood, Jan Rosa, Andrew Owens, Seb Gomez, and James Yu pro-
vided research assistance. Peifan Wu’s contribution to the paper was completed prior to his employment
by Amazon, and this paper does not represent Amazon’s views. We gratefully acknowledge the compu-
tational resources provided by UBC Advanced Research Computing, UBC ARC Sockeye, and UBC ARC
RONIN. All code is available at https://github.com/HighDimensionalEconLab/HMCExamples.jl.

1

https://github.com/HighDimensionalEconLab/HMCExamples.jl


1 Introduction

In this paper, we propose a methodology to take dynamic stochastic general equilib-
rium (DSGE) models (and related dynamic equilibrium models in other fields) to the
data based on the combination of differentiable state-space models and the Hamiltonian
Monte Carlo (HMC) sampler. Differentiable state-space models allow us to implement
HMC by providing an easy method to differentiate the perturbation solutions of DSGE
models. HMC has two great advantages with respect to other Markov Chain Monte Carlo
(MCMC) methods. First, it draws much more efficiently from the posterior of a DSGE
model than existing alternatives. Second, HMC scales very well with the dimension of
the model. Hence, we can draw from the joint distribution of parameters and latent states
of the model simultaneously without having to resort to a filter to marginalize the latent
state variables of the model.

Let us unpack the many ideas in the previous paragraph. DSGE models are one of the
major workhorses of modern macroeconomics. Thus, it is not a surprise that an extensive
strand of the literature has focused on how to take these models to the data, both from a
classical and from a Bayesian perspective (see the reviews in Fernández-Villaverde et al.,
2016, and Fernández-Villaverde and Guerrón-Quintana, 2021).

While the Bayesian approach is particularly popular, following it is not without peril.
Since DSGE models rarely have a closed-form solution, we need to resort to numeri-
cal approximations to evaluate their moments or likelihood functions and sample from
them—for instance, to find posterior distributions of parameters of interest.

Despite many years of research, some questions remain open regarding these tasks.
First, implementing the Bayesian approach usually requires an MCMC sampler, the most
popular of which is the Random Walk Metropolis-Hastings (RWMH) algorithm. It is well
known that RWMH (and many of the improvements built on top of it) suffers from high
autocorrelation across draws. Due to this high correlation, the effective sample size is
small compared to the total draws.1 Even if we run the sampler 100,000 times, we might
have only the equivalent of around 1,000 samples coming from a hypothetical indepen-
dent Monte Carlo sampler (which, unfortunately, we cannot design). Furthermore, the
sampling results might be sensitive to the choice of starting points, even after long runs
of the sampler. These drawbacks are particularly binding when we deal with DSGE mod-
els that are richly parameterized, as the proportion of effective samples can drop rapidly
as the number of dimensions increases.

Second, evaluating the likelihood function implied by the solution of a DSGE model
is usually done by some filter, such as the Kalman filter—when we have a first-order

1Effective sample size (ESS) is measured as the number of draws divided by the estimated long-run
autocorrelation of the chain (Gelman et al., 2013, Ch 11.5).
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perturbation and Gaussian shocks—or the particle filter—when we deal with nonlinear
solutions and/or non-Gaussian shocks (Fernández-Villaverde and Rubio-Ramı́rez, 2007).
The filters deliver the marginal likelihood of the model with respect to its parameters by
integrating over the distribution of latent states. Unfortunately, these filters are either
restrictive in their requirements (e.g., the Kalman filter) or computationally costly, non-
differentiable, and difficult to tune (e.g., the particle filter).

We tackle these challenges by implementing two complementary methods. Our first
method is to apply the HMC sampler to the estimation of DSGE models. HMC is a
gradient-based sampling method that traverses the posterior efficiently and works par-
ticularly well in high-dimensional cases. While HMC is an attractive alternative to the
RWMH algorithm, it requires computing the gradients of the solution to a DSGE model
with respect to the parameters, a cumbersome task.

We get around this problem by showing how to differentiate both first- and second-
order perturbation solutions of DSGE models with respect to the parameters (although
our argument, built around the implicit function theorem, is applicable to any higher-
order perturbation solutions). Essentially, we provide a local sensitivity analysis sim-
ilar to Iskrev (2010), but we extend the results to second-order perturbation solutions.
For example, consider a canonical medium-scale Keynesian DSGE such as Fernández-
Villaverde and Guerrón-Quintana (2021) with 14 state variables, 24 controls, and 28 pa-
rameters. The first-order perturbation solution to this is a matrix of 14 × 14 values for
the evolution of the state, and one with 24 × 14 for controls. Our procedure provides the
gradient of these two matrices with respect to the 28 parameters of the underlying model.
Those gradients could be used for all sorts of purposes, such as examining how impulse
response functions change with parameters, better calculating the loss function with sim-
ulated methods of moments, or—in our main application—computing gradients of the
likelihood for Bayesian samplers.2

Our second method is to sample both parameter and latent variables simultaneously,
instead of sampling the posterior of the model parameter by marginalizing out the la-
tent variables. Hence, we avoid filtering and can both examine estimated latent variables
and easily marginalize on samples ex-post by ignoring the estimated latent variables.
The idea of sampling parameters and latent states simultaneously has been around for
decades (see Kim et al. 1998, for an early incarnation), but its implementation was dif-
ficult because, as soon as we have more than a few observations, we are dealing with a
high-dimensional inference problem that the RWMH algorithm cannot handle even with

2We specify the state-space model in a discrete-time setting, and the linear equation system will be
Sylvester equations. In a continuous-time setting that is widely used in HANK models, the equations have
a similar form but will be Lyapunov equations. Both Sylvester equations and Lyapunov equations are linear
and can be solved with standard libraries like SLICOT and MatrixEquations.jl.
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extremely long simulations. In comparison, the scalability of HMC means that sampling
the joint likelihood becomes feasible. More generally, we can bring much larger models
to the data as long as we can find the required derivatives. Gradient-based approaches
such as HMC are limited by difficult geometry and the cost of gradient calculations, but
not by the dimensionality of the problem.

We illustrate the two ideas above by estimating three models: a canonical real busi-
ness cycle (RBC) model, a real small open economy model based on Schmitt-Grohé and
Uribe (2003), and the medium-scale New Keynesian model in Fernández-Villaverde and
Guerrón-Quintana (2021). In our first experiment, we simulate data from the RBC model
solved with a first-order perturbation and use this simulated sample to evaluate the as-
sociated likelihood using the Kalman filter. Then, we implement the RWMH and HMC
samplers. Even if we only need to sample 3 parameters, the fraction of effective draws
per sample for RWMH ranges between 0.4% and 6.2% depending on the parameter. In
comparison, the HMC sampler gets 49 − 56% effective draws, a rate of 10 − 100 times
more. This experiment shows how much more efficient the HMC sampler is.

In our second experiment, we generate data from the same RBC model but now solved
using a second-order perturbation. Then, we estimate the model with the HMC sampler
and the joint likelihood function of parameters and latent states. Since there are three pa-
rameters and 200 latent states, we sample along 203 dimensions overall. HMC delivers a
proportion of effective samples of around 4%. In comparison, the RWMH sampler on the
marginal likelihood of just the three parameters evaluated using the particle filter, a dra-
matically lower-dimensionality problem, delivers an effective sample proportion of only
0.3%. Furthermore, HMC is more robust to the starting point of the Markov chain. After
six minutes of execution, the posterior mean of the parameters settles within a narrow
range of the final value for all initial conditions when using HMC with the joint likeli-
hood approach. In comparison, and also after six minutes, the RWMH means remain
away from the mode for many initial values (in fact, they remain away for even much
longer runs). When the number of particles used is insufficient, the chains stop moving,
requiring many-particle runs to ensure stability.

In our third and fourth experiments, we repeat the first and second experiments but
with simulated data from a version of the model in Schmitt-Grohé and Uribe (2003) aug-
mented with additional shocks, with three latent states, three observables, and seven es-
timated parameters. In this larger application, HMC again outperforms RWMH in speed
and stability, particularly at second order, where it achieves a sampling speed approx-
imately 10-40 times faster per effectively independent sample drawn than the particle
filter approach and with better measures of posterior quality. The relative performance
advantage of gradient-based samplers compared to RWMH seems to grow as the problem
size increases.
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In our final experiments, we estimate a New Keynesian model with 22 parameters
and 240 latent states. As in our previous experiments, the HMC sampler is much supe-
rior to RWMH. For instance, while HMC yields good MCMC mixing, RWMH with the
particle filter fails to escape from the neighborhood of the starting point. Taken together,
these experiments demonstrate that HMC offers a compelling alternative to other MCMC
methods, particularly for larger models.

We implement all our methods through open-source modular building blocks that
we hope will allow researchers to develop their own applications. First, the package
DifferentiableStateSpaceModels.jl provides a symbolic domain-specific language for
defining nonlinear DSGE models embedded in Julia, and making them easy to embed
in the Julia auto-differentiation ecosystem through ChainRules.jl. Second, the SciML
ecosystem (through the package DifferenceEquations.jl) provides tools to enable dif-
ferentiable simulations, Kalman filters, and joint likelihoods for state-space models gen-
erated manually or using DifferentiableStateSpaceModels.jl. These packages can ex-
pand the researchers’ imagination for what is a feasible scale in the computation and es-
timation of DSGE models thanks to our use of differentiable programming. While Julia

is a natural language given its support for symbolic computing and auto-differentiation,
these packages provide a benchmark implementation for porting the methods to other
programming languages and probabilistic programming environments.

Differentiable Programming. At the core of our paper, we have the computation of
gradients of state-space models and their likelihoods. “Differentiable programming”—a
term encompassing classic automatic differentiation (AD)—is a programming paradigm
going back to the late 1950s. However, the field has exploded with the recent popularity
of machine learning (ML), where it plays a key role. Classic examples of differentiable
programming include calculating Jacobians (Griewank and Walther, 2008) and the train-
ing of neural networks (Baydin et al., 2017). Differentiable programming/AD ecosystems
exist in Julia, Python, Stan, Matlab, Fortran, and many other programming languages.

The basic idea of differentiable programming is simple and has nothing to do with
numerical derivatives. Imagine a procedure that looks at code and substitutes analytic
derivatives where appropriate—i.e., if it encounters sin, it uses cos as the derivative—
and applies the chain rule when required. Moreover, if we think about a computer pro-
gram as a sequence of mathematical functions calling each other, then a method that can
analyze a program can also differentiate arbitrary functions by recursively applying the
chain rule until it hits primitive gradients.

The previous steps are easy to visualize with standard mathematical functions (e.g.,
the log function). But the surprising result is that code one would not expect to have
gradients (e.g., loops, accessing a subset of a vector, solving a linear system, constructors
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of parametric structs, Kronecker products) can be formalized with primitive gradients
with respect to continuous arguments. This latter feature is what radically changes the
scale of problems one can solve.

To see this, we must understand the difference between forward- and reverse-mode
AD. If one wants to calculate some function f : RN → R composed of nested calls to
other functions and find its gradients ∇ f (·) ∈ RN at a particular point x0 ∈ RN, we can
evaluate the chain rule forward or backward. Intuitively, reverse-mode AD takes the x0

and applies the functions nested inside of f until it eventually has calculated f (x0).3 Then,
it perturbs f (x0) and applies the chain rule backward until it has calculated ∇ f (x0).4

The critical insight here is that if a function maps to a univariate output (e.g., a likeli-
hood function, a moment function, a loss function), the computation of the gradient may
require no more computation than (a constant factor times) the evaluation of the original
function, regardless of whether it depends on 10 or 10,000 variables. This result is known
as the cheap gradient principle (Griewank and Walther, 2008). Thus, when f : RN → R,
the calculation of ∇ f (x0) may be only 2 to 10 times slower than the calculation of f (x0),
a factor independent of N. The combination of univariate loss functions with program-
ming language support for reverse-mode AD (and better hardware in GPUs, which are
ideal for parallelizing many gradient calculations) has made the deep learning revolution
possible.

There are many ways to implement reverse-mode AD, but the most common ap-
proach is a package for a programming language that either analyzes a function stati-
cally or traces the function during execution. In the case of Python, this is the core fea-
ture of Pytorch, Tensorflow, and JAX, and in Julia, there are many alternatives such as
Zygote.jl (see Innes et al., 2019) and Enzyme. These packages manage the application
of the chain rule, compiling both the function calculation and its gradients, and accessing
libraries of primitive gradients, which are themselves black boxes to the AD package.5

With differentiable programming, finding the right level of abstraction for providing
gradients is crucial. While a small library of gradient primitives might suffice to build
up a differentiable program, when the intermediate function calls involve complex algo-

3In the ML community, they often refer to reverse-mode AD as “backpropagation,” whereas, in differ-
ential equations and control theory, it is referred to as “adjoint sensitivity.”

4Forward-mode AD applies the chain rule forward starting from x0 and calculates f (x0) and ∇ f (x0) at
the end. Forward-mode AD is equivalent to using “numerical derivatives” in its computational order, even
if it is always more accurate. This is attractive for calculating: f : RN → R with a small N such that the
overhead of reverse-mode AD dominates its advantages; f : R → RN (where reverse-mode AD is at its
worst); sparse Jacobians of f : RN → RM; and higher-order derivatives nested with reverse-mode AD.

5See White et al. (2021) for a description of ChainRules.jl, which provides a package-agnostic way
to register primitive gradients in Julia. Though less flexible, custom gradients can be implemented in
Pytorch/Autograd. JAX custom derivative rules and primitives are more restrictive (e.g., loops are not
easily possible within the implementation), but integrate well into the ecosystem and are easily composable
for higher-order AD. See ssm-jax for a library for state-space models (but not perturbation solutions) in JAX.
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rithms (such as when we solve DSGE models given a set of parameters), custom gradient
rules ensure efficient and correct gradient computations (see Appendix E for details).

In our implementation, we determine the appropriate level by providing gradients
and implementing two orthogonal and composable components for gradient-based algo-
rithms like HMC—the perturbation solution of the DSGE and the state-space likelihood.

For the first component, standard DSGE solvers (e.g., Klein 2000; Schmitt-Grohé and
Uribe 2004) involve steps like a generalized Schur decomposition, which are, in principle,
differentiable but require custom gradients in practice. Other steps in those algorithms,
such as the reordering of the eigenvalues, may not even be differentiable in all cases.
Instead, we derive an implicit gradient formula for the whole calculation of the DSGE
solution, bypassing these issues since we no longer need to differentiate the internal al-
gorithm. This provides a component that both solves the DSGE models and provides
gradients with respect to the parameters of interest.6

For the second component, state-space models provide a stochastic difference equa-
tion that we use to simulate solutions and accumulate likelihoods—which must be differ-
entiated with respect to the state-space model primitives and the underlying “shocks” in
cases where we form the joint likelihood. We build on an active area of research known as
”scientific machine learning” (Rackauckas, 2022) that expands AD systems to incorporate
efficient and scalable primitives for scientific computing applications such as nonlinear
system solvers and differential equations. Within that framework, we provide differen-
tiable simulations and filters that can operate on discrete-time state-space models, sup-
plied by our differentiable DSGE solver or third-party code.

Literature Review. The paper closet to ours is Farkas and Tatar (2020), which proposes
estimating linear-Gaussian DSGE models with HMC methods on the marginal likelihood
of parameters, using Smets and Wouters (2007) as an example. Our work nests such
an application as a special case. More importantly, Farkas and Tatar (2020) use a non-
customizable AD and so the differentiation has to go step-by-step, which precludes them
from using Schur decomposition methods, the dominant approach to solving linear DSGE
models due to stability and speed. Instead, we offer a general framework to implement
HMC in perturbation solutions of DSGE models by passing the required derivatives to
the downstream sampler with customized AD.

The use of the joint likelihood for sampling from state-space models has been known
for decades but not widely adopted due to the poor scaling with dimension of more tra-
ditional MCMC samplers (Särkkä, 2013). When it is combined with the use of HMC,
performance again becomes competitive and the method has been applied to ARCH and

6Since the implementation of gradients for the DSGE solution requires higher-order derivatives of the
model itself, we use symbolic-numeric methods via Symbolics.jl (see Gowda et al. 2022).
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ARMA models (Stan Development Team, 2022), stochastic volatility models (Hoffman
and Gelman, 2014), and diffusion processes (Graham et al., 2022).

