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Abstract

We propose a new tool to filter non-linear dynamic models that does not require us to fully

specify the model and can be implemented without solving the model. If two conditions are

satisfied, we can use a flexible statistical model and a known measurement equation to back

out a hidden state. The first condition is that the state is sufficiently volatile or persistent

to be recoverable. The second condition requires the possibly non-linear measurement to be

sufficiently smooth and to map uniquely to the state absent measurement error. We illustrate

the method through various simulation studies and an empirical application to a small open

economy model with an occasionally binding constraint.
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1 Introduction

“You can do something without having to do everything.” – Lars Peter Hansen, 2014.

Economists are often interested in filtering dynamic models, that is, in backing-out the states

and the shocks that drive the equilibrium path of the economy. There are, at least, four prominent

reasons for this interest. First, the path of shocks (or their distribution) are a reality check of

the model. If the shocks required to fit the data are unlikely (i.e., their probability is very low)

or implausible (i.e., they contradict other sources of evidence or sharp narrative analytics), a re-

searcher may want to consider revisiting the specification of the model or moving in an alternative

direction. Second, economists are interested in historical decompositions: evaluating how much a

shock contributed to the observed dynamics. In that way, we can perform variance decompositions

and build counterfactuals. Third, knowing the current state of the economy, including the shocks,

is important when forecasts or optimal policy are state-dependent. Fourth, once you have recovered

the shocks conditional on some parameter values, evaluating the likelihood of the model associated

with these parameter values is straightforward. This opens the door to the structural estimation

of the model either through maximum likelihood or the Bayesian approach.

Filtering can be completed, for a generic, fully-specified dynamic equilibrium model, with a

non-linear filter, such as the sequential Monte Carlo filter described in Fernández-Villaverde et al.

(2016). Unfortunately, this approach suffers from three drawbacks. First, a sequential Monte Carlo

filter requires fully specifying the model, including aspects of it such as some auxiliary functional

forms (adjustments costs, evolution of some exogenous variables) that are not central to the message

of the model and that various researchers may disagree on. Furthermore, some models’ findings

are fragile with respect to these assumptions (see Canova and Ferroni, 2018) and we may want to

have findings that do not suffer from this fragility. Second, a sequential Monte Carlo filter requires

solving the full model to specify the transition equations required in the simulation. This can be

computationally costly. And, third, the filter suffers from the curse of dimensionality, making it

difficult to apply to very large models.1

In this paper, we tackle the problem of non-linear filtering from a different perspective. More

concretely, we follow (Hansen, 2014, p. 950)’s dictum: “Hansen (1982), builds on a long tradition

in econometrics of ‘doing something without having to do everything.’ This entails the study of

partially specified models, that is, models in which only a subset of economic relations are formally

delineated.” (Hansen, 2014, p. 950). In the spirit of partial specification, we refer to our approach

as the “partial (information) filter.”

We are not the first to push this idea. Andreasen et al. (2018) present a method for solving

and estimating models non-linearly using the population moments generated by a perturbation

solution of the model. This approach, however, still requires solving the model with perturbation

1For the simpler, linear Gaussian case, we can apply the Kalman filter. Some of the concerns (i.e., curse of
dimensionality) are less relevant for this situation. Others still hold (i.e., the need to specify auxiliary parametric
forms at least to first- and second-order, even if the evaluation of the solution is fast). As we show, a misspecified
linear Kalman filter can yield misleading estimates the hidden state in our non-linear examples.
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(which can sometimes be hard or even impossible when the model has non-differentiabilities such

as occasionally-binding constraints) and specifying the moments of the shocks that enter into the

computation of the model population moments (how many moments are required depends on the

order of the perturbation). An early application, published in Drautzburg et al. (2021), filters the

shock process in an economy solved using the method of Andreasen et al. (2018). Gallant et al.

(2017) also pursue a similar idea of Bayesian estimation of state space models via moment conditions

with a partially specified measurement equation. While they focus on parameter estimates, we

focus on filtering the hidden state variables. An advantage of our filtering method is the ease of

implementation.

Specifically, our approach is to approximate the state dynamics with a flexible statistical model,

such as a Vector-Autoregression (VAR). This VARmay include non-linear terms and the VAR serves

as a plug-in estimate of the model expectations.2 Given the statistical model, we can filter out an

estimate of the hidden state from the measurement equation. While the VAR is a purely auxiliary

model, we obtain the full estimates as a fixed point of the VAR estimation and the filtering stage.

