
Abstract: The Kalman and Particle filters are algorithms that recursively update an

estimate of the state and find the innovations driving a stochastic process given a sequence

of observations. The Kalman filter accomplishes this goal by linear projections, while the

Particle filter does so by a sequential Monte Carlo method. With the state estimates, we

can forecast and smooth the stochastic process. With the innovations, we can estimate the

parameters of the model. The article discusses how to set a dynamic model in a state-space

form, derives the Kalman and Particle filters, and explains how to use them for estimation.

Kalman and Particle Filtering

The Kalman and Particle filters are algorithms that recursively update an estimate of the

state and find the innovations driving a stochastic process given a sequence of observations.

The Kalman filter accomplishes this goal by linear projections, while the Particle filter does

so by a sequential Monte Carlo method.

Since both filters start with a state-space representation of the stochastic processes of

interest, section 1 presents the state-space form of a dynamic model. Then, section 2 intro-

duces the Kalman filter and section 3 develops the Particle filter. For extended expositions

of this material, see Doucet, de Freitas, and Gordon (2001), Durbin and Koopman (2001),

and Ljungqvist and Sargent (2004).

1. The state-space representation of a dynamic model

A large class of dynamic models can be represented by a state-space form:

Xt+1 = ϕ (Xt,Wt+1; γ) (1)

Yt = g (Xt, Vt; γ) . (2)

This representation handles a stochastic process by finding three objects: a vector that

describes the position of the system (a state, Xt ∈ X ⊂ Rl) and two functions, one mapping
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the state today into the state tomorrow (the transition equation, (1)) and one mapping the

state into observables, Yt (the measurement equation, (2)). An iterative application of the two

functions on an initial state X0 generates a fully specified stochastic process. The variables

Wt+1 and Vt are independent i.i.d. shocks. A realization of T periods of observables is denoted

by yT ≡ {yt}Tt=1 with y0 = {∅}. Finally, γ, which belongs to the set Υ ⊂ Rn, is a vector of
parameters. To avoid stochastic singularity, we assume that dim (Wt) + dim (Vt) ≥ dim (Yt)
for all t.

This framework can accommodate cases in which the dimensionality of the shocks is zero,

where the shocks have involved structures, or where some or all of the states are observed.

Also, at the cost of heavier notation, we could deal with more general problems. For example,

the state could be a function or a correspondence, and the transition equation a functional

operator. The basic ideas are, however, identical.

The transition and measurement equations may come from a statistical description of

the process or from the equilibrium dynamics of an economic model. For example, dynamic

stochastic general equilibrium models can be easily written in state-space form with the

transition and measurement equations formed by the policy functions that characterize the

optimal behavior of the agents of the model. This observation tightly links modern dynamic

macroeconomics with the filtering tools presented in this article.

It is important to note that there are alternative timing conventions for the state-space rep-

resentation of a dynamic model and that, even while keeping the timing convention constant,

the same model can be written in different state-space forms. All of those representations

are equivalent, and the researcher should select the form that best fits her needs.

2. The Kalman Filter

The Kalman filter deals with state-space representations where the transition and measure-

ment equations are linear and where the shocks to the system are gaussian. The procedure

was developed by Kalman (1960) to transform (“filter”) some original observables yt into
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Wold innovations at and estimates of the state xt. With the innovations, we can build the

likelihood function of the dynamic model. With the estimates of the states, we can forecast

and smooth the stochastic process.

We begin with the state-space system defined by the transition equation:

xt+1 = Axt +Gωt+1, ωt+1 ∼ N (0, Q)

and the measurement equation:

yt = Cxt + υt, υt ∼ N (0, R)

where A, G, C, Q, and R are known matrices.

There are different ways to derive and interpret the Kalman filter, including an explicitly

Bayesian one. We follow a simple approach based on linear least-square projections. The

reader will enhance her understanding with the more general expositions in Durbin and

Koopman (2001) and Ljungqvist and Sargent (2004).

Let xt|t−1 = E (xt|yt−1) be the best linear predictor of xt given the history of observables
until t−1, i.e., yt−1. Let yt|t−1 = E (yt|yt−1) = Cxt|t−1 be the best linear predictor of yt given
yt−1. Let xt|t = E (xt|yt) be the best linear predictor of xt given the history of observables
until t, i.e., yt. Let Σt|t−1 ≡ E

³¡
xt − xt|t−1

¢ ¡
xt − xt|t−1

¢0 |yt−1´ be the predicting error
variance-covariance matrix of xt given yt−1. Finally, let Σt|t ≡ E

³¡
xt − xt|t

¢ ¡
xt − xt|t

¢0 |yt´
be the predicting error variance-covariance matrix of xt given yt.