The key bottleneck to application to DSGE models is the fact that HMC requires gra-
dients of the likelihood and model solution. Derivative formulas have been derived for
some of the elements necessary for our applications, including first-order perturbations
of DSGE models (Iskrev, 2010) and the marginal likelihood of linear-Gaussian state-space
models (Watson, 1989), but our extension to the higher-order case is novel. Moreover, the
rules are implemented in a form applicable for use within a (reverse-mode) AD system,
which enables improvements in speed and modularity. Previous applications of other
forms of AD to differentiate the likelihood of macroeconomic models include Bastani and
Guerrieri (2008); applications of AD to optimization routines and solution algorithms
include Maliar et al. (2021) and Cao et al. (2020). By implementing our methods as com-
ponents in differentiable and probabilistic programming languages, our intention is that
they may be combined with other components to enable further applications.

Outline. The rest of this paper is organized as follows. Section 2 presents the state-space
representation of DSGE models and introduces the joint likelihood approach associated
with this mathematical representation. Section 3 describes HMC. Section 4 shows the
gradients of solutions to DSGE models. Section 5 briefly discusses our implementation.
Section 6 illustrates the estimation results. Section 7 concludes. An extensive set of ap-
pendixes collect additional details and numerical experiments.

2 Likelihood Function and Evaluation

This section fixes the notation for the state-space representation of a dynamic equilib-
rium model and defines the likelihood terms we will use throughout the paper. While
DSGE models fit easily into this framework, we will first present an AR(1) example that
illustrates the difference between the marginal and joint likelihoods and their sampling
processes. This exercise clarifies ideas in a transparent case.

2.1 The State-Space Model

Given a dynamic equilibrium model, let xt be the vector of state variables that determine
its behavior. These states are buffeted by shocks ϵt. Without loss of generality, we assume
these shocks are i.i.d. Let θ be the vector of parameters of the model. In the case of a
DSGE model, θ determines the preferences, technology, information sets, and government
policy rules. We assume that θ is time-invariant, but, with extra notation, we can allow
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correlated or time-varying parameters and shocks. See Fernández-Villaverde and Rubio-
Ramı́rez (2007). The initial distribution of the state variables is given by p(x0|θ).

The optimization behavior of the agents is summarized by a policy function g(·) that
links state variables with the control variables yt:

yt = g (xt; θ) . (1)

Given this policy function, other equilibrium conditions (such as resource constraints
and exogenous laws of motion), and p(x0|θ), we can build a state-space representation
of the model. The first component of this representation is a transition equation h(·) that
characterizes the law of motion of the states:

xt+1 = h (xt; θ) + ηϵt+1. (2)

This transition equation gives us the conditional density p (xt+1|xt, θ) induced by the dis-
tribution of ϵt+1 and given xt. The assumption that ϵt+1 enters linearly is without loss of
generality. See Andreasen et al. (2018) for an explanation.

The second component of the state-space representation is a measurement equation
q(·) that links states and controls with the observables zt:

zt = q (xt, υt; θ) , (3)

where υt is either a measurement error or a shock that hits observables but not the states
of the model. Thus, the measurement equation defines a conditional density p (zt|xt, θ)

given by the distribution of υt. One or more states may be part of the observables zt. In
that case, q(·) is the identity function along the relevant dimensions and the conditional
density is a Dirac.

Lastly, let zT = {zt}t=1,...,T be the observation sequence for T periods, xT = {xt}t=0,...,T

the state sequence, and p
(
zT|θ

)
the likelihood function of the model.

2.2 Marginal vs. Joint Likelihood

We now review the concepts of the marginal and joint likelihood function associated with
the previous state-space representation.
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The Marginal Likelihood. If we specify a prior distribution p (θ) for the parameters of
the model, Bayes’ theorem gives us:

ln p
(

θ|zT
)

︸ ︷︷ ︸
log-posterior

= ln p
(

θ, zT
)
+ C (4)

= ln p (θ)︸ ︷︷ ︸
log-prior

+ ln p
(

zT|θ
)

︸ ︷︷ ︸
log-likelihood

+C (5)

= ln p (θ) +
T

∑
t=1

ln p
(

zt|zt−1, θ
)
+ C. (6)

Equation (5) tells us that the log-posterior density is (up to a constant C) the sum of the
log prior and the conditional density of the data. As shown in equation (6), the second
term of equation (5) is the sum of the conditional densities for zt across all T periods.

We can recursively construct the sequence of
{

p
(
zt|zt−1, θ

)}
t=1,...,T by filtering:

1. We start with the initial density at t = 1:

p
(

xt−1|zt−1, θ
)
= p (x0|θ) . (7)

2. We use the Chapman-Kolmogorov equation to combine p
(
xt−1|zt−1, θ

)
with the

conditional distribution p (xt|xt−1, θ) and integrate over the states to get:

p
(

xt|zt−1, θ
)
=
∫

p (xt|xt−1, θ) p
(

xt−1|zt−1, θ
)

dxt−1. (8)

3. We take the resulting p
(
xt|zt−1, θ

)
, the measurement zt, and p (zt|xt, θ) from the

measurement equation, and we plug them into Bayes’ theorem to get:

p
(
xt|zt, θ

)
=

p (zt|xt, θ) p
(
xt|zt−1, θ

)
p (zt|zt−1, θ)

. (9)

4. We find the marginal likelihood:

p
(

zt|zt−1, θ
)
=
∫

p (zt|xt, θ) p
(

xt|zt−1, θ
)

dxt. (10)

5. We loop over steps 2.-4. for all T periods of observations.

We call p
(
zt|zt−1, θ

)
the “marginal likelihood” because we have integrated out the
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states xt.7

While equations (8) and (9) are conceptually simple, they can be daunting to imple-
ment in practice. In the case where h (·) and q (·) are linear in x and both ϵ and υ follow
a Gaussian distribution, equations (8) and (9) can be evaluated exactly with the Kalman
filter. In nonlinear or non-Gaussian cases, a closed form for the marginal likelihood is
rarely available, and we must use numerical approximations such as particle filters.

Joint Likelihood. We now focus on the joint likelihood approach, which directly applies
Bayes’ theorem to the likelihood of the data zT jointly in the parameters θ and the states
xT = {xt}t=0,...,T, i.e., p

(
zT|xT, θ

)
, in order to compute the joint posterior p

(
θ, xT|zT)

without first marginalizing out the states:

p
(

θ, xT|zT
)
=

p
(
zT|θ, xT) p

(
xT|θ

)
p (θ)∫ ∫

p (xT|θ) p (θ)dxTdθ
.

Taking logs and ignoring constant terms, we can decompose the posterior as:

ln p
(

θ, xT|zT
)

︸ ︷︷ ︸
log-posterior

= ln p
(

θ, xT
)

︸ ︷︷ ︸
log-prior

+ ln p
(

zT|xT, θ
)

︸ ︷︷ ︸
log-likelihood

+C (11)

= ln p (θ) + ln
(

xT|θ
)
+

T

∑
t=1

ln p
(
zt|xt, θ

)
+ C (12)

= ln p (θ) +
T

∑
t=1

ln p (zt|xt, θ) +
T

∑
t=1

ln p (xt|xt−1, θ) + ln p (x0|θ) + C (13)

= ln p (θ) +
T

∑
t=1

ln p
(
zt|ϵt, x0, θ

)
+

T

∑
t=1

ln p (ϵt|θ) + ln p (x0|θ) + C. (14)

In this case, we can evaluate the log-likelihood sequentially by following equation (12).
Because of the Markov structure of the state-space model, equation (13) shows that xt

only depends on xt−1 given θ.
Equations (11)–(13) compute the log-posterior taking not only the data but also the

history of states as given, while the law of motion of the states is pinned down by the
initial state x0, the sequence of shocks ϵT = {ϵt}t=1,...,T, and the model parameters θ.
Hence, the second term in (14) comes from q (·), and the third term in (13) comes from

7Sometimes, the literature refers to “marginal likelihood” when the parameters have also been inte-
grated out over the whole sample, i.e., p(zT) =

∫
p(zT |θ)p(θ)dθ.
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h (·). To bridge equations (13) and (14), we can rewrite these two terms in (13) as:

T

∑
t=1

ln p (zt|xt, θ) =
T

∑
t=1

ln p
(
zt|ϵt, x0, θ

)
(15)

T

∑
t=1

ln p (xt|xt−1, θ) =
T

∑
t=1

ln p (ϵt|θ) . (16)

Therefore, the joint likelihood equation can be explicitly written down given an ex-
ogenous series of shocks ϵt. This joint likelihood computation is filter-free, as we do not
have to infer the latent state series xT or their posterior distributions, but rather retrieve a
series of xT from the shock series.

Consequently, instead of sampling just θ to compute a marginal likelihood ln p
(
θ|zT),

we will sample θ as well as ϵT and x0 to compute the joint likelihood ln p
(
θ, xT|zT), which

is equivalent to ln p
(
θ, ϵT, x0|zT). The marginal likelihood can be obtained from the joint

likelihood by integrating over ϵT and x0:

p
(

θ|zT
)
=
∫

p
(

θ, xT|zT
)

dxT =
∫ ∫

p
(

θ, ϵT, x0|zT
)

dϵTdx0. (17)

Given samples from the joint posterior over θ, ϵT, and x0, samples from the marginal
posterior over θ can be obtained by dropping the ϵT and x0 components of each sample.

2.3 An AR(1) Example with Measurement Noise

We employ a simple example to show the difference between the marginal and joint like-
lihood approaches. Assume that our dynamic equilibrium model takes the form of an
AR(1) process with a measurement noise:

xt = ρxt−1 + ϵt

zt = xt + υt.

The shock process {ϵt} is i.i.d and follows a standard Gaussian distribution, and the mea-
surement noise {υt} follows an i.i.d. Gaussian distribution with zero mean and variance
Ω. We assume that the initial x0 is drawn from the invariant distribution, which, when
|ρ| < 1, exists and is given by N

(
0, 1

1−ρ2

)
. We denote the probability density function

of a standard Gaussian distribution as φ (·). We are interested in estimating ρ, the persis-
tence parameter of the states, given data zT.

The Marginal Likelihood. The steps to evaluate the marginal likelihood given zT and
ρ are:
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1. Evaluate the log-prior at ρ and set L = ln p(ρ).

2. Initialize the distribution of x0 as N
(

0, 1
1−ρ2

)
. Using standard notation for con-

ditioning, we write the mean of the distribution as x0|0 = 0 and its variance as
P0|0 = 1

1−ρ2 .

3. Loop over t = 1, . . . , T. For each t, we apply the Kalman filter to infer the posterior
distribution of xt, and accrue the likelihood L:

xt|t−1 = ρxt−1|t−1

Pt|t−1 = ρ2Pt−1|t−1 + 1

xt|t = xt|t−1 +
Pt|t−1

Pt|t−1 + Ω

(
zt − xt|t−1

)
Pt|t = Pt|t−1 −

P2
t|t−1

Pt|t−1 + Ω

L = L + ln φ

 zt − xt|t−1√
Pt|t−1 + Ω

 .

The Joint Likelihood Approach. The steps to evaluate the joint likelihood given zT, ρ,
initial condition x0, and vector of T elements {ϵt} are:

1. Set L equal to the sum of the log-prior ln p(ρ) at ρ and the log-prior of the latent
states ∑T

t=1 ln φ (ϵt) at {ϵt}.

2. Add the log-density of x0 in the initial distribution L = L + ln φ(x0
√

1 − ρ2).

3. Loop over t = 1, . . . , T. For each t, compute xt with the law of motion, and accrue
the likelihood L:

xt = ρxt−1 + ϵt

L = L + ln φ

(
zt − xt√

Ω

)
.

While in the end, the posterior of ρ should be the same, there are significant differences
between both approaches. The marginal likelihood depends on a filter to infer the distri-
bution of the latent states over time while it only samples the parameters that govern the
model. The joint likelihood approach is filter-free because the law of motion of the state
variables is deterministic given some shocks, but at a cost that it has to draw both the
parameters and the shocks. Hence, by using the joint likelihood, we are sampling from
a very high-dimensional space consisting of both the parameters and the shocks. Thus,
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if filtering is costly, as when we deal with nonlinear or non-Gaussian DSGE models, the
joint likelihood might be an attractive alternative.

Given the high dimensionality of the sampling problem when using the joint likeli-
hood, a RWMH sampler will not be efficient enough to deliver accurate answers in rea-
sonable amounts of time. Instead, we apply HMC—a scalable and efficient sampler that
copes with high-dimensional spaces—that we now describe.

3 Hamiltonian Monte Carlo

HMC is a sampler designed to avoid some of the problems encountered by standard
MCMC samplers such as RWMH.8 While RWMH is straightforward to code, it also suf-
fers from a basic problem: it spends much of the time outside of the typical set, i.e., the
part of the parameter space containing the relevant information to compute the expecta-
tions we care about in Bayesian analysis.

To understand this statement, we must define the typical set (see Betancourt, 2018,
and Fernández-Villaverde and Guerrón-Quintana, 2021). For ϵ > 0 and and I, the typical
set AI

ϵ with respect to the target posterior p
(
θ|zT) is:

AI
ϵ ≡

{
(θ0, θ1, . . . , θI) :

∣∣∣∣∣− 1
I + 1

I

∑
i=0

ln p
(

θi|zT
)
− b (θ)

∣∣∣∣∣ ⩽ ϵ

}
,

where b (θ) = −
∫

p
(
θi|zT) ln p

(
θi|zT)dθ is the differential entropy of the parameters

with respect to their posterior density. By a weak law of large numbers, we have that
Pr(AI

ϵ) > 1 − ϵ if I is sufficiently large. That is to say, AI
ϵ includes “most” sequences of

θi’s that are distributed according to the posterior p
(
θi|zT).

Two properties of the typical set are crucial. First, the typical set is not the region where
the posterior density is the highest. Second, the typical set narrows as the dimensionality
of θ grows. These two properties explain why RWMH cannot efficiently sample in high-
dimensional spaces. The RWMH method wastes many iterations because the proposal
density is blind regarding the typical set of the posterior. Therefore, most draws will be
either far away from the typical set, or highly auto-correlated, and the typical set will not
be traversed efficiently. Furthermore, initiating the sampling process from the mode will
barely help, as the mode is usually not in the typical set.

HMC improves sampling efficiency with respect to RWMH by exploiting information
from the posterior’s gradient. To avoid pushing the samples to the mode of the posterior,
HMC augments the gradient information with an extra momentum force, in an analogy

8See Betancourt (2018) for a conceptual discussion of HMC methods and Appendix G for a discussion
of how and why HMC improves sampling performance in our setting.
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to Hamiltonian mechanics in physics. In that way, the resulting Markov chain spends
much more time in the typical set.

More concretely, HMC augments the vector of parameters θ with an auxiliary momen-
tum vector p of the same dimensions and that follows a Gaussian distribution N (0, M).
Thus, the Hamiltonian associated with the posterior of θ is:

H (θ, p) = − ln p (θ) +
1
2

p⊤M−1p, (18)

where − ln p (θ), the (minus) log-posterior, is the analog of a “potential energy” function
and 1

2 p⊤M−1p acts as a “kinetic energy” term.
Recall that the total energy of the Hamiltonian is preserved when {θ, p} evolve over

time following Hamilton’s equations of motion:

dθ

dt
=

∂H
∂p

(19)

dp
dt

= −∂H
∂θ

. (20)

This result suggests a simple sampling scheme: we generate a random momentum p ∼
N (0, M), and then we move {θ, p} using Hamilton’s equations for some length of time to
obtain the next draw (and, hence, requiring gradient information on H(·)). This draw has
a stationary marginal density p (θ), which provides a theoretical justification for HMC.

The physics analogy here is straightforward. Think about a particle that moves on the
manifold characterized by the log posterior of θ. Every time we get a new sample from
the current position, we randomly kick the particle in an arbitrary direction. The particle
moves following the Hamiltonian dynamics, and we stop the particle after a fixed time
and record the new θ.

We solve the ODE system given by equations (19) and (20) as follows. First, we draw
p from the Gaussian distribution specified above. Second, we run the Verlet integrator, a
numerical ODE solver that maintains the energy-preserving property of the original sys-
tem, with step ϵ for each of the L iterations, resulting in an integration time of Lϵ. Both
ϵ and L are tuning parameters, with ϵ controlling the step size of Hamiltonian approxi-
mation and L determining the number of steps in each iteration. To account for the error
induced by using a numerical integrator, at the end of each iteration, the move is accepted
or rejected according to a Metropolis step. Since the exact integration already preserves
the density, one can usually accept a much higher proportion of proposals than when
using RWMH.