The partial filtering approach requires two main conditions to be satisfied: First, the measure-

ment equation needs to identify the hidden state. This assumption could be violated, for example,

with an observation equation that is quadratic in the hidden state when the state space is unre-

stricted. However, in most economic applications, natural restrictions on the state space emerge

– for example, that prices and quantities are non-negative. Second, the researcher requires a

consistent estimator of the model expectations. In simulations, we show that this condition can

be relaxed – our procedure also works in the presence of misspecification in the form of unknown

measurement error as long as the measurement error is relatively small, or the hidden state is

sufficiently persistent.

Using VARs to approximate model expectations is not new in macroeconomics. For exam-

ple, Campbell (1991), Bernanke and Kuttner (2005), and Chahrour et al. (2021) use VARs to

approximate expected returns. Closer to the structural nature of our paper, Sbordone (2002) uses

VAR-based expectations to stand-in for firm’s expectations in a New Keynesian price setting equa-

tion in her test of price stickiness. Our innovation is that, under regularity conditions, we can use

a VAR-approximation also for filtering hidden state variables.

Models with departures from rational expectations are increasingly common, see, for example,

Gabaix (2020). While our application focuses on rational expectations, it is straightforward to allow

for parametric departures from rational expectations in our framework, for example by including

the appropriate change of measure in the filtering equation. In the case of the cognitive discounting

in Gabaix (2020), for example, the deviation of the forecast from the balanced growth path is

shrunk by a factor that is constant for a given forecast horizon. Other departures, such as limited

information could be addressed by limiting the information set we use to compute the approximating

the VAR.

2While we have focused on time-invariant VARs, a tractable way to allow for time-variation has been proposed
by Petrova (2019). Allowing for time variation in this form is a straightforward extension of our model.
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Going back to at least Roberts (1995), a growing literature has used survey data for assessing

macroeconomic models, see, for example, Coibion et al. (2021). With representative agents with

model-consistent expectations,3 one can use survey expectations to substitute our for expectations

in economic models – for example, as a measure of inflation expectations in the New Keynesian

Phillips Curve (Roberts (1995)). While we focus on models with a single set of model-consistent

expectations, the use of surveys is still limited to accounting for expectations over readily under-

stood objects such as inflation, but precludes structural objects such as shocks or co-state variables.

For these structural objects, eliciting expectations is not feasible, and a statistical approach such

as ours is needed.

The paper is structured as follows: Section 2 sets up the general environment and discusses the

necessary conditions that ensure that the filter is consistent. To fix ideas, Section 3 analyzes a simple

univariate example that features different non-linearities in the state or measurement equations.

Section 4 first uses a simulation study of a small-open economy real business cycle model with

capital adjustment costs and an occasionally binding borrowing constraint to filter Tobin’s Q and

the multiplier on the borrowing constraint. Section 4 also applies the partial filter to the same

model for Mexican data from 1980 to 2018. Section 5 concludes.

3See Mavroeidis et al. (2014) for a discussion.
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2 The partial information filter

In this section, we present how the partial information filter works. First, we introduce the general

environment. Second, we describe the two algorithms to accomplish the filtering. Third, we pos-

tulate some regularity conditions required by our procedure. Fourth, we point out some directions

for extensions.

2.1 Environment

Let us consider a dynamic equilibrium model whose equilibrium conditions, or a subset thereof,

can be described by:

f(xt,yt,Et[g(xt+1,yt+1,xt,yt)]) = 0, (2.1)

where yt = [yi,t]
ny

i=1 is a ny × 1 vector of observables at period t, xt a nx × 1 vector of hidden

states that we are interested in backing out, Et is the conditional expectations operator, and 0 is

a functional zero. The function f(·) will usually stack optimality conditions for the agents in the

model, policy rules by the government, budget and resource constraints, and stochastic processes

for exogenous states. The function g(·) deals with the part of the model involving future states and

observables. Typically, xt is only a subset of the entire state vector st that determines the model

expectations. Strictly speaking, the functions f(·) and g(·) are conditional on a vector of states

other than xt, denoted s−,t, but we omit this conditioning to save notation when it is not important

for expositional purposes. The deterministic steady state of the model, {x̄, ȳ}, is defined by:

f(x̄, ȳ,g(x̄, ȳ, x̄, ȳ)]) = 0.

