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Motivation

• Recently, many papers have documented the nonlinear relations between financial variables and

aggregate fluctuations.

• For example, Jordà et al. (2016) have gathered data from 17 advanced economies over 150 years to

show how output growth, volatility, skewness, and tail events all seem to depend on the levels of

leverage in an economy.

• Similarly, Adrian et al. (2019a) have found how, in the U.S., sharply negative output growth follows

worsening financial conditions associated with leverage.

• Can a fully nonlinear DSGE model account for these observations?

• To answer this question, we postulate, compute, and estimate a continuous-time DSGE model with a

financial sector, modeled as a representative financial expert, and households, subject to uninsurable

idiosyncratic labor productivity shocks.
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The main takeaway

• The interaction between the supply of bonds by the financial sector and the precautionary demand for

bonds by households produces significant endogenous aggregate risk.

• This risk induces an endogenous regime-switching process for output, the risk-free rate, excess

returns, debt, and leverage.

• Mechanism: endogenous aggregate risk begets multiple stochastic steady states or SSS(s), each with

its own stable basin of attraction.

• Intuition: different persistence of wages and risk-free rates in each basin.

• The regime-switching generates:

1. Multimodal distributions of aggregate variables (Adrian et al., 2019b).

2. Time-varying levels of volatility and skewness for aggregate variables (Fernández-Villaverde and Guerrón,

2020).

3. Supercycles of borrowing and deleveraging (Reinhart and Rogoff, 2009).
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HA vs. RA

• Our findings are in contrast with the properties of the representative household version of the model.

• While the consumption decision rule of the households is close to linear with respect to the household

state variables, it is sharply nonlinear with respect to the aggregate state variables.

• This point is more general: agent heterogeneity might matter even if the decision rules of the agents

are linear with respect to individual state variables.

• Thus, changes in the forces behind precautionary savings affect aggregate variables, and we can offer

a novel and simultaneous account of:

1. The recent heightened fragility of the advanced economies to adverse shocks.

2. The rise in wealth inequality witnessed before the 2007-2008 financial crisis.

3. The increase in debt and leverage experienced during the same period.

4. The low risk-free interest rates of the last two decades.
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Methodological contribution

• New approach to (globally) compute and estimate with the likelihood approach HA models:

1. Computation: we use tools from machine learning.

2. Estimation: we use tools from inference with diffusions.

• Strong theoretical foundations and many practical advantages.

1. Deal with a large class of arbitrary operators efficiently.

2. Algorithm that is i) easy to code, ii) stable, iii) scalable, and iv) massively parallel.

3. Examples and code at https://github.com/jesusfv/financial-frictions
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The firm

• Representative firm with technology:

Yt = Kα
t L

1−α
t

• Competitive input markets:

wt = (1− α)Kα
t L
−α
t

rct = αKα−1
t L1−α

t

• Aggregate capital evolves:
dKt

Kt
= (ιt − δ) dt + σdZt

• Instantaneous return rate on capital drkt :

drkt = (rct − δ) dt + σdZt
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The expert I

• Representative expert holds capital K̂t and issues risk-free debt B̂t at rate rt to households.

• Expert can be interpreted as a financial intermediary.

• Financial friction: expert cannot issue state-contingent claims (i.e., outside equity) and must absorb

all risk from capital.

• Expert’s net wealth (i.e., inside equity): N̂t = K̂t − B̂t .

• Together with market clearing, our assumptions imply that economy has a risky asset in positive net

supply and a risk-free asset in zero net supply.
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The expert II

• The law of motion for expert’s net wealth N̂t :

dN̂t = K̂tdr
k
t − rtB̂tdt − Ĉtdt

=
[
(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

]
dt + σω̂tN̂tdZt

where ω̂t ≡ K̂t

N̂t
is the leverage ratio.

• The law of motion for expert’s capital K̂t :

dK̂t = dN̂t + dB̂t

• The expert decides her consumption levels and capital holdings to solve:

max
{Ĉt ,ω̂t}

t≥0

E0

[∫ ∞
0

e−ρ̂t log(Ĉt)dt

]
given initial conditions and a NPG condition.
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Households I

• Continuum of infinitely-lived households with unit mass.

• Heterogeneous in wealth am and labor supply zm for m ∈ [0, 1].

• Gt (a, z): distribution of households conditional on realization of aggregate variables.

• Preferences:

E0

[∫ ∞
0

e−ρt
c1−γ
t − 1

1− γ
dt

]

• We could have more general Duffie and Epstein (1992) recursive preferences.

• ρ > ρ̂. Intuition from Aiyagari (1994) (and different from BGG class of models!).
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Households II

• zt units of labor valued at wage wt .

• Labor productivity evolves stochastically following a Markov chain:

1. zt ∈ {z1, z2} , with z1 < z2.

2. Ergodic mean of zt is 1.

3. Jump intensity from state 1 to state 2: λ1 (reverse intensity is λ2).

• Households save at ≥ 0 in the riskless debt issued by experts with an interest rate rt . Thus, their

wealth follows:

dat = (wtzt + rtat − ct) dt = s (at , zt ,Kt ,Gt) dt

• Optimal choice: ct = c (at , zt ,Kt ,Gt).