Since the introduction of HMC, many variants and improvements have been pro-
posed, particularly in terms of automated methods for selecting and adapting hyper-
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parameters. The most popular of these is the No-U-Turn sampler (NUTS) proposed by
Hoffman and Gelman (2014), which endogenously picks ϵ and L with sample adapta-
tions. NUTS and other advanced samplers are provided by probabilistic programming
languages, enabling the user to define (auto-differentiable) components of the likelihood
function and priors. In our experiments, we use the generalized version of NUTS in
Betancourt (2018) and implemented in Turing.jl. This package is designed to be equiv-
alent to the default implementation in Stan and qualitatively similar to implementations
in other probabilistic programming languages including NumPyro and PyMC.

4 Gradients to DSGE Solutions

This section provides the derivations of the derivatives of DSGE first- and second-order
solutions with respect to the model parameters. As the downstream HMC sampler re-
quires gradient information, we compute these values by solving equations derived from
the implicit function theorem. While the first-order gradient result is documented in the
literature (Iskrev, 2010), the second-order result we provide here is a novel extension and
further generalizes to even higher-order perturbations.

4.1 Notation

We use the “canonical form” following Schmitt-Grohé and Uribe (2004) to characterize
the equilibrium conditions of a variety of DSGE models:

EtH
(
y′, y, x′, x; θ

)
= 0, (21)

following the notation of Section 2. Since the model is Markov, we omit the time subscript
and denote x′ and y′ as states and control variables in the next period.

The solution to the model is:

y = g (x; θ) (22)

x′ = h (x; θ) + ηϵ′, (23)

where h(·) is the law of motion of the states, and g(·) is the policy function.
The deterministic steady state (DSS) of the system is given by vectors x̄ and ȳ such

that:
H (ȳ, ȳ, x̄, x̄; θ) = 0 (24)

and we approximate the solutions to g and h by perturbing around x̄.
Let x̂ = x − x̄ and ŷ = y − ȳ be the deviations from the DSS. Thus, we can write the
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first-order solution to the DSGE model as:

ŷ = gx x̂ (25)

x̂′ = hx x̂ + ηϵ′, (26)

where subindices denote partial derivatives. Similarly, we can write the second-order
solution as:

[ŷ]i = [gx x̂]i +
1
2

x̂⊤ [gxx]
i x̂ +

1
2
[gσσ]

i (27)[
x̂′
]j
= [hx x̂]j +

1
2

x̂⊤ [hxx]
j x̂ +

1
2
[hσσ]

j +
[
ηϵ′
]j . (28)

We use conventional tensor notation here since gxx and hxx are three dimensional.
We find these solutions with the methods proposed by Klein (2000) and Schmitt-Grohé

and Uribe (2004). See Appendix A for details.

4.2 Solution Gradients

We find the derivatives of the first- and second-order solutions with respect to the param-
eters θ mostly via the implicit function theorem. Appendix B provides the details.

Steady State. For any parameter θ, we totally differentiate (24), which yields:

Hx
∂x̄
∂θ

+Hy
∂ȳ
∂θ

+Hx′
∂x̄
∂θ

+Hy′
∂ȳ
∂θ

+Hθ = 0,

where all the derivatives of H are evaluated at the DSS. When we treat ∂x̄
∂θ and ∂ȳ

∂θ as
unknowns, this is a linear equation system.

First-Order Solutions. We are interested in the derivatives of the first-order solutions,
gx and hx, with respect to the parameters θ. We denote these derivatives as ∂gx

∂θ and ∂hx
∂θ .

When evaluated at the DSS, gx and hx satisfy:

Hx +Hygx +Hx′hx +Hy′gxhx = 0. (29)
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If we differentiate (29) with respect to θ:


dHy′

dθ
dHy
dθ

dHx′
dθ

dHx
dθ


⊤ 

gxhx

gx

hx

I

+
[
Hy Hx′ +Hy′gx

] [ ∂gx
∂θ

∂hx
∂θ

]
+
[
Hy′ 0

] [ ∂gx
∂θ

∂hx
∂θ

]
hx = 0,

which is a Sylvester equation system in ∂gx
∂θ and ∂hx

∂θ .9

Second-Order Solutions. The second-order solutions to the DSGE include four addi-
tional objects besides the first-order solutions: gxx, hxx, gσσ, and hσσ. Again, we denote
these derivatives as ∂gxx

∂θ ,∂hxx
∂θ ,∂gσσ

∂θ , ∂hσσ
∂θ , respectively.

First, we derive the solutions to ∂gxx
∂θ and ∂hxx

∂θ . By differentiating (29) with respect to x,
and flattening the second and third dimensions of gxx and hxx, we get:

[
Hy′ 0

] [ gxx

hxx

]
hx ⊗ hx +

[
Hy Hy′gx +Hx′

] [ gxx

hxx

]
+ C = 0. (30)

Equation (30) is a Sylvester equation on [gxx, hxx]
′. If we further differentiate it with re-

spect to θ, we get another Sylvester equation in ∂gxx
∂θ and ∂hxx

∂θ .
The solutions to ∂gσσ

∂θ and ∂hσσ
∂θ are simpler. Solving (31) below yields gσσ and hσσ:

(
Hy′ +Hy Hy′gx +Hx′

)( gσσ

hσσ

)
+ B = 0, (31)

and differentiating (31) with respect to the parameters θ yields a linear equation system
for ∂gσσ

∂θ and ∂hσσ
∂θ . Matrices B and C are constants given the second-order solution to the

DSGE model. Appendix B provides a detailed construction of these two matrices.

5 Implementation

We briefly introduce our implementation here. Our software consists of two generic parts,
built to work with various economic models, and a third component that glues these
together with problem-specific details required for Bayesian estimation. The first is a
library that handles first- and second-order solutions to state-space models, gradients,
and sensitivity analyses. The library, DifferentiableStateSpaceModels.jl, is an open-

9A matrix Sylvester equation has the form AXB + CXD + E = 0, which is a (bi-)linear equation of the
real matrix X. Since Sylvester equations are widely used in control theory, fast solvers are available.
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source Julia package that provides a domain-specific language to represent macro state-
space models, providing the underlying derivatives for the perturbation and its deriva-
tives symbolically. The second component, DifferenceEquations.jl, provides differ-
entiable simulations and likelihoods given state-space models. These can be used for
many simulation and estimation algorithms, and the state-space inputs do not necessarily
need to come from perturbation solutions to DSGEs—although it is especially convenient
to use with DifferentiableStateSpaceModels.jl. Finally, we provide examples using
Turing.jl that glues these composable functions together with priors on parameters to
use with HMC samplers, which involves a small amount of problem-specific code.

The package DifferentiableStateSpaceModels.jl is narrowly focused on calculat-
ing perturbation solutions and their derivatives. First, we develop a domain-specific
language to specify state-space model variables and equations using Symbolics.jl (see
Gowda et al., 2022). Users can also specify optional equations for steady-state evaluation
or initial conditions. Second, we generate the symbolic derivatives for the model to use in
the perturbation solution algorithms.10 The Symbolics.jl ecosystem allows us to define
a Dynare-like domain-specific language, and then the necessary functions are differenti-
ated symbolically and exported as regular Julia functions. At that point, the connection
to the previous symbolic language is severed, and the functions we generate behave as—
and perform identically to— handcrafted functions and gradients in Julia. Second, we
implement the first- and second-order solutions to the approximated state-space model
using standard algorithms. Finally, we find the gradient of those solutions with respect to
the parameters. Tying this back to our earlier discussion of differentiable programming, if
we think of a perturbation solution as a function that takes a model and a set of parameter
values and generates a state-space representation, then we are providing a custom gradi-
ent for that function so that any downstream usage of the state-space (e.g., its matrices,
vectors, and tensors) is differentiable with respect to the model parameters.

The generated state-space model for a given set of parameters is typically fed into
DifferenceEquations.jl, which provides a variety of standard features such as simu-
lations and likelihood calculations—both using a marginalized approach with a Kalman
filter and a joint approach fixing the noise. Crucially, these functions themselves are given
high-performance custom derivatives. Again, if we think of a log-likelihood as taking a
given state-space representation, observables, and possibly noise, then we are providing
a function that calculates the log-likelihood and finds its gradients with respect to the
state-space matrices/tensors and possibly the high-dimensional latent variables.

10To get those derivatives, we can either use AD or symbolic derivatives. We chose the latter. While AD
might be more efficient in some cases (e.g., heterogeneous agent models) where we do not want to flatten
the computational graph, it is harder to implement as it requires a mixed reverse and forward approach
given our need to have both derivatives of the model and cross-derivatives with respect to the parameters
of interest.
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Finally, the most easily replaceable component is the problem-specific implementation
of the likelihood and priors for the HMC sampler. This is used within the Turing.jl prob-
abilistic programming language embedded within Julia. Users only need to define the
prior distributions of the parameters to draw, manipulate the observables as required, call
DifferentiableStateSpaceModels.jl to calculate the perturbation given sampled pa-
rameters, and then use the solution to the DSGE downstream in DifferenceEquations.jl

to calculate the log-likelihood. Gradients are provided to the sampler by Turing using the
underlying AD package (Zygote.jl in our implementation), given the custom rules de-
fined in the core packages. The full examples using the above packages to replicate the
experiments in the paper are provided in HMCExamples.jl.

6 Main Results

Next, we present our main results. First, we estimate a canonical real business cycle model
and compare the efficiency and robustness of HMC against RWMH. Second, we estimate
a real small open economy model based on Schmitt-Grohé and Uribe (2003), where we
show even larger efficiency gains. Third, we estimate a medium-scale New Keynesian
DSGE model, namely Fernández-Villaverde and Guerrón-Quintana (2021), close to the
models used for real policy analysis.

6.1 Estimating the Real Business Cycle Model

A canonical real business cycle model can be characterized by equation system (32),
where c, k, y, z represent consumption, capital, output, and the TFP level respectively. The
system includes four equations: an intertemporal Euler equation, a resource constraint, a
production function, and the law of motion for TFP:

1
ct
− β

αezt+1kα−1
t+1 + (1 − δ)

ct+1
= 0

ct + kt+1 − (1 − δ) kt − yt = 0

yt − ezt kα
t = 0

zt+1 − ρzt − σϵt+1 = 0,

(32)

where {ϵt} follows an i.i.d standard Gaussian distribution.
We set as pseudotrue parameter values α = 0.3, β = 0.998, ρ = 0.9, δ = 0.025, and

σ = 0.1, all standard values in quarterly calibrated models. Then, we simulate two sets
of 200 artificial observations for consumption ct and investment it = kt+1 − (1 − δ) kt,
one set coming from the first-order solution of the model and the other from the second-
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order solution. To avoid stochastic singularity, we introduce a small measurement error
(Gaussian with variance of 1e − 5 for each variable).

We estimate the model using the simulated data and assuming the researcher knows
δ = 0.025, σ = 0.1, and the variance of the measurement error, but must learn about α,
β, and ρ. As β is close to 1, we sample βdraw = 100(1/β − 1) instead. As priors, we use
a truncated normal for α with mean 0.3, standard deviation 0.025, 0.2 lower truncation
bound, and 0.5 upper truncation bound; for βdraw we use a Gamma with mean 0.25 and
standard deviation 0.1; and for ρ we use a Beta with mean 0.5 and standard deviation 0.2.

Table 1: RWMH with Marginal Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.2996 0.0078 821.2 1.0009 0.8295 2.6029 315
βdraw 0.2 0.204 0.0529 418.99 1.0009 0.4232 1.328 315

ρ 0.9 0.8981 0.0074 6188.4 1.0 6.2509 19.615 315

Notes: We draw 110,000 samples in total and discard the first 11000 samples. The sampling time is measured in seconds and excludes
model file generation and compilation.

Table 1 reports the results of estimating the first-order RBC model evaluating the
marginal likelihood with a Kalman filter and sampling from the posterior with a RWMH.
We run this exercise with Dynare. We picked Dynare as a benchmark because it is a) the
most popular software for the solution and estimation of DSGE models and b) a high-
quality, state-of-the-art alternative based on highly optimized C++ code, incorporating
several algorithmic advances into the solution and estimation algorithms, and so repre-
sents a stronger benchmark relative to existing Julia implementations.

Table 2: NUTS with Marginal Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.2994 0.0076 3214.6 1.0007 49.456 10.152 317
βdraw 0.2 0.2003 0.0512 3282.7 1.0002 50.503 10.367 317

ρ 0.9 0.8985 0.0073 3638.4 1.0 55.976 11.491 317

Notes: We draw 7,150 samples in total and discard the first 650 samples. The sampling time is measured in seconds and excludes
Julia compilation time.

Table 2 reports the results when, instead, we sample from the posterior using NUTS
using our Julia library. The length of the samples is chosen such that the total sam-
pling times are roughly the same in both experiments.11 NUTS traverses the posterior
more efficiently than RWMH: the ESS as a percentage of the total draws (ESS%) is several
orders of magnitude higher for NUTS. As an example, for βdraw, the ESS% is less than
0.5% with RWMH and 50% with NUTS. The efficiency advantage, however, comes with
the overhead cost of gradient evaluation. The ESS per second of the HMC approach is

11All timed numerical experiments in this section are conducted on an AWS t3.xlarge instance with four
vCPUs and 16 GiB memory. Untimed experiments and the empirical application are run on an m5.8xlarge
instance with 32 vCPUs and 128 GiB memory.
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only between four and seven times higher than for RWMH for α and βdraw, which are
harder to explore, but drops 60% for ρ, whose posterior distribution is easier to trans-
verse for RWMH. As an end result, both of the posteriors drawn with RWMH and HMC
are centered around the pseudotrue parameter values and their standard deviations are
similar.12

Table 3: NUTS with Joint Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.2982 0.0071 41.168 1.0191 1.0292 0.0501 822
βdraw 0.2 0.1932 0.0504 84.815 1.0048 2.1204 0.1032 822

ρ 0.9 0.8982 0.0075 248.1 1.0064 6.2024 0.3019 822

Notes: We draw 4,400 samples in total and discard the first 400 samples. The sampling time is measured in seconds and excludes
Julia compilation time.

Table 3 reports the results from the joint likelihood method when we draw jointly the
parameters and the latent states using NUTS. While we still get roughly the same poste-
riors, the ESS% drops because now we draw from a much higher dimensional parameter
space: 3 + 200 = 203 overall. Also, we need more time (822 seconds) to get convergence.

Figure 1: NUTS with Marginal Likelihood, RBC Model, First-order

12To monitor convergence, we employ the R-hat value, which measures the comparability of samples
over draws and across chains and, by doing so, provides a diagnostic for failures of the chain to provide
representative samples from the posterior space (Gelman and Rubin, 1992). Values substantially greater
than 1.0 indicate systematic differences across chains that may result from poor mixing.
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Figure 2: NUTS with Joint Likelihood, RBC Model, First-order

Nonetheless, this experiment shows how NUTS can work in the joint likelihood case.
To see this, we can look at the trace plots and the posterior densities of 10 chains sam-
pled from the posterior, each with 5000 draws. Figure 1 shows the case for the marginal
likelihood and Figure 2 the scenario for the joint likelihood (here and in all the relevant
figures, the posterior is reported after applying a kernel density smoother). Even with
just 5000 draws, the NUTS sampler traverses the posterior nearly as efficiently in the joint
likelihood case as in the marginal likelihood scenario.

Table 4: RWMH with Marginal Likelihood on Particle Filter, RBC Model, Second-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.3057 0.0074 43.986 1.0287 0.4887 0.0034 13127
βdraw 0.2 0.2248 0.0447 33.342 1.0434 0.3705 0.0025 13127

ρ 0.9 0.9023 0.0064 414.87 1.0068 4.6097 0.0316 13127

Notes: We draw 10,000 samples in total and discard the first 1000 samples. The sampling time is measured in seconds and excludes
model file generation and compilation.