We highlight three points about equation (2.1). First, the functions f(·) and g(·) do not need

to include all equilibrium conditions required for a full solution of the model. Our goal is, precisely,

to get away with handling only a few of them (and, consequently, only a subset of states). Second,

at the cost of heavier notation, we could handle cases where some of the states are observed, but

nothing of importance is lost by omitting that situation. Similarly, by including lagged values of

the states and observables in vectors yt and xt, we can deal with very general timing and stochastic

structures. Third, we let xt and yt enter as arguments of the function g(·) to deal with situations

where the conditional expectations depend explicitly on them. For instance, in a model with habit

persistence, the expected marginal utility tomorrow depends on consumption today.

In what follows, we proceed under the assumption that the filtering problem (2.1) has a unique

solution. This high-level assumption could be satisfied because either f and g have appropriate

properties –such as linearity– or the researcher knows that the hidden states live in a domain

Xt ⊆ Rnx where the solution is unique. Formally:

Assumption 1. For some known domain Xt and given yt and s−,t, there is a unique solution

x̃ ∈ Xt such that f(x̃,yt,E[g(xt+1,yt+1,xt,yt)|x̃, s−,t]) = 0.

The following scalar example is useful to fix ideas:
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Example 1. Let the model be:

yt = µy + xt + Et[κ1xt+1 + κ2x
2
t+1] (2.2a)

xt = µx +

(
ρ0 +

ρ1
1 + x2t−1

)
xt−1 + ut, (2.2b)

ut ∼ iid(0, σ2
u), (2.2c)

We consider two special cases.

(a) Linear model: κ2 = ρ1 = 0.

Here f(·) = y − µy − x − κ1E[x′|x]. Under the population expectation, E[x′|x] = µx + ρ0x so

that f(·) = y − µy − (1 + κ1ρ0)x − κ1µx = 0. Thus, there is a unique solution in R given by

x =
y−µy−κ1µx

1+κ1ρ0
.

(b) Linear law of motion and quadratic observations equation: ρ1 = 0.

Here,

yt = µy + xt + κ1ρ0xt + 2κ2ρ0µxxt + κ2(µ
2
x + σ2

u) + κ2ρ
2
0x

2
t .

We require the observation to be monotonically increasing or decreasing in the hidden state:

∂yt
∂xt

= 2ρ20κ2xt + (1 + κ1ρ0 + 2κ2ρ0µx) ≷ 0 ⇔ xt ≷ −1

2

1 + κ1ρ0 + 2κ2ρ0µx

ρ20κ2
≡ x. (2.3)

Thus, for a given κ2, if the observation equation is monotonically increasing, it has a unique

solution for x in X = (x,∞).

If the equations in f(·) do not involve expectations (i.e., g(·) is a dummy argument of f(·)), we
can simply back out xt directly from (2.1). For example, given some observations on input factors,

one may extract total factor productivity growth from the production function as in Fernald (2012).

Also, in some situations, Et[g(·)] might come directly from survey data. We can consider the latter

case as a particular application of our procedure when the expectation is about a concept general

enough to be captured by surveys.4 Survey expectations are, however, unavailable if the filtering

exercise requires expectations about structural objects, such as hidden state variables.

Most commonly, therefore, we will deal with situations where g(·) matters and Et[g(·)] is not

readily available to the researcher. Thus, we need to back out the hidden state vector by finding

the sequence of x̂t that solve the equation:

f(x̂t,yt, Êt[g(x̂t+1,yt+1, x̂t,yt)]) = 0, (2.4)

where Êt(·) is an estimate of the conditional expectation.

4For example, we may use firms’ surveyed inflation expectations in the Phillips Curve when filtering for cost-push
shocks.
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To tackle the estimation of this conditional expectation, we will proceed in two steps. In the

first step, we factorize the m-dimensional function g(·) as:

g(xt+1,yt+1,xt,yt)i ≡ gi,1(xt+1,yt+1,xt,yt)× gi,2(xt+1,yt+1,xt,yt). (2.5)

Because gi,1(·) could be a constant function, this decomposition is without loss of generality. How-

ever, in many applications, we are interested in equilibrium conditions featuring expected discounted

values, for example in Bellman equations, and we may want to deal with different parts of these

expectations separately. Also, the same model may admit different natural factorizations of g(·).
Choosing one depends on their suitability for the economic question being investigated or the

available data.