• Total consumption by households:

Ct ≡
∫

c (at , zt ,Kt ,Gt) dGt (a, z)
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Market clearing

1. Total amount of labor rented by the firm is equal to labor supplied:

Lt =

∫
zdGt = 1

Then, total payments to labor are given by wt .

2. Total amount of debt of the expert equals the total households’ savings:

Bt ≡
∫

adGt (da, dz) = B̂t

with law of motion dB̂t = dBt = (wt + rtBt − Ct) dt.

3. The total amount of capital in this economy is owned by the expert:

Kt = K̂t

Thus, dK̂t = dKt =
(
Yt − δKt − Ct − Ĉt

)
dt + σKtdZt and ω̂t = Kt

Nt
, where N̂t = Nt = Kt − Bt .

4. Also:

ιt =
Yt − Ct − Ĉt

Kt
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Density

• The households distribution Gt (a, z) has density (i.e., the Radon-Nikodym derivative) gt(a, z).

• The dynamics of this density conditional on the realization of aggregate variables are given by the

Kolmogorov forward (KF) equation:

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2

where git(a) ≡ gt(a, zi ), i = 1, 2.

• The density satisfies the normalization:

2∑
i=1

∫ ∞
0

git(a)da = 1
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Equilibrium

An equilibrium in this economy is composed by a set of prices
{
wt , rct , rt , r

k
t

}
t≥0
, quantities{

Kt ,Nt ,Bt , Ĉt , cmt

}
t≥0

, and a density {gt (·)}
t≥0

such that:

1. Given wt , rt , and gt , the solution of the household m’s problem is ct = c (at , zt ,Kt ,Gt).

2. Given rkt , rt , and Nt , the solution of the expert’s problem is Ĉt , Kt , and Bt .

3. Given Kt , firms maximize their profits and input prices are given by wt and rct .

4. Given wt , rt , and ct , gt is the solution of the KF equation.

5. Given gt and Bt , the debt market clears.
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Characterizing the equilibrium I

• First, we proceed with the expert’s problem. Because of log-utility:

Ĉt = ρ̂Nt

ωt = ω̂t =
rct − δ − rt

σ2

• We can use the equilibrium values of rct , Lt , and ωt to get the wage:

wt = (1− α)Kα
t

the rental rate of capital:

rct = αKα−1
t

and the risk-free interest rate:

rt = αKα−1
t − δ − σ2 Kt

Nt
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Characterizing the equilibrium II

• Expert’s net wealth evolves as:

dNt =

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Nt︸ ︷︷ ︸

µN
t (Bt ,Nt)

dt + σKt︸︷︷︸
σN
t (Bt ,Nt)

dZt

• And debt as:

dBt =

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2 Kt

Nt

)
Bt − Ct

)
dt

• Nonlinear structure of law of motion for dNt and dBt .

• We need to find:

Ct ≡
∫

c (at , zt ,Kt ,Gt) gt (a, z) dadz

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2
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The DSS

• No aggregate shocks (σ = 0), but we still have idiosyncratic household shocks.

• Then:

r = rkt = rct − δ = αKα−1
t − δ

and

dNt =
(
αKα−1

t − δ − ρ̂
)
Ntdt

• Since in a steady state the drift of expert’s wealth must be zero, we get:

K =

(
ρ̂+ δ

α

) 1
α−1

and:

r = ρ̂ < ρ

• The value of N is given by the dispersion of the idiosyncratic shocks (no analytic expression). 17



How do we find aggregate consumption?

• As in Krusell and Smith (1998), households only track a finite set of n moments of gt(a, z) to form

their expectations.

• No exogenous state variable (shocks to capital encoded in K ). Instead, two endogenous states.

• For ease of exposition, we set n = 1. The solution can be trivially extended to the case with n > 1.

• More concretely, households consider a perceived law of motion (PLM) of aggregate debt:

dBt = h (Bt ,Nt) dt

where

h (Bt ,Nt) =
E [dBt |Bt ,Nt ]

dt
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A new HJB equation

• Given the PLM, the household’s Hamilton-Jacobi-Bellman (HJB) equation becomes:

ρVi (a,B,N) = max
c

c1−γ − 1

1− γ
+ s

∂Vi

∂a
+ λi [Vj(a,B,N)− Vi (a,B,N)]

+h (B,N)
∂Vi

∂B
+ µN (B,N)

∂Vi

∂N
+

[
σN (B,N)

]2
2

∂2Vi

∂N2

i 6= j = 1, 2, and where

s = s (a, z ,N + B,G )

• We solve the HJB with a first-order, implicit upwind scheme in a finite difference stencil.

• Sparse system. Why?

• Alternatives for solving the HJB? Meshfree, FEM, deep learning, ...
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An algorithm to find the PLM

1) Start with h0, an initial guess for h.

2) Using current guess hn, solve for the household consumption, cm, in the HJB equation.