Table 4 reports the results of estimating the second-order RBC model. In this case, the
data-generating process is no longer linear-Gaussian. Hence, we apply the particle filter
to filter through the latent variables in the marginal likelihood approach. For our com-
parisons, we apply the bootstrap particle filter (arguably the simplest variant of particle
filter) in Dynare, with 20,000 particles.13

13The particle size chosen is within the range of those commonly used in DSGE applications and around
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Table 5: NUTS with Joint Likelihood, RBC Model, Second-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.3053 0.0077 89.406 1.0131 2.2351 0.0355 2519
βdraw 0.2 0.2243 0.046 115.37 1.009 2.8842 0.0458 2519

ρ 0.9 0.9021 0.0047 481.7 1.0046 12.042 0.1912 2519

Notes: We draw 11,000 samples in total and discard the first 1000 samples. The sampling time is measured in seconds and excludes
Julia compilation time.

Table 5 reports the results that NUTS with joint likelihood yields for the same second-
order RBC model using our Julia library. The performance of the joint likelihood ap-
proach is clearly superior to the one with RWMH. The HMC sampler only takes around
19.2% of the time to deliver results comparable to or better than RWMH in terms of the
R-hat value.14

Figure 3 plots the posterior densities of βdraw obtained with each sampler. The red line
is the posterior density from RWMH with 9,000 draws and the black line is the posterior
density from NUTS and 10,000 draws. The posterior from RWMH suggests a lack of
convergence. Even a NUTS with 4,000 draws (blue line) is smoother than the posterior
from RWMH, despite taking much less time to run.

Figure 3: Posterior Density of βdraw

Figure 4 shows 10 independent samples from the posterior using the HMC joint likeli-
hood case. The results are mixing well, even if we are drawing samples from a relatively
high dimensional space. Figure 5 displays the scatter plots of the pairwise joint distribu-
tions across the three parameters in the RBC model. The three methods yield similar joint
distributions of the samples, with α and β highly correlated and ρ near independent.

the smallest that yielded posterior estimates of acceptable quality. Experiments with fewer particles yielded
slow mixing or completely stopped chains, a known issue for particle filters (Pitt et al., 2012).

14We do not compute in any of our estimates the case with HMC and the particle filter, because the latter
is not differentiable. While there are some proposals for differentiable particle filters (e.g., Corenflos et al.,
2021), they remain an area of active research.
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Figure 4: NUTS with Joint Likelihood, RBC Model, Second-order

The joint likelihood approach provides an interesting by-product. Since we draw from
the latent state variables, we can back them out without having to run a smoother. Fig-
ure 6 compares the estimated posterior mean of the TFP shocks (blue lines) and their
true value (red lines), with the left panel for the first-order RBC and right panel for the
second-order RBC. The light blue region shows two standard deviation credible regions.
Our estimates back out the value of original shocks accurately and the regions show the
heteroskedasticity in the shock posteriors.
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(a) First-order, Marginal Likelihood

(b) First-order, Joint Likelihood

(c) Second-order, Joint Likelihood

Figure 5: Joint Distribution of Parameters
Notes: The left panel shows the correlation with α on the horizontal axis and βdraw on the vertical axis. The middle panel shows the
correlation with βdraw on the horizontal axis and ρ on the vertical axis. The right panel shows the correlation with α on the horizontal
axis and ρ on the vertical axis.
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(a) First-order RBC (b) Second-order RBC

Figure 6: Inferred TFP Shocks of RBC Model
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Frequentist Statistics. While we carry out Bayesian estimation, frequentist statistics can
provide a complementary check. More concretely, we estimate the RBC model with all
three methods mentioned above with multiple samples of simulated data from the model.
The pseudotrue values of the underlying parameters are the same, but each generated
sample is different because shock realizations vary. Moreover, we generate samples of
different lengths to gauge small sample effects.

Table 6: Frequentist Statistics – Kalman

Parameters Mean Bias MSE Cov. Prob. 80% Cov. Prob. 90%

T = 50 α 0.0013 7.18 × 10−5 92% 98%
βdraw 0.0347 0.0030 93% 96%

ρ −0.006 0.0002 82% 95%

T = 100 α 0.0009 5.26 × 10−5 91% 95%
βdraw 0.0171 0.0016 95% 96%

ρ −0.003 9.44 × 10−5 79% 93%

T = 200 α 0.0009 4.45 × 10−5 87% 94%
βdraw 0.0139 0.0014 90% 98%

ρ −0.001 3.44 × 10−5 82% 87%
Notes: All these statistics are generated from 100 estimation replications. We draw 5500
samples in total and discard the first 500 samples.

Table 6 shows the frequentist statistics for the estimation exercises for the first-order
RBC with the Kalman filter and HMC. The first two columns show the mean and standard
deviation of the estimated mean with respect to the pseudotrue value. The third and
fourth columns show the coverage probability, i.e., whether the 80% and 90% credible
interval of the estimated posterior contains the pseudotrue value. The three panels from
top to bottom vary the sample length, T, from 50 to 200.15 As lengthier data lead to more
accurate identification, the mean bias and mean squared error both decrease, on average,
as T increases. Also, coverage probabilities become more accurate.

Table 7 and 8 report the frequentist statistics for the joint likelihood approach in first-
and second-order respectively. We see patterns similar to those in the previous case,
which means the joint likelihood approach we propose is credible and robust to differ-
ent shock realizations.

Robustness. Interestingly, we find that the joint likelihood approach is more robust than
the marginal likelihood approach with respect to the starting values of the chain. We

15While Bayesian credible intervals need not have the coverage properties of confidence intervals and
posterior summaries like the mean need not be unbiased point estimates in a frequentist sense, the Bern-
stein–von Mises theorem tells us that, for well-identified regular models, they have these properties asymp-
totically when maximum likelihood estimates do (as in our model).
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Table 7: Frequentist Statistics – First-order Joint

Parameters Mean Bias MSE Cov. Prob. 80% Cov. Prob. 90%

T = 50 α 0.0013 7.26 × 10−5 92% 97%
βdraw 0.0353 0.0031 93% 96%

ρ −0.006 0.0002 81% 93%

T = 100 α 0.0009 5.26 × 10−5 92% 96%
βdraw 0.0172 0.0016 95% 96%

ρ −0.003 9.50 × 10−5 78% 94%

T = 200 α 0.0008 4.59 × 10−5 85% 93%
βdraw 0.0130 0.0013 89% 97%

ρ −0.001 3.48 × 10−5 81% 87%
Notes: All these statistics are generated from 100 estimation replications. We draw 5500
samples in total and discard the first 500 samples.

Table 8: Frequentist Statistics – Second-order Joint

Parameters Mean Bias MSE Cov. Prob. 80% Cov. Prob. 90%

T = 50 α −0.001 7.14 × 10−5 96% 98%
βdraw 0.0313 0.0027 94% 98%

ρ −0.009 0.0004 74% 84%

T = 100 α 0.0010 4.46 × 10−5 94% 96%
βdraw 0.0181 0.0017 94% 100%

ρ −0.002 8.69 × 10−5 72% 90%

T = 200 α 0.0013 3.36 × 10−5 88% 98%
βdraw 0.0086 0.0017 84% 92%

ρ −0.001 2.03 × 10−5 88% 94%
Notes: All these statistics are generated from 50 estimation replications. We draw 5500
samples in total and discard the first 500 samples.

illustrate this robustness by starting the samplers from a Cartesian product of grids on
α, β, and ρ respectively.16 Figure 7 and Figure 8 show the cumulative mean values and
Figure 9 and Figure 10 show the trace plots.

While different sampling methods share similar robustness in estimating the first-
order RBC model, the results differ for the second-order case. For example, the upper
panel of Figure 8 is from our joint likelihood approach with samples drawn from HMC,
and the lower panel of Figure 8 shows the counterparts from particle-filtered marginal
likelihood with RWMH run with Dynare. The parameters, from left to right, are α, βdraw,

16We create a grid of 4 points for each of these three parameters, and the Cartesian product will be 64
starting points overall. The grid for α is [0.25, 0.3, 0.35, 0.4]. The grid for βdraw is [0.1, 0.175, 0.25, 0.325]. The
grid for ρ is [0.4625, 0.625, 0.7875, 0.95].
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and ρ respectively, with the black dashed line showing the pseudotrue values that gener-
ated the simulated data.

NUTS, Marginal Likelihood, First-order

NUTS, Joint Likelihood, First-order

RWMH, Marginal Likelihood, First-order

α βdraw ρ

Figure 7: Robustness Comparison on First-order RBC: Cumulative Mean

Figure 8 tells us that even in a relatively simple problem like second-order RBC mod-
els, RWMH with a particle filter takes a long time to converge to the high-density region
of the posterior, while the HMC sampler with the joint likelihood approaches a stable
target value quickly across different starting points. This phenomenon is rooted in the
mechanism of the sampling methods. Since HMC utilizes gradient information, the sam-
pler arrives at the typical set quickly, even in a high-dimensional sample space. RWMH,
on the other hand, takes only gradual steps toward the typical set when we do not start
at it. Comparing the time it takes for the cumulative mean of the parameter draws for
the second-order RBC model to approach a stable value, HMC is seen to be more time-
efficient even at the cost of gradient computations. This is more apparent in the trace
plots, Figure 10, which have an even dispersion and limited autocorrelation almost from
the beginning for the HMC approach, but display limited dispersion and high persistence
for the RWMH approach. Thus, other moments of the posterior distribution beyond the
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NUTS, Joint Likelihood, Second-order

RWMH, Marginal Likelihood, Second-order

α βdraw ρ

Figure 8: Robustness Comparison on Second-order RBC: Cumulative Mean

mean may display even less robustness when using RWMH.
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NUTS, Marginal Likelihood, First-order

NUTS, Joint Likelihood, First-order

RWMH, Marginal Likelihood, First-order

α βdraw ρ

Figure 9: Robustness Comparison on First-order RBC: Trace Plot

NUTS, Joint Likelihood, Second-order

RWMH, Marginal Likelihood, Second-order

α βdraw ρ

Figure 10: Robustness Comparison on Second-order RBC: Trace Plot
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6.2 Estimating a Small Open Economy Model

To demonstrate how performance scales with model size and complexity, we apply our
methods to estimate a slightly larger model, a version of the real small open economy
model of Schmitt-Grohé and Uribe (2003). We use a model based on their model 2, with
debt elastic interest rates, but in addition to the TFP shock, we add two AR(1) shocks: a
shock to the intertemporal marginal utility of consumption and a shock to the interest rate
premium representing global stochastic discount factor variation as in Arellano (2008).
Thus, we can estimate the model with three observables: output, interest rates, and the
current account balance, all measured with Gaussian observation noise with a variance of
0.001. Beyond these additions, the model equations are identical to those used in Schmitt-
Grohé and Uribe (2003) and so are deferred to Appendix H.

We simulate two samples of 200 periods with pseudotrue values taken from Schmitt-
Grohé and Uribe (2003) and reproduced in Appendix H.17 We estimate seven structural
parameters, including α, βdraw, and ρ (the parameters analogous to the ones we estimated
in the RBC model), as well as the persistence of the additional two shocks ρu and ρv, the
Frisch elasticity of labor supply γ, and the response of the interest premium to debt ψ.
The priors are described in Table 16 in Appendix H.

We estimate the first-order model using the marginal likelihood computed by Kalman
filter both via HMC and RWMH. We also estimate at first order using the joint likeli-
hood approach with HMC. At second order, we compare HMC with the joint likelihood
approach and RWMH with the approximate marginal likelihood computed with the par-
ticle filter. First-order results are in Tables 9-11, and second-order in Tables 12 and 13.

Table 9: NUTS with Marginal Likelihood, SGU Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.32 0.3096 0.0176 5833.2 1.0000 116.66 5.3217 1096
γ 2.0 2.1082 0.4123 4881.7 1.0004 97.634 4.4537 1096
ψ 7.42 · 10−4 8.28 · 10−4 2.82 · 10−4 7068.4 0.9998 141.37 6.4486 1096

βdraw 4 3.7819 0.1571 5875.8 1.0001 117.52 5.3606 1096
ρ 0.42 0.4742 0.0494 6044.9 1.0000 120.90 5.5148 1096
ρu 0.2 0.1264 0.0552 5742.3 0.9998 114.85 5.2388 1096
ρv 0.4 0.4144 0.0933 4021.2 0.9998 80.424 3.6686 1096

Notes: We draw 6,500 samples in total and discard the first 1,500 samples. The sampling time is measured in seconds and the
acceptance rate is automatically tuned to 65%.

By estimating a model similar to the RBC but with 3 latent shocks and 3 observable
variables instead of 2 shocks and 2 observables, and with 7 estimated parameters instead
of 3, we show the improved relative performance of HMC in larger models. In terms
of speed as measured by ESS/second, at first order with the marginal likelihood, HMC

17The structure of the experiment is the same as that for the RBC model. One sample comes from the first-
order solution and the other from the second-order solution. The estimation with RWMHs is undertaken
in Dynare and the estimation with HMC in our Julia library.
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Table 10: RWMH with Marginal Likelihood, SGU Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.32 0.3252 0.0148 4310.0 1.0000 0.0035 2.1842 1973
γ 2.0 2.5377 0.4158 2709.8 1.0030 0.0022 1.3732 1973
ψ 7.42·10−4 7.78·10−4 2.7·10−4 10949.0 1.0000 0.0090 5.5484 1973

βdraw 4 4.2672 0.1215 2734.6 1.0006 0.0023 1.3858 1973
ρ 0.42 0.3618 0.0523 2857.7 1.0003 0.0024 1.4482 1973
ρu 0.2 0.2976 0.0653 2802.0 1.0024 0.0023 1.4200 1973
ρv 0.4 0.1842 0.0834 2765.1 1.0076 0.0023 1.4013 1973

Notes: We draw 1,350,000 samples in total and discard the first 135,000 samples. The sampling time is measured in seconds and
excludes model file generation and compilation.

Table 11: NUTS with Joint Likelihood, SGU Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.32 0.3083 0.0180 3653.5 1.0000 73.070 1.2544 2912
γ 2.0 2.1508 0.4231 4581.1 0.9998 91.622 1.5729 2912
ψ 7.42·10−4 7.45 · 10−4 2.83 · 10−4 5629.5 1.0006 112.59 1.9329 2912

βdraw 4 3.9452 0.1728 1643.0 1.0000 32.860 0.5641 2912
ρ 0.42 0.4064 0.0540 1843.8 0.9998 36.876 0.6331 2912
ρu 0.2 0.2215 0.0684 1572.9 1.0012 31.458 0.5401 2912
ρv 0.4 0.3237 0.1081 2523.9 0.9999 50.479 0.8666 2912

Notes: We draw 6,500 samples in total and discard the first 1,500 samples. The sampling time is measured in seconds and the
acceptance rate is automatically tuned to 90%.

dominates for all parameters, achieving a sampling rate over 3 times as fast for most
parameters. The joint likelihood approach, which must sample 600 latent shock values in
addition to the 7 structural parameters, remains somewhat slower than RWMH for most
parameters, but never by more than a factor of 3.

But while RWMH with the Kalman filter is faster in terms of speed than the NUTS
with the joint likelihood approach, it does worse in terms of posterior quality. While
all procedures display acceptable R-hat statistics, RWMH densities, shown in Figure 11,
display non-smoothness characteristic of uneven local exploration while HMC densities
do not.18

Table 12: NUTS with Joint Likelihood, SGU Model, Second-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.32 0.3117 0.0160 1707.5 0.9999 34.150 0.2154 7926
γ 2.0 1.9895 0.3637 1943.6 0.9998 38.873 0.2452 7926
ψ 7.42·10−4 6.66 · 10−4 1.04 · 10−4 1354.1 1.0011 27.083 0.1708 7926

βdraw 4 4.0892 0.0563 1076.5 1.0003 21.530 0.1358 7926
ρ 0.42 0.4557 0.0523 991.79 1.0004 19.836 0.1251 7926
ρu 0.2 0.1616 0.0642 781.89 1.0040 15.638 0.0986 7926
ρv 0.4 0.3772 0.0561 1772.3 0.9998 35.447 0.2236 7926

Notes: We draw 6,500 samples in total and discard the first 1,500 samples. The sampling time is measured in seconds and the
acceptance rate is automatically tuned to 65%.