Writing the terms in equation (2.5) in expected terms and using that, for any two scalar random

variables (xt, yt), we have that Et[xt+1yt+1] = Et[xt+1]Et[yt+1] + Covt[xt+1, yt+1], we find:

Et[g(xt+1,yt+1,xt,yt)i] ≡ Et[gi,1(xt+1,yt+1,xt,yt)i]× Et[gi,2(xt+1,yt+1,xt,yt)i]

+ Covt[gi,1(xt+1,yt+1,xt,yt)i, gi,2(xt+1,yt+1,xt,yt)i], (2.6)

where i = 1, . . . ,m denotes the rows of g, g1, and g2 that we require. This factorization is

convenient because, in many cases, the equilibrium conditions of the model allow us to write the

product of the conditional expectations in terms of time t observables.

In the second step, we use an auxiliary statistical model and, depending on the application,

additional equilibrium conditions to come up with an estimator for the covariances in (2.6). If

some of the conditional first moments are also missing after using equilibrium conditions, the

auxiliary statistical model may help us estimate them. With this evaluation (or estimation) of the

expectations and the covariances estimate, we return to (2.4) and back out the hidden state vector.

Next, we need to assume that the lack of explicit conditioning on s− in our estimates is asymp-

totically irrelevant:

Assumption 2. As T → ∞, supx,y,s− |E[g(x
′,y′, x̃,y)|x̃, s−]− Ê[g(x′,y′, x̃,y)|x̃,y]|= 0.

Least-squares estimators can satisfy this assumption in our univariate example.

Example 2. Consider again the previous example summarized in (2.2).

(a) Linear law of motion (ρ1 = 0) with bounded domain:

Given ρ1 = 0, we have that E[g(x′)|x, s−] = E[g(x′)|x] = cons + (κ1ρ0 + 2κ2ρ0µx)x + κ2ρ
2
0x

2.

To bound the domain, let X = [x, x̄] and x ∈ X. Let ρ̂ be a consistent estimator, such as the

OLS estimator ρ̂
p→ ρ0 as T → ∞. Then:

sup
x∈X

|E[g(x′)|x, s−]− Ê[g(x′)|x, y]|

=sup
x∈X

|(κ1ρ0 + 2κ2ρ0µx)x+ κ2ρ
2
0x

2 − (κ1ρ̂+ 2κ2ρ̂µx)x− κ2ρ̂
2x2|
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=sup
x∈X

|(κ1 + 2κ2µx)x(ρ0 − ρ̂) + κ2x
2(ρ20 − ρ̂2)|

≤ sup
x∈X

|(κ1 + 2κ2µx)(ρ0 − ρ̂)||x|+sup
x∈X

|κ2(ρ20 − ρ̂)|x2

=|(κ1 + 2κ2µx)(ρ0 − ρ̂)|max{−x, x̄}+ |κ2(ρ20 − ρ̂2)|max{x2, x̄2}

≤|(ρ0 − ρ̂)||(κ1 + 2κ2µx)|max{−x, x̄}+ |(ρ20 − ρ̂2)||κ2|max{x2, x̄2}

But because of the continuous mapping theorem, we have that both ρ0 − ρ̂ and ρ20 − ρ̂2 con-

verge to zero in probability. For any ϵ > 0, we have that limT→∞ Pr{|ρ0 − ρ̂|> ϵ} = 0 and

limT→∞ Pr{|ρ20−ρ̂2|> ϵ} = 0. Thus, for any ϵ̃ > 0, we can redefine ϵ such that limT→∞ Pr{|(ρ0−
ρ̂)||(κ1+2κ2µx)|max{−x, x̄} > ϵ̃/2} = 0 and limT→∞ Pr{|(ρ20−ρ̂2)||κ2|max{x2, x̄2} > ϵ̃/2} = 0.

This implies that limT→∞ Pr{|(ρ0− ρ̂)||(κ1+2κ2µx)|max{−x, x̄}+ |(ρ20− ρ̂2)||κ2|max{x2, x̄2} >

ϵ̃} = 0 and therefore supx∈X Pr{|E[g(x′)|x, s−]− Ê[g(x′)|x, y]|> ϵ̃} = 0. Hence, the expectation

converges uniformly on X.