How does the Kalman filter work? Let’s assume we have xt|t−1 and yt|t−1, i.e., an estimate

of the state and a forecast of the observable given yt−1. Then, we observe yt. Thus, we want

to revise our linear predictor of the state and obtain an estimate, xt|t, that incorporates the

new information. Note that xt+1|t = Axt|t and yt+1|t = Cxt+1|t, so we can go back to the first

step and wait for the yt+1 next period. Therefore, the key of the Kalman filter is to obtain

xt|t from xt|t−1 and yt.
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We do so with the formula:

xt|t = xt|t−1 +Kt

¡
yt − yt|t−1

¢
= xt|t−1 +Kt

¡
yt − Cxt|t−1

¢
,

i.e., our new value xt|t is equal to xt|t−1 plus the difference between the actual yt and the

forecasted yt|t−1, times a matrix Kt, called the Kalman gain. Durbin and Koopman (2001)

derive this formula from probabilistic foundations. Ljungqvist and Sargent (2004) find it

through an application of a Gram-Schmidt orthogonalization procedure.

Then, if we choose Kt to minimize Σt|t, we get Kt = Σt|t−1C 0
¡
CΣt|t−1C 0 +R

¢−1
. This

expression shows the determinants of Kt. If we made a big mistake forecasting xt|t−1 using

past information (Σt|t−1 large), we give a lot of weight to the new information (Kt large).

Also, if the new information is noisy (R large), we give a lot of weight to the old prediction

(Kt small).

Now, note that Σt|t ≡ E
³¡
xt − xt|t

¢ ¡
xt − xt|t

¢0 |yt´ = Σt|t−1 − KtCΣt|t−1. Therefore,

from xt|t−1, Σt|t−1, and yt, we compute xt|t and Σt|t using Kt. Also, we derive Σt+1|t =

AΣt|tA0 +GQG0, xt+1|t = Axt|t, and yt+1|t = Cxt+1|t.

We collect all the previous steps. We start with some estimates of the state xt|t−1, the ob-

servables yt|t−1, and the variance-covariance matrix Σt|t−1. Then, we observe yt and compute

xt+1|t, yt+1|t, and Σt+1|t.

Thus, the Kalman filter can be recursively written as follows:

• yt|t−1 = Cxt|t−1

• Kt = Σt|t−1C 0
¡
CΣt|t−1C 0 +R

¢−1
• Σt|t = Σt|t−1 −KtCΣt|t−1

• xt|t = xt|t−1 +Kt

¡
yt − Cxt|t−1

¢
• Σt+1|t = AΣt|tA0 +GQG0

• xt+1|t = Axt|t.
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The differences between the observable and its forecast, at = yt−yt|t−1 = yt−Cxt|t−1 are,
by construction, Wold innovations. Moreover, since the system is linear and gaussian, at is

normally distributed with zero mean and variance CΣt|t−1C 0 + R. That is why the Kalman

filter is a whitening filter: it takes as an input a correlated sequence yT and it produces a

sequence of white noise innovations at.

With this last result, we write the likelihood function of yT = {yt}Tt=1 as:

logL
¡
yT |A,G,C,Q,R¢ =

TX
t=1

logL
¡
yt|yt−1A,G,C,Q,R

¢
=

−
TX
t=1

"
N

2
log 2π +

1

2
log
¯̄
CΣt|t−1C 0 +R

¯̄
+
1

2

TX
t=1

a0t
¡
CΣt|t−1C 0 +R

¢−1
at

#

This likelihood is one of the most important results of the Kalman filter. With it, we can

undertake statistical inference in the dynamic model, both with maximum likelihood and

with Bayesian approaches.