At second order, the differences are much more dramatic: as measured by ESS/sec-

18Because data are simulated separately for the RWMH and Julia runs, and the joint and Kalman ap-
proaches differ in period 0 initialization, caution is warranted in interpreting visible differences in posterior
centering, which may reflect sampling differences.
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Figure 11: First Order RWMH+Kalman vs. HMC+Kalman vs. HMC+Joint

ond, HMC outperforms RWMH with the particle filter by a factor of 10-40x. Further,
this raw speed difference understates the performance difference, because the particle fil-
ter approach exhibits substantial quality issues. This can be seen in the R-hat statistics,
which remain substantially above 1 for some parameters even with 60,000 particles used
and 100,000 draws. This issue is also visible in the estimated posterior densities, shown
in Figure 12, which deviate from the HMC estimates in location and shape. These qual-
ity problems are a consequence of the slow and uneven mixing of RWMH methods even
when the raw number of draws is large.

Compared to the RBC experiments, the performance and quality advantages for HMC
for this larger model are even more pronounced, particularly at second order. Given
theoretical results suggesting that the computational cost of particle filtering can scale
exponentially in the dimension of the latent parameter space (Rebeschini and van Handel,
2015) while HMC can scale polynomially in total number of parameters for well-behaved
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Table 13: RWMH with Marginal Likelihood on Particle Filter, SGU Model, Second-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.32 0.2975 0.0201 253.97 1.0008 0.0028 0.0068 37556
γ 2.0 1.4900 0.1673 201.79 1.3876 0.0022 0.0054 37556
ψ 7.42·10−4 7.92·10−4 2.78·10−4 472.07 1.0007 0.0052 0.0126 37556

βdraw 4 4.5813 0.1409 203.95 1.0442 0.0023 0.0054 37556
ρ 0.42 0.3772 0.0443 212.68 1.0010 0.0024 0.0057 37556
ρu 0.2 0.3226 0.0822 204.25 1.0239 0.0023 0.0054 37556
ρv 0.4 0.2933 0.0624 206.64 1.0378 0.0023 0.0055 37556

Notes: We draw 100,000 samples in total and discard the first 10,000 samples. We use 60,000 particles. The sampling time is measured
in seconds and excludes model file generation and compilation.

Figure 12: Second Order RWMH+Particle vs. HMC+Joint

posterior distributions (see Appendix G), this suggests that HMC may be particularly
useful for estimating nonlinear models at medium scales.
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6.3 Estimating a New Keynesian Model

To demonstrate our methods in a larger scale application using real data, we estimate
a version of Fernández-Villaverde and Guerrón-Quintana (2021) (FVGQ), a canonical
medium-scale New Keynesian model. We have a representative household that con-
sumes, saves, supplies labor, and holds monet. A final good firm produces output with
a continuum of intermediate goods that are produced by monopolistic competitors fac-
ing Calvo-type nominal rigidities. The representative household is the owner of all these
firms. The government sets monetary and fiscal policy. There are two unit root processes:
one governs the level of Hicks-neutral TFP and the other investment-specific technol-
ogy.19

Table 14: Prior Distribution for Structural Parameters

Parameter Distribution Mean Std
βdraw Gamma 0.25 0.1

h Beta 0.7 0.1
κ Normal 4 1.5
α Normal 0.3 0.05
θp Beta 0.5 0.1
χ Beta 0.5 0.15

γR Beta 0.75 0.1
γy Normal 0.12 0.05
γΠ Normal 1.5 0.25

100 (Π̄ − 1) Gamma 0.95 0.1
ḡ Beta 0.3 0.05
ρd Beta 0.5 0.2
ρφ Beta 0.5 0.2
ρg Beta 0.5 0.2
σA Inverse Gamma 0.1 1
σd Inverse Gamma 0.1 1
σϕ Inverse Gamma 0.1 1
σµ Inverse Gamma 0.1 1
σm Inverse Gamma 0.1 1
σg Inverse Gamma 0.1 1
Λµ Gamma 0.0034 0.001
ΛA Gamma 0.00178 0.00075

There are six exogenous shocks in the model: household consumption preference,
labor supply, TFP, investment efficiency, fiscal policy, and monetary policy. The first two
shocks are to preferences, and the third and fourth are to the supply-side. We select
six time series in real data for our estimation: inflation measured by CPI, the federal

19See Fernández-Villaverde and Guerrón-Quintana (2021) for a full description of model and data
sources. Our implementation is identical except for the choice of priors, summarized below.
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funds rate, the growth rate of real wages, the growth rate of real GDP per capita, per
capita working hours, and the inverse relative price of investment with respect to the
price of consumption growth. This model contains 28 parameters to estimate and Table 14
summarizes the priors.

We estimate the model using first- and second-order perturbations, and, within first-
order, produce estimates using both the marginal likelihood approach with the Kalman
filter and the joint likelihood approach. In all versions, the observation equations are
augmented with isotropic Gaussian measurement noise with variance 4e − 4 for each
variable.

Table 15: Estimation, FVGQ model

Parameters Mean Std. ESS R-hat
Kalman Joint

1st
Joint
2nd

Kalman Joint
1st

Joint
2nd

Kalman Joint
1st

Joint
2nd

Kalman Joint
1st

Joint
2nd

βdraw 0.2107 0.2091 0.2034 0.0778 0.0795 0.0777 364.18 356.43 781.69 1.0030 1.0024 1.0037
h 0.7534 0.7372 0.7538 0.1137 0.1188 0.1148 189.01 181.83 502.38 1.0035 1.0144 1.0004
κ 4.2667 4.1932 4.1359 1.3054 1.2162 1.2679 499.63 468.10 1475.4 1.0091 1.0006 1.0002
χ 0.4893 0.5086 0.5060 0.1501 0.1517 0.1450 218.89 250.94 1199.4 1.0316 1.0002 1.0000

γR 0.4636 0.4806 0.4650 0.0745 0.0791 0.0780 262.76 308.30 796.87 1.0004 0.9999 1.0010
γΠ 1.9077 1.9004 1.8969 0.0761 0.0824 0.0849 315.30 293.19 1797.0 1.0014 1.0022 1.0019

100 (Π̄ − 1) 0.8991 0.8867 0.8961 0.0826 0.0842 0.0800 351.67 225.21 923.10 1.0014 1.0083 1.0003
ρd 0.5781 0.5894 0.5924 0.2064 0.2081 0.2098 178.16 133.55 431.25 1.0037 1.0008 0.9999
ρφ 0.9619 0.9574 0.9569 0.0235 0.0309 0.0310 250.04 63.954 278.07 1.0000 1.0002 1.0050
ρg 0.7921 0.7767 0.7910 0.1570 0.1618 0.1586 128.31 137.32 530.22 1.0025 1.0110 1.0001
ḡ 0.3656 0.3708 0.3712 0.0543 0.0564 0.0574 316.70 177.06 828.77 1.0003 1.0230 1.0009

σA 0.0073 0.0075 0.0075 0.0012 0.0013 0.0013 279.13 229.15 1093.1 0.9999 1.0003 1.0014
σd 0.0269 0.0285 0.0296 0.0126 0.0150 0.0171 223.30 181.06 413.28 1.0049 1.0100 1.0000
σϕ 0.0146 0.0142 0.0140 0.0024 0.0022 0.0023 290.50 206.74 677.21 1.0008 0.9999 1.0009
σµ 0.0072 0.0072 0.0073 0.0012 0.0011 0.0012 270.72 318.07 816.76 1.0005 1.0067 1.0008
σm 0.0078 0.0075 0.0077 0.0015 0.0014 0.0015 214.51 312.64 776.08 1.0073 1.0001 1.0006
σg 0.0095 0.0093 0.0095 0.0020 0.0021 0.0020 172.03 106.32 503.85 1.0038 1.0136 1.0002
Λµ 0.0037 0.0038 0.0038 0.0009 0.0010 0.0009 238.88 280.80 916.97 1.0035 1.0010 1.0002
ΛA 0.0015 0.0015 0.0015 0.0005 0.0005 0.0005 313.22 268.18 1344.7 1.0146 1.0032 0.9999

Notes: We draw 7,700 samples in total and discard the first 700 samples for the marginal likelihood and 1st-order joint likelihood
estimations. We draw 11,000 samples in total and discard the first 1,000 samples for the 2nd-order joint likelihood estimation. The
marginal likelihood takes 18,454 seconds to run, the 1st-order joint takes 16,102 seconds, and the 2nd-order joint takes 236,303
seconds.

Summary statistics from estimates are displayed in Table 15. Inferred shocks for
second-order with joint likelihood are plotted in Figure 13, while density and trace plots
for second order are in Figure 14. Figures for other approaches are collected in Ap-
pendix I. As is apparent from the ESS/second results, both the marginal and joint likeli-
hood methods exhibit comparable speed, in spite of the much larger number of variables
for which the joint method must sample. Parameter estimates from both methods, which
should produce identical results up to sampling error, are similar, and R-hat statistics
and trace plots for both indicate acceptable mixing, both signs indicating that the joint
likelihood approach also produces estimates of high quality. The second-order pertur-
bation approximation takes a longer time per effective sample, reflecting the additional
cost of model computations, but also produces samples that appear to be well mixed and
precisely estimated.
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Figure 13: Inferred Shocks of Fernández-Villaverde and Guerrón-Quintana (2021):
Second-order with joint likelihood

The level of measurement noise has a substantial impact on the speed and quality of
HMC sampling due to the smoothing out of the likelihood function. At low noise lev-
els, due to the weak identification of the parameters, the posterior contains ridges that
are difficult to sample from, and so require small steps, regardless of whether gradient
information is used. Thus, the estimates suffer from poor mixing and unreliable esti-
mates. With larger noise, the posterior becomes more diffuse and so the sampler can
traverse it more rapidly, resulting in fast mixing and an accurate approximation of the
true posterior. However, this also results in the data becoming less informative for the
parameter values, so the posterior remains close to the prior. However, HMC is not at
the core of this issue, but the well-known weak identification of New Keynesian models.
Appendix G discusses how these modeling choices relate to posterior geometry and how
the performance of HMC varies with this geometry.

Our results indicate that HMC is capable of sampling models in high dimensions, but
that other posterior features, including multimodality or near-singularity, may still create
problems for the sampler (or for any other MCMC method). In fact, one final advantage
of gradient-based methods like HMC is that the ill-conditioning of the gradients allowed
diagnosis of the problem, as high curvature can result in gradients that differ strongly
from their finite difference approximations, which can be caught in software unit test-
ing. Also, there is active research into more specialized methods that can handle such
likelihood features more robustly. Many of these methods, such as that of Graham et al.
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(2022), also rely on gradient information, and so we believe that differentiable program-
ming tools will continue to be a key component of a possible new generation of fast and
reliable sampling algorithms.

Figure 14: NUTS with Joint likelihood, Fernández-Villaverde and Guerrón-Quintana
(2021), Second-order, 1
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Figure 15: NUTS with Joint likelihood, Fernández-Villaverde and Guerrón-Quintana
(2021), Second-order, 2
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Figure 16: NUTS with Joint likelihood, Fernández-Villaverde and Guerrón-Quintana
(2021), Second-order, 3

42



7 Conclusion

State-space models are widely utilized in economics. The estimation of this set of mod-
els is not a trivial task. In particular, estimating nonlinear and non-Gaussian state-space
models has always been time-consuming and challenging. In this paper, we have pro-
posed a new set of methods applying HMC with the differentiable programming paradigm
to tackle this estimation problem from a novel perspective. We first show that the AD can
support relatively complicated derivative computations. Then, we sample the underlying
latent state variables along with the model parameters and evaluate the joint likelihood
rather than a marginal likelihood only on the parameters.

Future research along this strand can be vibrant. First of all, with the toolkit we pro-
vide, a variety of gradient-based estimation methods can be applied to state-space mod-
els. For example, variational inference can use gradient-based optimization to produce
posterior approximations at greater scale and speed than sampling-based methods. We
have already applied Automatic Differentiation Variational Inference (Kucukelbir et al.,
2017) to the model in Fernández-Villaverde and Guerrón-Quintana (2021). We antici-
pate that advanced variational methods will enable further improvements beyond those
offered by HMC. Second, the methods we propose are scalable with the dimension of
estimation, which will simplify the process of estimating heterogeneous agent models
(for instance, in the spirit of Kaplan et al., 2018). Third, there are many possible applica-
tions to general state-space models, including micro applications to panel and repeated
cross-section data. We hope to see widespread usage of differentiable programming in
economics in the next few years.
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Appendix A Perturbation Solution and Notation

In this section, we define the perturbation solution to the DSGE model, in both first- and
second-order. The algebra is implemented in the DifferentiableStateSpaceModels.jl

repository and is independent of downstream usage such as simulation or calculating
likelihoods.

A.1 Tensor Notation

We use tensors for convenience when referring to high-dimensional objects. For Jacobian
matrices,

[
fy
]i

α
= ∂ f i

∂yα is the (i, α) (i-th row, j-th column) element of the derivative of f
with respect to y. The dimension of the Jacobian matrix will be m × n where m is the
dimension of f and n is the dimension of y. i = 1...m and α = 1...n. An example of tensor
contraction notation is

[
fy
]i

α
[gx]

α
j = ∑n

α=1
∂ f i

∂yα
∂gα

∂xj .

For Hessian matrices,
[
Hxy

]i
αγ

is row i, column α, page γ of a 3-dimensional object.
Denote m, n, k as the dimensions for H, x, y respectively, then i = 1, . . . , m, α = 1, . . . , n,
γ = 1, . . . , k.

A.2 Definitions

Dimensions of related vectors and matrices:

– x: nx × 1

– y: ny × 1

– ϵ: nϵ × 1

– η: nx × nϵ

– Σ: nϵ × nϵ.

Denote x̄, ȳ as the DSS that satisfies: H (ȳ, ȳ, x̄, x̄) = 0 when muting the shock processes.
Also:

– All vectors are in columns.

– nx: the number of state variables; ny: the number of control variables; nθ: the num-
ber of model parameters; nϵ: the number of exogenous shocks.

– There are n = nx + ny equations in the system. H : Rny × Rny × Rnx × Rnx → Rn.
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– x′ = h (x) + ηϵ: function h is the law of motion of the states; ϵ represents the i.i.d.
exogenous shocks with a variance-covariance (VCV) matrix Σ; η represents the load-
ings of the shocks.

– y = g (x): g is the policy function.

A.3 First-Order Solution

We need to solve for gx and hx. The dimensions of gx and hx are ny × nx and nx × nx,
respectively. A first-order Taylor expansion of (21) yields:

Hy′y′ +Hyy +Hx′x′ +Hxx = 0,

where Hx;ij =
∂Hi
∂xj

, i = 1, . . . , n, j = 1, . . . nx; Hy;ij =
∂Hi
∂yj

, i = 1, . . . , n, j = 1, . . . ny. All of
these derivatives are evaluated at the DSS. Then:

[
Hx′ Hy′

] [ x′

y′

]
+
[
Hx Hy

] [ x
y

]
= 0. (A.1)

Following Klein (2000), we apply the generalized Schur decomposition to matrices[
Hx′ Hy′

]
and

[
Hx Hy

]
from equation (A.1), and follow the Blanchard-Kahn con-

dition to reorder so that ∀i,
∣∣∣S22,ii

T22,ii

∣∣∣ < 1. Therefore:

(
S11 S12

0 S22

)(
Z11 Z12

Z21 Z22

)[
x′

y′

]
+

(
T11 T12

0 T22

)(
Z11 Z12

Z21 Z22

)[
x
y

]
= 0. (A.2)

The dimension of T22 or S22 should be ny × ny as in the Blanchard-Kahn condition to
ensure that the converging solution exists and is unique. Hence:

gx = −Z−1
22 Z21 (A.3)

hx = − (Z11 + Z12gx)
−1 (S11)

−1 T11 (Z11 + Z12gx) . (A.4)

A.4 Second-Order Solution

We need to solve for gxx, hxx, gσσ, hσσ. The dimensions of gxx and hxx are ny × nx × nx

and nx × nx × nx. The dimensions of gσσ and hσσ are ny × 1 and nx × 1.
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Second-order perturbation of (21) yields:([
Hy′y′

]i

αγ
[gx]

γ
δ [hx]

δ
k +

[
Hy′y

]i

αγ
[gx]

γ
k +

[
Hy′x′

]i

αδ
[hx]

δ
k +

[
Hy′x

]i

αk

)
[gx]

α
β [hx]

β
j

+
[
Hy′
]i

α
[gxx]

α
βδ [hx]

δ
k [hx]

β
j +

[
Hy′
]i

α
[gx]

α
β [hxx]

β
jk

+

([
Hyy′

]i

αγ
[gx]

γ
δ [hx]

δ
k +

[
Hyy

]i
αγ

[gx]
γ
k +

[
Hyx′

]i

αδ
[hx]

δ
k +

[
Hyx

]i
αk

)
[gx]

α
j

+
[
Hy
]i

α
[gxx]

α
jk

+

([
Hx′y′

]i

βγ
[gx]

γ
δ [hx]

δ
k +

[
Hx′y

]i

βγ
[gx]

γ
k + [Hx′x′ ]

i
βδ [hx]

δ
k + [Hx′x]

i
βk

)
[hx]

β
j

+ [Hx′ ]
i
β [hxx]

β
jk

+
[
Hxy′

]i

jγ
[gx]

γ
δ [hx]

δ
k +

[
Hxy

]i
jγ [gx]

γ
k + [Hxx′ ]

i
jδ [hx]

δ
k + [Hxx]

i
jk = 0,

for all combinations of i, j, k, where i = 1, . . . , n, α, γ = 1, . . . , ny, β, δ, j, k = 1, . . . , nx. If we
vectorize the 2nd and 3rd dimension of gxx and hxx objects, and turn them into matrices
(hence the dimensions are ny × n2

x and nx × n2
x respectively), then the above equation can

be written as:

[
Hy′ 0

] [ gxx

hxx

]
hx ⊗ hx +

[
Hy Hy′gx +Hx′

] [ gxx

hxx

]
+ C = 0, (A.5)

where C is a
(
nx + ny

)
∗
(
n2

x
)

matrix. We compute each row i of C below,

Ci,· = vec




gxhx

gx

hx

I


⊤ 

Hy′y′ Hy′y Hy′x′ Hy′x

Hyy′ Hyy Hyx′ Hyx

Hx′y′ Hx′y Hx′x′ Hx′x

Hxy′ Hxy Hxx′ Hxx


i


gxhx

gx

hx

I


 . (A.6)

Notice that the matrix in the middle of (A.6) is the Hessian of Hi, the i-th equation of H.