(b) Non-linear law of motion with linear observation equation(κ2 = 0):

We still have that E[g(x′)|x, s−] = h(x), where h(x) = κ1µx + κ1

(
ρ0 +

ρ1
1+x2

)
x. Chen and

Christensen (2015, Theorem 2.1) show that, under regularity conditions in a time-series setting,

a least-squares series estimator such as a B-spline converges uniformly to the true regression

function h(x) and, thus, to E[g(x′)|x, s−] in our setting.

Besides a uniformly consistent estimator for the expectation process, we also require that the

functional equation is continuous in the relevant arguments.

Assumption 3. f is uniformly continuous in x and E[g(·)|·] and E[g(·)|x, ·] is uniformly continuous

in x.

The uniform continuity of f and its arguments along with the uniqueness guarantee consistency

of the partial filter.

Lemma 1. Under Assumptions 1 through 3, if x̂T and Ê[g(x′, y′, x, y)|x, y] converge with x̂t ∈ Xt∀t,
they converge to xT and E[g(x′, y′, x, y)|x, y] as T → ∞.

Proof. Suppose not. It must be that Ê[·] converges, because otherwise Assumption 2 is violated.

Thus, x̂T must diverge from xT . However, because the expectation converges, a diverging sequence

of x̂T contradicts Assumption 1: For any ϵ > 0, there exists a Tϵ such that for all T > Tϵ the

approximation error is uniformly smaller than ϵ. Now, by uniform continuity (Assumption 3), that

bounds the error in {x̂t} by some δϵ. We can pick ϵ to make δϵ vanish. Thus, if there is convergence,

it is to the population values.

For illustrative purposes, we model the covariance and the first moments in the next subsec-

tion using a VAR(1), possibly including non-linear terms. However, other statistical models are

conceptually straightforward to use.
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2.2 Algorithms

We specify now a VAR(1) in g1,t, g2,t, (a subset of nỹ elements of) yt, and x̂t for t = 1, ..., T as

our auxiliary statistical model. We will denote the whole sequence of a variable by a superscript.

For instance, yT = {y1,y2, ...,yT }. We collect all the VAR variables in ξt, a (2m + nỹ + nx) × 1

vector. Some applications may call for the inclusion of non-linear terms, which we collect in the

vector ζt = [ζj,t]j , for example ζt = [x2j,t, y
2
ℓ,t] for some indices j, ℓ to include selected lagged hidden

states and observables as predictors. We use the self-explanatory notation:

ξt = µ+Aξt−1 +Bζt−1 + εt, Var[εt] = Σ.

We can extend the notation to the general VAR case with more lags using the companion form of

the VAR. While, given the structure of many time series, a low dimensionality VAR will capture

their dynamics well, the reader can adapt our steps to her favorite auxiliary statistical model.

To express the expectation in terms of the VAR objects, order g1,t and g2,t as the first two

variables of the VAR. Also, let ei be a selection vector with a 1 entry in position i and zero

everywhere else, and using that the first 2m elements of the VAR characterizing g1 and g2, we can

write the components of (2.6) as:

Et[g(xt+1,yt+1,xt,yt)]i ≡ e′i(µ+Aξt +Bζt)ei+m(µ+Aξt +Bζt) + e′iΣei+m (2.7)

and get

f(xt,yt, e
′
i(µ+Aξt +Bζt)ei+m(µ+Aξt +Bζt) + e′iΣei+m)i = 0 (2.8)

Note that xt appears inside ξt and possibly inside ζt.

We propose two approaches to filtering with the previous equation. First, we consider finding

the sequence x̂T that solves equation (2.8) for all i. Because x̂t appears in ξ (and possibly in ζ) as

well as indirectly in the VAR parameter matrices A, B, and Σ, we are searching for a fixed point

in (2.8). Second, we consider finding x̂T through a Gibbs sampler that quantifies the estimation

uncertainty.

Fixed point. When the measurement equation maps to a unique state, the fixed point of equa-

tion (2.4) is unique. With finite data, we can, in principle, solve numerically for the finite-

dimensional x̂T and the associated estimator satisfying that condition. In practice, we have found

that initializing Ê(0)
t [g(·)] based on x̂

(0)
t = x̄ ∀t and A(0) = 0, µ(0) = ξ̄T and Σ(0) = 0 and then

iterating on the VAR estimation the filtering until convergence works well.