An important step in the Kalman filter is to set the initial conditions x1|0 and Σ1|0. If

we consider stationary stochastic processes, the standard approach is to set x1|0 = x∗ and

Σ1|0 = Σ∗ such that x∗ = Ax∗ and

Σ∗ = AΣ∗A0 +GQG0 = [I −A⊗A]−1 vec(GQG0)

Non-stationary time series require non-informative prior conditions for x1|0. This ap-

proach, called the diffuse initialization of the filter, begins by postulating that x1|0 is equal

to:

x1|0 = τ + Φδ +Gω0, ω0 ∼ N (0, Q) and δ ∼ N (0,κIq)

where τ is given and Φ and G are formed by columns of the identity matrix such that

ΦG0 = 0. This structure allows for some elements of x1|0 to have a known joint distribution,

while, by letting κ → ∞, to formalize ignorance with respect to other elements. Clearly,
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x1|0 = E
¡
x1|0
¢
= τ . To determine the initial variance, we expand Σ1|0 = κΦΦ0 + GQG0 as

a power series of κ−1 and take κ →∞ to find the dominant term of the expansion. Durbin

and Koopman (2001) provide details.

The Kalman filter can also be applied for smoothing, i.e., to obtain xt|T , an estimate of

xt given the whole history of observables, i.e., yT . Smoothing is of interest when the state

xt has a structural interpretation of its own. Since smoothing uses more information than

filtering, the predicting error variance covariance matrix of xt given yT will be smaller than

Σt|t−1. Finally, we note that the Kalman filtering problem is the dual of the optimal linear

regulator problem.

3. The Particle Filter

The Kalman filter relies on the linearity and normality assumptions. However, many models

in which economists are interested are non-linear and/or non-gaussian. How can we un-

dertake the forecast, smoothing, and estimation of dynamic models when any of those two

assumptions are relaxed?

Sequential Monte Carlo methods, in particular the Particle filter, reproduce the work of

the Kalman filter in those non-linear and/or non-gaussian environments. The key difference

is that, instead of deriving analytic equations as the Kalman filter does, the Particle filter

uses simulation methods to generate estimates of the state and the innovations. If we apply

the Particle filter to a linear and gaussian model, we will obtain the same likelihood (as the

number of simulations grows) that we would if we used the Kalman filter. Since it avoids

simulations, the Kalman filter is more efficient in this linear and gaussian case.

We present here only the basic Particle filter. Doucet, de Freitas, and Gordon (2001)

discuss improvements upon the basic filter. Fernández-Villaverde and Rubio-Ramírez (2004)

show how this Particle filter can be implemented to estimate dynamic stochastic general

equilibrium models.

6



Our goal is to evaluate the likelihood function of a sequence of realizations of the observable

yT implied by a stochastic process at a parameter value γ:

L
¡
yT ; γ

¢
= p

¡
yT ; γ

¢
. (3)

Our first step is to factor the likelihood function as:

p
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

TY
t=1

Z Z
p
¡
yt|W t, X0, y

t−1; γ
¢
p
¡
W t,X0|yt−1; γ

¢
dW tdX0, (4)

where X0 is the initial state of the model and the p’s represent the relevant densities. In

general, the likelihood function (4) cannot be computed analytically. The particle filter uses

simulation methods to estimate it.

Before introducing the filter, we assume that, for all γ, x0, wt, and t, the following system

of equations:

X1 = ϕ (x0, w1; γ)

ym = g (Xm, Vm; γ) for m = 1, 2, ...t

Xm = ϕ (Xm−1, wm; γ) for m = 2, 3, ...t

has a unique solution, (vt, xt), and we can evaluate p (vt; γ). This assumption implies that

we can evaluate the conditional densities p (yt|wt, x0, yt−1; γ) for all γ, x0, wt, and t. Then,
we have:

p
¡
yt|wt, x0, yt−1; γ

¢
= |dy (vt; γ)| p (vt; γ)

for all γ, x0, wt, and t, where |dy (vt; γ)| stands for the determinant of the Jacobian of yt with
respect to Vt evaluated at vt.
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Conditional on having N draws of
½n
x
t|t−1,i
0 , wt|t−1,i

oN
i=1

¾T
t=1

from the sequence of densi-

ties {p (W t, X0|yt−1; γ)}Tt=1, the law of large number implies that the likelihood function (4)
can be approximated by:

p
¡
yT ; γ

¢ ' TY
t=1

1

N

NX
i=1

p
³
yt|wt|t−1,i, xt|t−1,i0 , yt−1; γ

´
.