Expression A.5 is a Sylvester equation for

[
gxx

hxx

]
. We can exploit the radius of hx by

using a doubling method.20 Alternately, one can use off-the-shelf solvers for the general-
ized Sylvester equation such as SLICOT, the method we implement in practice.

20Rewrite the above equation as AXF ⊗ F + BX + C = 0 where

A =
[
Hy′ 0

]
F = hx

B =
[
Hy Hy′ gx +Hx′

]
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After we solve gxx and hxx, we can write down the equations for gσσ and hσσ:

[
Hy′
]i

α
[gx]

α
β [hσσ]

β +
[
Hy′
]i

α
[gσσ]

α +
[
Hy
]i

α
[gσσ]

α + [Hx′ ]
i
β [hσσ]

β

+
[
Hy′y′

]i

αγ
[gx]

γ
δ [η]

δ
ξ [gx]

α
β [η]

β
ϕ [Σ]

ϕ
ξ

+
[
Hy′x′

]i

αδ
[η]δξ [gx]

α
β [η]

β
ϕ [Σ]

ϕ
ξ

+
[
Hy′
]i

α
[gxx]

α
βδ [η]

δ
ξ [η]

β
ϕ [Σ]

ϕ
ξ

+
[
Hx′y′

]i

βγ
[gx]

γ
δ [η]

δ
ξ [η]

β
ϕ [Σ]

ϕ
ξ

+ [Hx′x′ ]
i
βδ [η]

δ
ξ [η]

β
ϕ [Σ]

ϕ
ξ = 0,

for all i, where i = 1, . . . , n, α, γ = 1, . . . , ny, β, δ = 1, . . . , nx, ϕ, ξ = 1, . . . , nϵ. This yields a

linear equation for

[
gσσ

hσσ

]
. We reorganize the above equation to get:

(
Hy′ +Hy Hy′gx +Hx′

)( gσσ

hσσ

)
+ B = 0. (A.7)

Define function sum (A) = ∑i,j Aij, and the notation for element-wise product (Hadamard
product) as ⊙. Then, the vector B follows:

Bi = sum

[ gx

I

]⊤ [
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]i [
gx

I

]
+
[
Hy′
]i

gxx

⊙
[
ηΣη′]

for all i = 1, . . . , n. Here
[
Hy′
]i

gxx is a tensor shrink, that is to say,
{[

Hy′
]i

gxx

}
βδ

=

∑
ny
α=1

[
Hy′
]i

α
[gxx]

α
βδ. To implement this we can first squeeze gxx into an ny ×

(
n2

x
)

matrix,

and then reshape the matrix product
[
Hy′
]i

gxx into an nx × nx matrix.

Then, one can apply an iterative doubling method to solve out X for this Sylvester equation:

X1 = −B−1C
Xn+1 = Xn + AnXnFn ⊗ Fn

An+1 = An An

Fn+1 = FnFn.
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Appendix B Perturbation Solution Derivatives

This section derives the derivatives of the DSS and solutions in first- and second-order
with respect to the model parameters. Again, the algebra in this section is implemented in
the DifferentiableStateSpaceModels.jl repository, and is independent of downstream
usage such as simulation or calculating likelihoods.

B.1 Derivative of the DSS

The parameters θ in general will change the DSS values x̄, ȳ. We are interested in ∂x̄
∂θ and

∂ȳ
∂θ . Let F(x; θ) ≡ EtH (y′, y, x′, x; θ). We take the derivatives of (21) with respect to θ:

Fθ (x; θ) = Hx
∂x
∂θ

+Hy
∂y
∂θ

+Hx′
∂x′

∂θ
+Hy′

∂y′

∂θ
+Hθ = 0,

where Hθ;ij =
∂Hi
∂θj

, i = 1, . . . , n, j = 1, . . . nθ. We evaluate this function at the DSS x′ =
x = x̄, y′ = y = ȳ, [

Hy +Hy′ Hx +Hx′
] [ ∂ȳ

∂θ
∂x̄
∂θ

]
+Hθ = 0. (B.1)

Expression B.1 is a linear equation system when we treat ∂x̄
∂θ and ∂ȳ

∂θ as unknown variables.

B.2 First-Order Results

We are interested in ∂gx
∂θ and ∂hx

∂θ , both evaluated at the DSS. From (21), the first-order
model solution satisfies:

Fx (x; θ) = Hx +Hygx +Hx′hx +Hy′gxhx = 0. (B.2)

For each element θi of θ, we take the derivative of equation (B.2):

Fx,θi (x; θ) =
dHx

dθi
+

dHy

dθi
gx +Hy

∂gx

∂θi
+

dHx′

dθi
hx +Hx′

∂hx

∂θi

+
dHy′

dθi
gxhx +Hy′

∂gx

∂θi
hx +Hy′gx

∂hx

∂θi
= 0,

and we evaluate the system at the DSS x′ = x = x̄, y′ = y = ȳ. Notice that H is
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H (y′, y, x′, x; θ), and the chain rule applies here as we compute the total derivative of H:

[
dHx

dθi

]α

β

=
[
Hxy′ +Hxy

]α

βξ

[
∂ȳ
∂θi

]ξ

+ [Hxx′ +Hxx]
α
βδ

[
∂x̄
∂θi

]δ

+

[
∂Hx

∂θi

]α

β[
dHy

dθi

]α

γ

=
[
Hyy′ +Hyy

]α

γξ

[
∂ȳ
∂θi

]ξ

+
[
Hyx′ +Hyx

]α

γδ

[
∂x̄
∂θi

]δ

+

[
∂Hy

∂θi

]α

γ[
dHx′

dθi

]α

β

=
[
Hx′y′ +Hx′y

]α

βξ

[
∂ȳ
∂θi

]ξ

+ [Hx′x′ +Hx′x]
α
βδ

[
∂x̄
∂θi

]δ

+

[
∂Hx′

∂θi

]α

β[dHy′

dθi

]α

γ

=
[
Hy′y′ +Hy′y

]α

γξ

[
∂ȳ
∂θi

]ξ

+
[
Hy′x′ +Hy′x

]α

γδ

[
∂x̄
∂θi

]δ

+

[
∂Hy′

∂θi

]α

γ

, (B.3)

where α = 1, . . . , n, γ, ξ = 1, . . . , ny, β, δ = 1, . . . , nx. We can apply ∂x̄
∂θ and ∂ȳ

∂θ , the results
from the last subsection here.

Thus, for each element θi of θ, we stack the unknowns as:

[
∂gx
∂θi
∂hx
∂θi

]
and solve a Sylvester

equation:


dHy′
dθi

dHy
dθi

dHx′
dθi

dHx
dθi


⊤ 

gxhx

gx

hx

I

+
[
Hy Hx′ +Hy′gx

] [ ∂gx
∂θi
∂hx
∂θi

]
+
[
Hy′ 0

] [ ∂gx
∂θi
∂hx
∂θi

]
hx = 0,

B.3 Second-Order Results

We are interested in ∂gxx
∂θ ,∂hxx

∂θ ,∂gσσ

∂θ ,∂hσσ
∂θ , all evaluated at the DSS.

We differentiate the Sylvester equation (A.5) here, which yields a Sylvester equation
itself. For each element θi of θ:

AXB + DX + C = 0

⇓

A
∂X
∂θi

B + D
∂X
∂θi

+

[
∂A
∂θi

XB + AX
∂B
∂θi

+
∂D
∂θi

X +
∂C
∂θi

]
= 0. (B.4)

Equation (B.4) has a form similar to equation (A.5), and we can solve it with a similar
algorithm. Since the coefficients A, B, D do not change across different θi, we solve them
in parallel.

For simplicity of notation, we define Ψ as the Hessian of the original equation system
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with respect to variable stacking [y′, y, x′, x]. Ψi is, for the i-th equation:

Ψi ≡


Hy′y′ Hy′y Hy′x′ Hy′x

Hyy′ Hyy Hyx′ Hyx

Hx′y′ Hx′y Hx′x′ Hx′x

Hxy′ Hxy Hxx′ Hxx


i

. (B.5)

We derive the variables above in equation (B.4) by applying chain rules:

∂A
∂θi

=
[

dHy′
dθi

0
]

(B.6)

∂B
∂θi

=
∂hx

∂θi
⊗ hx + hx ⊗

∂hx

∂θi
(B.7)

∂D
∂θi

=
[

dHy
dθi

dHy′
dθi

gx +Hy′
∂gx
∂θi

+
dHx′
dθi

]
(B.8)

∂Cj,·
∂θi

= vec




∂gx
∂θi

hx + gx
∂hx
∂θi

∂gx
∂θi
∂hx
∂θi

0


⊤

Ψj


gxhx

gx

hx

I




+ vec




gxhx

gx

hx

I


⊤

Ψj


∂gx
∂θi

hx + gx
∂hx
∂θi

∂gx
∂θi
∂hx
∂θi

0




+ vec




gxhx

gx

hx

I


⊤

dΨj

dθi


gxhx

gx

hx

I


 , (B.9)

where j = 1, . . . , n iterating on each equation of H.

We compute the derivatives with the form
d[Hab]j

dθi
in the last line of equation (B.9)

through a total derivative that requires third-order derivatives of the original equation
system:

d [Hab]j
dθi

=

{[
Haby′ +Haby

]
ξ

[
∂ȳ
∂θi

]ξ

+ [Habx′ +Habx]δ

[
∂x̄
∂θi

]δ
}

j

+
∂ [Hab]j

∂θi
, (B.10)

54



where a, b ∈ [y′, y, x′, x], ξ = 1, . . . , ny, δ = 1, . . . , nx. The combination, therefore, can be
expressed as:

dΨj

dθi
=

[
∂Ψj

∂y′
+

∂Ψj

∂y

]
ξ

[
∂ȳ
∂θi

]ξ

+

[
∂Ψj

∂x′
+

∂Ψj

∂x

]
δ

[
∂x̄
∂θi

]δ

+
∂Ψj

∂θi
. (B.11)

For the equations with gσσ and hσσ, we know they satisfy equation (A.7):

A

[
gσσ

hσσ

]
+ B = 0. (B.12)

Therefore, for each θi in θ, we take the derivative on both sides of the equation:

∂A
∂θi

[
gσσ

hσσ

]
+ A

[
∂gσσ

∂θi
∂hσσ
∂θi

]
+

∂B
∂θi

= 0. (B.13)

Equation (B.13) is a linear equation in

[
∂gσσ

∂θi
∂hσσ
∂θi

]
. We enumerate j = 1, . . . , n for the index

of the equations:

∂A
∂θi

=
[

dHy′
dθi

+
dHy
dθi

dHy′
dθi

gx +Hy′
∂gx
∂θi

+
dHx′
dθi

]
(B.14)

∂Bj

∂θi
= sum

[ ∂gx
∂θi

0

]⊤ [
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]j [
gx

I

]⊙
[
ηΣη′]

+ sum

[ gx

I

]⊤ [
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]j [ ∂gx
∂θi

0

]⊙
[
ηΣη′]

+ sum




[

gx

I

]⊤ d

[
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]j

dθi

[
gx

I

]⊙
[
ηΣη′]


+ sum


d
[
Hy′
]j

dθi
gxx +

[
Hy′
]j ∂gxx

∂θi

⊙
[
ηΣη′]


+ sum

[ gx

I

]⊤ [
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]j [
gx

I

]
+
[
Hy′
]j

gxx

⊙
[

η
∂Σ
∂θi

η′
] , (B.15)
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or, for ∂Bj

∂θi
, if we use the same matrix for H·· as in equation (B.9):

∂Bj

∂θi
= sum






∂gx
∂θi

0
0
0


⊤

Ψj


gx

0
I
0

+


gx

0
I
0


⊤

Ψj


∂gx
∂θi

0
0
0

+


gx

0
I
0


⊤

dΨj

dθi


gx

0
I
0



+
d
[
Hy′
]j

dθi
gxx +

[
Hy′
]j ∂gxx

∂θi

⊙
[
ηΣη′]



+ sum






gx

0
I
0


⊤

Ψj


gx

0
I
0

+
[
Hy′
]j

gxx

⊙
[

η
∂Σ
∂θi

η′
]
 . (B.16)

Since Σ is a positive definite matrix, we can impose a Cholesky decomposition Σ = ΓΓ′,

and in this case, ∂Σ
∂θi

= ∂Γ
∂θi

Γ′ + Γ
(

∂Γ
∂θi

)′
.

Here, for
d
[
Hy′

]j

dθi
gxx and

[
Hy′
]j ∂gxx

∂θi
, we first squeeze the second and the third dimen-

sions of the gxx matrix, and then reshape the result coming from matrix multiplication.

Appendix C Sequential Solution and Derivatives

Given Appendices A and B, we now derive the {x̂t, ŷt}T
t=1 and dx̂t

dθ , dŷt
dθ , dx̂t

dx0
, dŷt

dx0
, and dx̂t

dϵ , dŷt
dϵ

for all t = 1, . . . T. These are conditional on a particular ϵ, θ, and x̂0. As before, the
algebra in this section is implemented in the DifferenceEquations.jl repository, and is
not specific to perturbation solutions.

C.1 Solution

The system could be either linear or nonlinear. For nonlinear systems, we apply pruning
(Andreasen et al., 2018), shutting down certain higher-order terms in the state transition
equation to preserve the monotonicity of the likelihood in the shocks.

First-order (linear) terms come from:

ŷt = gx x̂t (C.1)

x̂t+1 = hx x̂t + ηϵt+1. (C.2)
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Second-order (nonlinear) terms (i = 1, . . . , ny and j = 1, . . . , nx) come from:

x̂ f
t+1 = hx x̂ f

t + ηϵt+1 (C.3)

[ŷt]
i = [gx x̂t]

i +
1
2

(
x̂ f

t

)⊤
[gxx]

i x̂ f
t +

1
2
[gσσ]

i (C.4)

[x̂t+1]
j = [hx x̂t]

j +
1
2

(
x̂ f

t

)⊤
[hxx]

j x̂ f
t +

1
2
[hσσ]

j + [ηϵt+1]
j (C.5)

x̂ f
0 = x̂0. (C.6)

C.2 Derivatives

With Respect to Parameters. We derive ∂x̂t
∂θi

, ∂ŷt
∂θi

:

∂x̂t

∂θi
=

∂ [h (x̂t−1; θ) + ηϵt]

∂θi

= h1 (x̂t−1; θ)
∂x̂t−1

∂θi
+ h2,i (x̂t−1; θ)

= h1 (x̂t−1; θ) h1 (x̂t−2; θ)
∂x̂t−2

∂θi
+ h1 (x̂t−1; θ) h2,i (x̂t−2; θ) + h2,i (x̂t−1; θ)

...