3) Construct a time series for Bt by simulating by J periods the cross-sectional distribution of

households with a constant time step ∆t (starting at DSS and with a burn-in).

4) Given Bt , find Nt , Kt , and:

ĥ =

{
ĥ1, ĥ2..., ĥj ≡

Btj+∆t − Btj

∆t
, ..., ĥJ

}

5 ) Define S = {s1, s2, ..., sJ}, where sj =
{
s1
j , s

2
j

}
=
{
Btj ,Ntj

}
.

6) Use
(

ĥ,S
)

and a universal nonlinear approximator to obtain hn+1, a new guess for h.

7) Iterate steps 2)-6) until hn+1 is sufficiently close to hn.
20



A universal nonlinear approximator

• We approximate the PLM with a neural network (NN):

h (s; θ) = θ1
0 +

Q∑
q=1

θ1
qφ

(
θ2

0,q +
D∑
i=1

θ2
i,qs

i

)
where Q = 16, D = 2, and φ(x) = log(1 + ex).

• θ is selected as:

θ∗ = arg min
θ

1

2

J∑
j=1

∥∥∥h (sj ; θ)− ĥj

∥∥∥2

• Easy to code, stable, and good extrapolation properties.

• You can flush the algorithm to a GPU, a TPU, a FPGA, or a AI accelerator instead of a standard

CPU.
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Two classic (yet remarkable) results

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)

A neural network with at least one hidden layer can approximate any Borel measurable function mapping

finite-dimensional spaces to any desired degree of accuracy.

• Assume, as well, that we are dealing with the class of functions for which the Fourier transform of

their gradient is integrable.

Breaking the curse of dimensionality: Barron (1993)

A one-layer NN achieves integrated square errors of order O(1/Q), where Q is the number of nodes. In

comparison, for series approximations, the integrated square error is of order O(1/(Q2/D)) where D is

the dimensions of the function to be approximated.

• We actually rely on more general theorems by Leshno et al. (1993) and Bach (2017).
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Estimation with aggregate variables I

• D + 1 observations of Yt at fixed time intervals [0,∆, 2∆, ..,D∆]:

Y D
0 = {Y0,Y∆,Y2∆, ...,YD} .

• More general case: sequential Monte Carlo approximation to the Kushner-Stratonovich equation

(Fernández-Villaverde and Rubio Raḿırez, 2007).

• We are interested in estimating a vector of structural parameters Ψ.

• Likelihood:

LD

(
Y D

0 |Ψ
)

=
D∏

d=1

pY
(
Yd∆|Y(d−1)∆; Ψ

)
,

where

pY
(
Yd∆|Y(d−1)∆; Ψ

)
=

∫
fd∆(Yd∆,B)dB.

given a density, fd∆(Yd∆,B), implied by the solution of the model.
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Estimation with aggregate variables II

• After finding the diffusion for Yt , f
d
t (Y ,B) follows the Kolmogorov forward (KF) equation in the

interval [(d − 1)∆, d∆]:

∂ft
∂t

= − ∂

∂Y

[
µY (Y ,B)ft(Y ,B)

]
− ∂

∂B

[
h(B,Y

1
α − B)f dt (Y ,B)

]
+

1

2

∂2

∂Y 2

[(
σY (Y )

)2
ft(Y ,B)

]

• The operator in the KF equation is the adjoint of the infinitesimal generator of the HJB.

• Thus, the solution of the KF equation amounts to transposing and inverting a sparse matrix that has

already been computed.

• Our approach provides a highly efficient way of evaluating the likelihood once the model is solved.

• Conveniently, retraining of the neural network is easy for new parameter values.
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Parametrization

Parameter Value Description Source/Target

α 0.35 capital share standard

δ 0.1 yearly capital depreciation standard

γ 2 risk aversion standard

ρ 0.05 households’ discount rate standard

λ1 0.986 transition rate u.-to-e. monthly job finding rate of 0.3

λ2 0.052 transition rate e.-to-u. unemployment rate 5 percent

y1 0.72 income in unemployment state Hall and Milgrom (2008)

y2 1.015 income in employment state E (y) = 1

ρ̂ 0.0497 experts’ discount rate K/N = 2
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Mean Standard deviation Skewness Kurtosis

Y basin HL 1.5802 0.0193 0.0014 2.869

Y basin LL 1.5829 0.0169 0.1186 3.0302

rbasin HL 4.92 0.3364 0.0890 2.866

rbasin LL 4.89 0.2947 -0.0282 3.0056

wbasin HL 1.0271 0.0125 0.0014 2.8691

wbasin LL 1.0289 0.0111 0.1186 3.0302

Table 1: Moments conditional on basin of attraction.
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Concluding remarks

• We have shown how a continuous-time model with a non-trivial distribution of wealth among

households and financial frictions can be built, computed, and estimated.

• Important economic lessons:

1. Endogenous regime-switching due to endogenous aggregate risk.

2. Multiplicity of SSS(s).

3. State-dependence of GIRFs and DIRFs.

4. Long spells at different basins of attraction.

5. Importance of household heterogeneity.

• Many avenues for extension.
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