This observation shows that the problem of evaluating the likelihood (4) is equivalent to

the problem of drawing from {p (W t, X0|yt−1; γ)}Tt=1. Since the algorithm does not re-

quire any assumption about the distribution of the shocks except the ability to evaluate

p (yt|wt, x0, yt−1; γ), either analytically or by simulation, we can deal with models with a rich
specification of non-gaussian innovations. But, how do we sample from {p (W t,X0|yt−1; γ)}Tt=1?
Let

©
xt−1,i0 , wt−1,i

ªN
i=1

be a sequence of N i.i.d. draws from p (W t−1,X0|yt−1; γ). Letn
x
t|t−1,i
0 , wt|t−1,i

oN
i=1

be a sequence of N i.i.d. draws from p (W t,X0|yt−1; γ). We call each
draw

¡
xt,i0 , w

t,i
¢
a particle and the sequence

©
xt,i0 , w

t,i
ªN
i=1

a swarm of particles. Also, define

the weights:

qit =
p
³
yt|wt|t−1,i, xt|t−1,i0 , yt−1; γ

´
PN

i=1 p
³
yt|wt|t−1,i, xt|t−1,i0 , yt−1; γ

´ . (5)

The next proposition shows how to use p (W t,X0|yt−1; γ), the weights {qit}Ni=1 , and im-
portance sampling to draw from p (W t, X0|yt; γ):

Proposition 1. Let
n
x
t|t−1,i
0 , wt|t−1,i

oN
i=1
be a draw from p (W t, X0|yt−1; γ). Let the sequence

{exi0, ewi}Ni=1 be a draw with replacement from n
x
t|t−1,i
0 , wt|t−1,i

oN
i=1

where qit is the probability

of
³
x
t|t−1,i
0 , wt|t−1,i

´
being drawn ∀i . Then {exi0, ewi}Ni=1 is a draw from p (W t,X0|yt; γ).

Then, with a draw
n
x
t|t−1,i
0 , wt|t−1,i

oN
i=1
from p (W t,X0|yt−1; γ) ,we get a draw

©
xt,i0 , w

t,i
ªN
i=1

from p (W t, X0|yt; γ) and we generate a sequence of particles
½n
x
t|t−1,i
0 , wt|t−1,i

oN
i=1

¾T
t=1

from

the sequence {p (W t, X0|yt−1; γ)}Tt=1. Given some initial conditions, we can recursively apply
the idea of the previous proposition as summarized by the algorithm:
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Step 0, Initialization: Set tÃ 1. Initialize p (W t−1,X0|yt−1; γ) = p (X0; γ).
Step 1, Prediction: Sample N values

n
x
t|t−1,i
0 , wt|t−1,i

oN
i=1

from the conditional

density p (W t
1, X0|yt−1; γ) = p (Wt; γ) p (W

t−1, X0|yt−1; γ).
Step 2, Filtering: Assign to each draw

³
x
t|t−1,i
0 , wt|t−1,i

´
the weight qit as defined

in (5).

Step 3, Sampling: Sample N times with replacement from
n
x
t|t−1,i
0 , wt|t−1,i

oN
i=1

with

probabilities {qit}Ni=1. Call each draw
¡
xt,i0 , w

t,i
¢
. If t < T set t Ã t + 1 and go

to step 1. Otherwise stop.

With the algorithm’s output
½n
x
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

¾T
t=1

, we obtain the estimate of the

states in each period and compute the likelihood:

p
¡
yT ; γ

¢ ' 1

N

Ã
TY
t=1

1

N

NX
i=1

p
³
yt|wt|t−1,i, xt|t−1,i0 , yt−1; γ

´!
.

The Sampling Step is the heart of the algorithm. If we skip it and weight each draw inn
x
t|t−1,i
0 , wt|t−1,i

oN
i=1

by {Nqit}Ni=1 , we have a Sequential Importance Sampling. The problem
with this approach is that it diverges as t grows. The reason is that, as t → ∞, all the
sequences become arbitrarily far away from the true sequence of states (the true sequence

being a zero measure set), and the sequence that happens to be closer dominates all the

remaining sequences in weight. In practice, after a few steps, only one sequence has a non-

zero weight. Through resampling, we eliminate this problem as we keep (and multiply) those

sequences that do not diverge from the true one.

The algorithm outlined above is not the only procedure to evaluate the likelihood of non-

linear and/or non-gaussian dynamic models. However, the alternatives, such as the Extended

Kalman filter, the Gaussian Sum approximations, or grid-based filters, are of limited use, and

many, such as the Extended Kalman filter, fail asymptotically. Consequently, the Particle

filter is the most efficient and robust procedure to undertake inference for non-linear and/or
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non-gaussian models, and we will witness many applications of this filter in economics over

the next years.

Jesús Fernández-Villaverde

University of Pennsylvania, NBER, and CEPR
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