=
t−1

∑
j=0

[
t−1

∏
k=j+1

h1 (x̂k; θ)

]
h2,i
(
x̂j; θ

)
(C.7)

∂ŷt

∂θi
=

∂ [g (x̂t; θ)]

∂θi

= g1 (x̂t; θ)
∂x̂t

∂θi
+ g2,i (x̂t; θ) . (C.8)

In the first-order case, we use the recursion for ∂x̂t
∂θi

, ∂ŷt
∂θi

:

∂x̂t+1

∂θi
= hx

∂x̂t

∂θi
+

∂hx

∂θi
x̂t (C.9)

∂ŷt

∂θi
= gx

∂x̂t

∂θi
+

∂gx

∂θi
x̂t (C.10)

∂x̂0

∂θi
= 0. (C.11)
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In the second-order case with pruning, we use the recursion:

∂x̂ f
t+1

∂θi
= hx

∂x̂ f
t

∂θi
+

∂hx

∂θi
x̂ f

t (C.12)

∂x̂ f
0

∂θi
= 0 (C.13)[

∂x̂t+1

∂θi

]k
=

[
hx

∂x̂t

∂θi

]k
+

[
∂hx

∂θi
x̂t

]k

+
1
2

(
∂x̂ f

t
∂θi

)⊤

[hxx]
k x̂ f

t +
1
2

(
x̂ f

t

)⊤ [∂hxx

∂θi

]k
x̂ f

t +
1
2

(
x̂ f

t

)⊤
[hxx]

k ∂x̂ f
t

∂θi
+

1
2

[
∂hσσ

∂θi

]k

(C.14)[
∂ŷt

∂θi

]j
=

[
gx

∂x̂t

∂θi

]j
+

[
∂gx

∂θi
x̂t

]j

+
1
2

(
∂x̂ f

t
∂θi

)⊤

[gxx]
j x̂ f

t +
1
2

(
x̂ f

t

)⊤ [∂gxx

∂θi

]j
x̂ f

t +
1
2

(
x̂ f

t

)⊤
[gxx]

j ∂x̂ f
t

∂θi
+

1
2

[
∂gσσ

∂θi

]j

(C.15)[
∂x̂0

∂θi

]k
= 0, (C.16)

where k = 1, . . . , nx, j = 1, . . . , ny.

With Respect to Shocks. From the chain rule, we have:

∂x̂t

∂ϵi
=

∂h (x̂t−1)

∂x̂t−1

∂x̂t−1

∂ϵi

=

(
t−1

∏
j=i

∂h
(
x̂j
)

∂x̂j

)
η (C.17)

∂ŷt

∂ϵi
=

∂g (x̂t)

∂x̂t

∂x̂t

∂ϵi

=
∂g (x̂t)

∂x̂t

(
t−1

∏
j=i

∂h
(
x̂j
)

∂x̂j

)
η. (C.18)
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In the first-order case, we use the recursions for ∂x̂t
∂ϵi

and ∂ŷt
∂ϵi

where t ⩾ i,

∂x̂t+1

∂ϵi
= hx

∂x̂t

∂ϵi
(C.19)

∂ŷt

∂ϵi
= gx

∂x̂t

∂ϵi
(C.20)

∂x̂i

∂ϵi
= η. (C.21)

For the second-order pruning case, we use the recursions for ∂x̂t
∂ϵi

and ∂ŷt
∂ϵi

where t ⩾ i,

∂x̂ f
t+1

∂ϵi
= hx

∂x̂ f
t

∂ϵi
(C.22)[

∂ŷt

∂ϵi

]j
=

[
gx

∂x̂t

∂ϵi

]j
+

1
2

(
∂x̂ f

t
∂ϵi

)⊤

[gxx]
j x̂ f

t +
1
2

(
x̂ f

t

)⊤
[gxx]

j ∂x̂ f
t

∂ϵi
(C.23)

[
∂x̂t+1

∂ϵi

]k
=

[
hx

∂x̂t

∂ϵi

]k
+

1
2

(
∂x̂ f

t
∂ϵi

)⊤

[hxx]
k x̂ f

t +
1
2

(
x̂ f

t

)⊤
[hxx]

k ∂x̂ f
t

∂ϵi
(C.24)

∂x̂ f
i

∂ϵi
= η (C.25)

∂x̂i

∂ϵi
= η. (C.26)

With respect to initial conditions. By applying the chain rule, we have:

∂x̂t

∂x̂0
=

∂ [h (x̂t−1; θ) + ηϵt]

∂x̂0
=

∂h (x̂t−1; θ)

∂x̂t−1

∂x̂t−1

∂x̂0
(C.27)

∂ŷt

∂x̂0
=

∂g (x̂t; θ)

∂x̂0
=

∂g (x̂t; θ)

∂x̂t

∂x̂t

∂x̂0
, (C.28)

where for the first-order case:

∂ŷt

∂x̂0
= gx

∂x̂t

∂x̂0
(C.29)

∂x̂t+1

∂x̂0
= hx

∂x̂t

∂x̂0
(C.30)

∂x̂0

∂x̂0
= I, (C.31)
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and for the second-order case:

∂x̂ f
t+1

∂x̂0
= hx

∂x̂ f
t

∂x̂0
(C.32)

∂x̂ f
0

∂x̂0
= I (C.33)[

∂x̂t+1

∂x̂0

]k
=

[
hx

∂x̂t

∂x̂0

]k
+

1
2

(
∂x̂ f

t
∂x̂0

)⊤

[hxx]
k x̂ f

t +
1
2

(
x̂ f

t

)⊤
[hxx]

k ∂x̂ f
t

∂x̂0
(C.34)

[
∂ŷt

∂x̂0

]j
=

[
gx

∂x̂t

∂x̂0

]j
+

1
2

(
∂x̂ f

t
∂x̂0

)⊤

[gxx]
j x̂ f

t +
1
2

(
x̂ f

t

)⊤
[gxx]

j ∂x̂ f
t

∂x̂0
(C.35)

∂x̂0

∂x̂0
= I. (C.36)

Appendix D The Kalman Filter and Its Derivatives

For linear-Gaussian state-space models, we can evaluate the series of posterior distribu-
tions of the latent state and the marginal likelihood with the Kalman filter. We compute
the derivatives associated with this whole process as well. As before, the algebra in this
section is implemented in the DifferenceEquations.jl repository, and is not specific to
perturbation solutions.

The Kalman Filter. To run the Kalman filter, in addition to the initial condition x̂0, we
need its prior covariance matrix P0. A natural choice is the solution to the Lyapunov
equation:

hxP0h′x − P0 + ηΣη′ = 0. (D.1)

For simplicity of notation, we define: G = Q

[
gx

I

]
. Let the constant loadings of

steady state values be H. Let ū =

[
ȳ
x̄

]
. Then the formula to update with period t data
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follows the recursion:

xt|t−1 = hxxt−1 (D.2)

Pt|t−1 = hxPt−1h′x + ηΣη′ (D.3)

zt = Gxt|t−1 + Hū (D.4)

Vt = GPt|t−1G′ + Ω (D.5)

zt ∼ N (zt, Vt) (D.6)

xt = xt|t−1 + Pt|t−1G′V−1
t (zt − zt) (D.7)

Pt = Pt|t−1 − P′
t|t−1G′V−1

t GPt|t−1. (D.8)

Derivatives. By differentiating the Lyapunov equation (D.1) above, we get another Lya-
punov equation and ∂P0

∂θi
is the root of the equation:

hx
∂P0

∂θi
h′x −

∂P0

∂θi
+

(
∂hx

∂θi
P0h′x + hxP0

∂h′x
∂θi

+ η
∂Σ
∂θi

η′
)
= 0. (D.9)

We also track the derivatives of each of the quantities above with respect to the parameters
that we are interested in:

∂xt|t−1

∂θi
=

∂hx

∂θi
xt−1 + hx

∂xt−1

∂θi
(D.10)

∂Pt|t−1

∂θi
=

∂hx

∂θi
Pt−1h′x + hx

∂Pt−1

∂θi
hx + hxPt−1

(
∂hx

∂θi

)⊤
+ η

∂Σ
∂θi

η′ (D.11)

∂zt

∂θi
=

∂G
∂θi

xt|t−1 + G
∂xt|t−1

∂θi
+ H

∂ū
∂θi

(D.12)

∂Vt

∂θi
=

∂G
∂θi

Pt|t−1G′ + G
∂Pt|t−1

∂θi
G′ + GPt|t−1

(
∂G
∂θi

)⊤
(D.13)

z̃t ∼ N (zt, Vt)

∂xt

∂θi
=

∂xt|t−1

∂θi
+

∂Pt|t−1

∂θi
G′V−1

t (z̃t − zt) + Pt|t−1

(
∂G
∂θi

)⊤
V−1

t (z̃t − zt)

− Pt|t−1G′V−1
t

∂Vt

∂θi
V−1

t (z̃t − zt)− Pt|t−1G′V−1
t

∂zt

∂θi
(D.14)

∂Pt

∂θi
=

∂Pt|t−1

∂θi
−

∂Pt|t−1

∂θi

′
G′V−1

t GPt|t−1 − P′
t|t−1

(
∂G
∂θi

)⊤
V−1

t GPt|t−1

+ P′
t|t−1G′V−1

t
∂Vt

∂θi
V−1

t GPt|t−1 − P′
t|t−1G′V−1

t
∂G
∂θi

Pt|t−1

− P′
t|t−1G′V−1

t G
∂Pt|t−1

∂θi
. (D.15)
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Appendix E Reverse-Mode AD

AD enables the fast computation of gradients via the chain rule for functions that are
composed of primitive functions for which gradients are already available. While existing
AD systems generally maintain a large library of such primitives, for more advanced
numerical tasks one may need to implement a new primitive, as we do for perturbative
DSGE solutions.

To explain the ingredients necessary to perform such a task in a reverse-mode sys-
tem, we give a brief overview of reverse-mode AD with examples of custom implemen-
tations.21 For more in-depth coverage, see Griewank and Walther (2008), as well as the
relevant sections of documentation for ChainRules.jl, PyTorch, and JAX.

Reverse vs. Forward Mode. Consider a composite function f ◦ g : Rn → R defined by
composing g : Rn → Rm and f : Rm → R by steps y = g(x), a = f (y). By the chain
rule, da

dx = da
dy · dy

dx . Reverse-mode AD computes this derivative by first evaluating the
component functions in the order from input to output, then evaluating their derivatives
in order from output to input. The key ingredient needed for each component function is
an adjoint rule, also called a vector-Jacobian product (vJp) or pullback. It takes as input a
sensitivity (or cotangent) representing the gradient of an output function with respect to
an input. Letting ȳ = da

dy ∈ R1×m be the sensitivity returned by the adjoint rule of f , the
chain rule gives the result that the sensitivity returned by the adjoint rule for g must be:

x̄ :=
da
dx

= ȳ · dy
dx

∈ R1×n. (E.1)

The map that produces this result is the product of the sensitivity vector and the Jacobian
of g, hence the name vector-Jacobian product. Treating the space of sensitivities x̄ (the
”cotangent space”) as Rm, the pullback is computed by applying the transpose (or adjoint,
hence the other name) of the m × n Jacobian matrix to produce a sensitivity in Rn.

To illustrate, let f (y) = 1
2 y′Cy = ∑m

i=1
ci
2 y2

i for C ∈ Rm×m be a diagonal matrix with
entries ci along the diagonal, and g(x) = Mx for M ∈ Rm×n and consider evaluating
f ◦ g(x) := 1

2 x′M′CMx at x̃. The Jacobians of these functions are equal to dg
dx = M and d f

dy =

y′C, so by the chain rule,

da
dx

=
d f
dy

◦ dg
dx

= (Mx)′CM =
m

∑
i=1

ci(Mx)i Mi·. (E.2)

Forward mode would implement this expression by first evaluating g and its derivative,

21Implementation of new function f (x) in a forward-mode system is generally less complex and can
coincide with writing code to evaluate ∇ f (x) as a function of its inputs x.
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then passing to f and its derivative. To implement this computation in reverse mode,
starting with the forward pass, execute the steps in order and store the intermediates:

ỹ = Mx̃

ã =
m

∑
i=1

ci

2
ỹ2

i .

Next, apply the adjoint rules. The rule for f (ỹ) takes in a sensitivity ā ∈ R = 1 (since it is
the final step) and outputs a sensitivity ȳ ∈ R1×m with ith entry ciỹi. The adjoint rule for
g(x̃) takes in a sensitivity ȳ and outputs a sensitivity x̄ ∈ R1×n equal to ȳM, which is the
gradient, and recognizing that ỹ = Mx̃, identical to the result returned by equation (E.2).

Advantages of Reverse-Mode AD. To see why reverse mode may yield performance
improvements, consider composing the above operations with another function x =

h(z) := A z for A ∈ Rn×n, with the goal of evaluating the gradient of f ◦ g ◦ h(z) =

f (M · Az) with respect to z. Function h has adjoint rule z̄ = x̄A, which is a vector-matrix
multiply, with computational cost O(n2), which adds to the O(mn) cost of the adjoint rule
for g and the O(m) cost of the adjoint rule for f . Had differentiation instead proceeded
from input to output, as in forward mode, it would have been necessary to compute the
Jacobian of g ◦ h, which requires the matrix-matrix multiply M · A, an O(mn2) operation.
As a result, for this example, reverse mode achieves a speedup roughly by a factor of n
over the forward mode. This result illustrates the general principle that reverse mode
dominates for single-output functions with high-dimensional inputs (e.g., a likelihood
over many observables).

The choice of primitives here was purely illustrative, and each component function
could have been decomposed further. For example, the matrix-vector multiply Mx could
have been represented as a sum of products of scalars ∑j Mi,j xj for i = 1 . . . m. The choice
to represent at the matrix level ensures that in the reverse pass, the computation can also
be represented as a matrix operation (a vector-matrix multiply), which may be faster due
to linear algebra subroutines. In this and other cases, rather than a single chain of function
compositions, the final result may take the form of a directed computational graph, with
functions as nodes passing the output to other functions along edges. As some outputs
may be connected to multiple inputs or vice versa, the efficiency of primal and derivative
evaluation may depend on the order of operations along the graph. Without any reuse,
the gradient may contain a number of operations exponential in the number of nodes,
while the output-to-input traversal provided by reverse mode incurs a cost that is linear,
an exponential speedup (Griewank and Walther, 2008).22

22While reverse mode is generically applicable and possesses strong guarantees, it need not be strictly
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Implicit Functions. Further improvements to reverse mode may be obtained by ex-
panding the set of primitive functions to group computationally linked operations for
which one can write a custom gradient rule. Implicit functions provide an archetypal
example. Let g(x) be implicitly defined as the solution to f (x, y) = 0, supposing that
the hypotheses of the implicit function theorem are satisfied so that it exists and is dif-
ferentiable. To compute the forward pass, one might apply a nonlinear function solver,
such as a (quasi-)Newton method, which, if y ∈ Rn, may take k iterations at cost O(n3)

each to compute y. Applying reverse mode to each step sequentially results in an ad-
joint computation that will likewise have cost O(kn3). However, the implicit function
theorem states that when d f

dy is full rank at the solution (x, y∗), the derivative is given by
dy
dx = −(d f (x,y∗)

dy )−1 d f (x,y∗)
dx . The corresponding adjoint rule is a function that takes in a

sensitivity ȳ ∈ R1×n and outputs a sensitivity x̄ ∈ R1×k:

x̄ := −ȳ(
d f (x, y∗)

dy
)−1 d f (x, y∗)

dx
.

As the components of this derivative are available from the forward pass (often them-
selves computed by forward-mode AD), this can be computed in one linear system solve,
at cost O(n3), saving a factor of k relative to unrolling.

Similar principles have been applied to generate custom adjoint rules that enable use
within AD systems of many other high-level operations including optimization (Blondel
et al., 2021), differential equations (Chen et al., 2018), optimal control (Amos et al., 2018),
and a variety of other applications. We directly apply the above implicit function rule
when solving for the derivative of a steady state, and we derive new rules for several
other steps in the rational expectations solution algorithms. This illustrates the motivation
of scientific ML (Rackauckas, 2022) that while reverse-mode systems are highly effective
and scalable in large data applications, there is substantial flexibility in terms of choices
of algorithms to implement rules for gradients that can be critical to implementation in
particular scientific computing settings.

Appendix F Reverse-Mode AD Derivation

In this section, we derive the reverse-mode AD rules for both the sequential solution and
the Kalman filter likelihood. While the Julia package Zygote.jl can handle the calcula-
tion automatically, we implement the actual algebra for performance improvement. The
algebra in this section is implemented in the DifferenceEquations.jl repository and is

optimal. Optimization of computational graph traversal based on function structure can sometimes re-
duce the operation count even further. However, computing such optimization is computationally hard, so
reverse mode, possibly augmented with custom gradient rules, remains dominant in ML.
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not specific to perturbation solutions.
For notation simplicity, we denote the log-posterior evaluated at each time period as

lpt. Eventually, we take the adjoint of the log-posterior in the last period ¯lpT as the input.

First-order System. In the first-order system, the evolution of xt and yt and the calcula-
tion of log-posterior follow:

xt+1 = Axt + Bϵt

yt = Cxt

lpt = lpt−1 + L (yt)

Thus, we reverse the iteration in t to back out the adjoints. For t = T, T − 1, . . . , 2, 1,

ȳt = ¯lpT · L′ (yt)

x̄t = x̄t + C⊤ȳt

x̄t−1 = A⊤ x̄t

ϵ̄t = B⊤ x̄t

C̄ = C̄ + ȳtx⊤t
Ā = Ā + x̄tx⊤t−1

B̄ = B̄ + x̄tϵ
⊤
t

and we will return Ā, B̄, C̄, x̄0, {ϵ̄t}.

Second-order System. In the pruned second-order system, the evolution of xt and yt

and the calculation of log-posterior follow:

x f
t+1 = A1x f

t + Bϵt+1

[yt]
i = [C0]

i + [C1xt]
i +

1
2

(
x f

t

)⊤
[C2]

i x f
t

[xt+1]
j = [A0]

j + [A1xt]
j +

1
2

(
x f

t

)⊤
[A2]

j x f
t + [Bϵt+1]

j

lpt = lpt−1 + L (yt) .

Therefore, we reverse the iteration in t to back out the adjoints. For t = T, T −
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1, . . . , 2, 1,

ȳt = ¯lpT · L′ (yt)

x̄t = x̄t + C⊤
1 ȳt

x̄ f
t = x̄ f

t + ∑
i

(
C2,i + C⊤

2,i

)
x f

t ȳt,i

x̄t−1 = A⊤
1 x̄t

x̄ f
t−1 = A⊤

1 x̄ f
t + ∑

i

(
A2,i + A⊤

2,i

)
x f

t x̄t,i

ϵ̄t = B⊤
(

x̄t + x̄ f
t

)
C̄0 = C̄0 + ȳt

C̄1 = C̄1 + ȳtx⊤t

¯C2,i = ¯C2,i + x f
t

(
x f

t

)⊤
ȳt,i

Ā0 = Ā0 + x̄t

Ā1 = Ā1 + x̄tx⊤t−1 + x̄ f
t

(
x f

t−1

)⊤
Ā2,i = Ā2,i + x f

t

(
x f

t

)⊤
x̄t,i

B̄ = B̄ +
(

x̄t + x̄ f
t

)
ϵ⊤t .

Kalman Filter. With initial x0 and P0, for t = 1, . . . , T, the Kalman filter evolves as:

xt|t−1 = Axt−1

Pt|t−1 = APt−1A′ + BB′

zt = Cxt|t−1

Vt = CPt|t−1C′ + Ω

z̃t ∼ N (zt, Vt)

b = CPt|t−1

K = b⊤V−1
t

xt = xt|t−1 + K (z̃t − zt)

Pt = Pt|t−1 − Kb.
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Therefore for t = T, . . . , 1. We initialize P̄t = 0 and x̄t = 0.

P̄t|t−1 = P̄t

K̄ = −P̄tb⊤

b̄ = −K⊤P̄t

x̄t|t−1 = x̄t

K̄ = K̄ + x̄t (z̃t − zt)
⊤

z̄t = −K⊤ x̄t

b̄ = b̄ + V−1
t K̄⊤

V̄t = −V−⊤
t bK̄V−⊤

t

C̄ = C̄ + b̄P⊤
t|t−1

P̄t|t−1 = P̄t|t−1 + C⊤b̄

z̄t = z̄t + ¯lp · Lz (z̃t − zt, Vt)

V̄t = V̄t + ¯lp · LV (z̃t − zt, Vt)

C̄ = C̄ + V̄tCP⊤
t|t−1 + V̄⊤

t CPt|t−1

P̄t|t−1 = P̄t|t−1 + C⊤V̄tC

C̄ = C̄ + z̄tx⊤t|t−1

x̄t|t−1 = x̄t|t−1 + C⊤z̄t

Ā = Ā + P̄t|t−1AP⊤
t−1 + P̄⊤

t|t−1APt

P̄t−1 = A⊤P̄t|t−1A

B̄ = B̄ +
(

P̄t|t−1 + P̄⊤
t|t−1

)
B

Ā = Ā + x̄t|t−1x⊤t−1

x̄t−1 = A⊤ x̄t|t−1,

and we will return Ā, B̄, C̄, x̄0, P̄0.

Appendix G HMC Performance

While our results in the main text demonstrate the strength of HMC when applied to
DSGE models, its speed and reliability might depend on the likelihood functions and
priors and their numerical representation; see Stan Development Team (2022, Ch. 23-25)
for advice on building and troubleshooting models. Here, we offer a brief summary of
these issues in the context of state-space models.
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Theory of HMC Performance. An active theoretical literature describes conditions un-
der which HMC, or idealized versions more suitable for theoretical analysis, provably
yields improved speed or accuracy. While these conditions are rarely verifiable for or di-
rectly applicable to economic models used in practice, they do describe features that qual-
itatively agree with situations where HMC performs well or poorly in our experiments. In
the idealized setting of sampling from a d-dimensional N (0, Id) vector, asymptotic anal-
ysis suggests that optimally tuned RWMH requires O(d) function evaluations per (effec-
tive) independent sample drawn, while HMC requires O(d1/4) likelihood and gradient
evaluations per sample (Beskos et al., 2013). As reverse-mode AD provides gradients at
an approximately equal cost to function evaluations, these results suggest a major speed
advantage for HMC for large models.

Beyond this simple setting, results are known for broader classes of distributions; see
Chen et al. (2020) and references therein. A typical setting for these results is distribu-
tions in which the posterior is log-concave and, thus, unimodal. In such cases, the gra-
dient directs the sampler toward the vicinity of the mode and yields rapid exploration
of the typical set. Without log-concavity, and particularly in cases with multiple, widely
separated modes, as might be expected in cases of non-identification with non-interval
identified sets, methods that make local proposals, including HMC and RWMH, may be-
come ”trapped” in a single mode for an exponentially long amount of time and may fail
to accurately sample the posterior. Both practical experience and worst-case lower bound
results show that this situation is indeed challenging.23

Within the class of log-concave distributions, curvature as measured by the condition
number of the Hessian at the mode enters into bounds on the number of iterations needed
to draw a sample. Curvature can be large when some variables are on very different scales
than others, resulting in a long and narrow posterior that requires the sampler to move
exactly along the preferred direction or else fall into a very low probability region. While
gradient information helps find this direction more easily relative to a random walk, as
gradients are only local, this shape requires the sampler to take small steps, slowing down
exploration. The precise extent of this problem depends on the smoothness of the gradient
and Hessian, which also enter into bounds, as high-frequency fluctuations in the density
may be missed by a sampler. Finally, a good initial condition, formalized as a warm
start in which the initial sample is drawn from a density with a bounded ratio to the
true posterior, can prevent the sampler from requiring a long burn-in time of exploration
before it reaches the typical set and begins exploring more rapidly. While initializing

23There are many approaches that often achieve reasonable performance in practice in structured or non-
worst-case examples in the non-log-concave setting, such as methods based on tempering or annealing; see
Ge et al. (2018) for discussion. As many such methods build on gradient-based methods like HMC, they
are a potentially fruitful avenue for future applications of our procedures.
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at the mode is a common approach that works reasonably well in low dimensions, in
high dimensions the typical set may be far from the mode, and better performance may
be found by also using curvature information to obtain a distribution, obtainable by a
Laplace or variational approximation (Kucukelbir et al., 2017), or by annealing from a
sample from a previous run, possibly with a slightly modified distribution.

Sampling Issues. For state-space models, the conditions we discussed above provide
recommendations for practical model building and tuning. The choice to sample from
the ϵt’s, which are a priori independent, instead of the zt’s, which are a priori dependent,
tends to result in a posterior that is much less correlated across variables, better condi-
tioned, and easier to sample from. This is one example of reparameterization, a strategy
for improving the performance of HMC that is recommended as part of “best practices”
for model building (Stan Development Team, 2022, Ch. 24). Additional model features
that lead to less correlated posteriors and faster sampling include avoiding highly persis-
tent series by working with detrended data, modeling growth rates rather than levels, or
using flow variables rather than stocks. For example, in simulations of the RBC model,
numerical performance improved substantially when using investment rather than capi-
tal stock as an observable.

Another feature in state-space models that influences performance is the presence and
degree of noise in the observable variables, which facilitates sampling for two related
but conceptually distinct reasons. The first reason is to avoid near-stochastic singularity,
where the model is not stochastically singular, but close to it. In our experience, near-
singularity is a common source of failure both for HMC and particle filters. While this
manifests in numerical problems, it is in essence a problem with the model, not with the
sampler, and thus it needs to be solved at the model level.

The second reason can arise when using the joint likelihood approach. As latent states
are among the random variables to be sampled, sampling them requires that they have a
well-behaved density. In the case where some variables are observed without noise, one
can back out the latent states (or a subset of them) exactly, meaning that conditional on
the data, their distribution is a point mass without a density with respect to Lebesgue
measure. Note the contrast with stochastic singularity, in which only a submanifold of
the data space is in the support of the model distribution and so p(data|ϵ) has an infi-
nite density with respect to Lebesgue measure, whereas in this situation a submanifold
of the noise terms is known exactly and so p(ϵ|data) has infinite density with respect to
Lebesgue measure. In this case, one should analytically marginalize if possible, or use
a constrained sampling method like Graham et al. (2022) if not. In comparison, when
observations are convolved with additional noise, the conditional distribution has a den-
sity with respect to Lebesgue measure, but if the noise is very small, it will be close to
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the point mass case, with a narrow peak that is highly curved. Thus, it will continue to
be difficult to sample from this distribution. However, if the noise is sufficiently wide,
this density will be smooth and with wide, flat optima, and sampling will be relatively
easy. To see why this is helpful, consider the extreme case, where noise is so wide as to be
equivalent to having no data at all, in which case the posterior will be equal to the prior,
which is the distribution of the latent variables without conditioning.

Thus, in practice, the size of the observation noise term is the most important deter-
minant of the speed of sampling from the joint likelihood. Reducing the variance of the
term too far can result in slow mixing, numerical errors, and extreme sensitivity to float-
ing point noise that render the sampler unusable. With heavy noise, even extremely large
and highly nonlinear models, like our second-order DSGE, sample very rapidly with no
numerical problems. This leads to a somewhat delicate paradox: in the very noisy case,
there is less information in the data on the precise value of the latent variables, but this in-
formation can be obtained easily. As the noise is reduced, the data are more informative,
but it is harder to learn about them using a sampler. This suggests that the joint approach
is most useful with moderately noisy measurements. We found that starting the sampler
at a larger noise and then reducing it, similar to annealing methods (Lee et al., 2022), leads
to a more stable final output.

Appendix H Schmitt-Grohé and Uribe (2003) Model

Here we provide additional details for the real small open economy model in Section 6.
We take Model 2 of Schmitt-Grohé and Uribe (2003) and add an AR(1) shock ζt to the
risk premium and an AR(1) shock µt that multiplies the utility of consumption in each
period. The model is expressed in logs and has 8 jump variables (c, h, GDP, i, kfu, λ, tb,
ca), 7 state variables (d, k, r, a, riskpremium, ζ, µ), and 3 shocks (ϵ, ϵu, ϵv) that are mean
0 Gaussian with standard deviations (σe, σu, σv) respectively. The equilibrium conditions
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are (see Schmitt-Grohé and Uribe, 2003, for their interpretation):

−ec(t) − ei(t) − 1
2

(
−ek(t) + ek(t+1)

)2
ϕ −

(
1 + er(t)

)
d (t) + d (t + 1) + eGDP(t)

−
(

ek(t)
)α (

eh(t)
)1−α

ea(t) + eGDP(t)

−ei(t) − (1 − δ) ek(t) + ek(t+1)

−β
(

1 + er(t+1)
)

eµ(t)eλ(t+1) + eλ(t)(
−(eh(t))

ω

ω + ec(t)
)−γ

− eλ(t)(
eh(t)

)−1+ω
(

−(eh(t))
ω

ω + ec(t)
)−γ

+ −(1−α)eGDP(t)eλ(t)

eh(t)(
1 + ϕ

(
−ek(t) + ek(t+1)

))
eλ(t) − β

(
1 − δ + ϕ

(
−ek(t+1) + ekfu(t+1)

)
+ αeGDP(t+1)

ek(t+1)

)
eµ(t)eλ(t+1)

−rw − riskpremium (t + 1) + er(t+1)

−ζ (t)− ψ
(
−1 + e−dbar+d(t+1)

)
+ riskpremium (t + 1)

−1 +
1
2(−ek(t)+ek(t+1))

2
ϕ+ec(t)+ei(t)

eGDP(t) + tb (t)
−d(t+1)+d(t)

eGDP(t) + ca (t)
−k (t + 1) + kfu (t)

−ρa (t)− ϵ (t + 1) + a (t + 1)
−ρuζ (t)− ϵu (t + 1) + ζ (t + 1)
−ρvµ (t)− ϵv (t + 1) + µ (t + 1)


(H.1)

The variables (GDP, ca, r) are observed with Gaussian measurement error with vari-
ance 1e-3. Data are simulated from for 200 periods starting at the DSS, with pseudotrue
parameter values γ = 2.0, ω = 1.455, σe = 0.0129, δ = 0.1, ψ = 0.000742, ϕ = 0.028, rw =

0.04, dbar = 0.7442, ρu = 0.2, σu = 0.003, ρv = 0.4, σv = 0.1. For all parameters shared
with Model 2 of Schmitt-Grohé and Uribe (2003), these are the calibrated values from that
paper; other parameter choices are conventional values. Prior forms and parameteriza-
tions for estimated parameters are given in Table 16. All other parameters are fixed at
their pseudotrue values in the simulation. In the Julia implementation, γ and ψ prior
distributions are truncated to the intervals [0.5, 7] and [0.0003, 0.0015], respectively.

Appendix I Additional Figures

This appendix collects additional figures from the estimation of Fernández-Villaverde and
Guerrón-Quintana (2021) using the first-order perturbation rather than the second-order
perturbation reported in the main body of the paper.
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Table 16: Prior Distribution for structural parameters

Parameter Distribution Mean Std
α Normal 0.3 0.025
γ Normal 2.0 0.5
ψ Normal 0.0007 0.0004

βdraw Gamma 4 6
ρ Beta 0.5 0.2
ρu Beta 0.5 0.2
ρv Beta 0.5 0.2
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Figure 17: NUTS with Marginal likelihood via Kalman Filter, Fernández-Villaverde and
Guerrón-Quintana (2021), First-order, 1
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Figure 18: NUTS with Marginal likelihood via Kalman Filter, Fernández-Villaverde and
Guerrón-Quintana (2021), First-order, 2
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Figure 19: NUTS with Marginal likelihood via Kalman Filter, Fernández-Villaverde and
Guerrón-Quintana (2021), First-order, 2
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Figure 20: NUTS with Joint likelihood, Fernández-Villaverde and Guerrón-Quintana
(2021), First-order, 1
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Figure 21: NUTS with Joint likelihood, Fernández-Villaverde and Guerrón-Quintana
(2021), First-order, 2
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Figure 22: NUTS with Joint likelihood, Fernández-Villaverde and Guerrón-Quintana
(2021), First-order, 3
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Figure 23: Inferred Shocks of Fernández-Villaverde and Guerrón-Quintana (2021): First-
order with joint likelihood
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