Gibbs sampler. A Gibbs sampler allows us to quantify estimation uncertainty. We start the

Gibbs sampler with some guess, such as the steady state or the fixed point found in the previous

algorithm. Then, d = 1, . . . , D, we iterate on:
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1. Given the previous draw {x̂(d)
t }Tt=1, draw the parameters µ(d),A(d),B(d),Σ(d) from the pos-

terior for a VAR in ξ
(d)
t with controls ζ

(d)
t .

2. Given yT and the VAR parameters, solve for {x̂(d+1)
t }Tt=1 using (2.7) in equation (2.4).

In some applications, researchers may have a strong prior over the VAR parameters or even treat

them as known. If the researcher wishes to evaluate a specific model that can be simulated, the

researcher can estimate the VAR on simulated data. Furthermore, we can add an initial calibration

step to either algorithm where we calibrate first moments to be model-consistent by treating the

(log) deviations of the observed series as (log) deviations from the model moments.

2.3 Extensions

In our empirical application, we use a model with an occasionally binding constraint. To fully exploit

the model information, we employ the complementary slackness condition to test if the inequality

constraint would be violated. We can then introduce and solve for time-varying intercepts for

expected marginal utility, say, for the period with binding constraints to ensure that the model

multiplier correctly identifies periods with a binding constraint.

Other extensions are conceptually straightforward. For example, one could weaken the identi-

fying assumptions above or allow for iid measurement error in the filtering equation (2.1). In the

latter case, equation (2.1) would hold only on expectation and one may need to adjust the estima-

tor for the expectations. For instance, in the linear model with iid measurement error, the use of

lagged filtered values as an instrument may correct for otherwise present attenuation bias. Below,

we introduce measurement error in the simulation but treat it as a form of model misspecification

unknown to the researcher.

With measurement error and multiple equations identifying the hidden state, it would also be

possible to test whether the hidden state is identified consistently by the different equations. Lastly,

when we use a misspecified, inconsistent estimator for Ê[g(·)|·] with a small but non-zero error, we

could use additional assumptions on f to bound the error on the filtered state.

3 A scalar example

We now return to the simple model (2.2) and explore the properties of the partial filter in a Monte

Carlo exercise. We also consider possible misspecification in the form of measurement error and an

MA(1) structure of the innovations to assess the robustness of the proposed filter.5

5In principle, we could augment the state vector of the partial filter to capture these elements of the DGP in a
correctly specified model. However, we would then need to introduce use extra information to recover these states.
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As before, there is a single observable yt that depends on a single hidden state variable xt that

the researcher tries to extract:

yt = µy + xt + Et[κ1xt+1 + κ2x
2
t+1] + et (3.1a)

xt = µx + γ0 cos(γ1(t− 1)) +

(
ρ0 +

ρ1
1 + x2t−1

)
xt−1 + ut, (3.1b)

ut =
ϕ0vt + ϕ1vt−1√

ϕ2
0 + ϕ2

1

, (3.1c)

where et ∼ iid(0, σ2
e) and vt ∼ iid(0, σ2

u). Here, et has the interpretation of measurement error,

while vt is a shock to the hidden state.

We treat the observation equation (3.1a) as known by the researcher. Examples with such an

expectation terms include a forward-looking Phillips curve or a consumption Euler equation. The

observation equation depends on the current state variable xt and expectations of a function of the

future state xt+1, which is non-linear when κ2 ̸= 0. Since the system is jointly homogeneous in

means, coefficients, and standard deviations, we normalize the coefficient on the current state to

unity: κ1 = 1.

The state equation has a deterministic and a stochastic component. The stochastic component

is first-order Markov, but non-linear if ρ1 ̸= 0. Since we are after applications with incompletely

specified models, we allow for a forcing term and ARMA dynamics that we deliberately ignore in

the partial filter setup to investigate the behavior under misspecification or partial specification.

The forcing term is a cosine function of calendar time t, where γ0 controls the amplitude and γ1

the frequency. We allow for the innovation to xt to follow an MA(1) process. When ϕ1 ̸= 0, there

are two hidden state variables: xt and vt.

Our filtering approach involves three steps. First, we approximate the state dynamics with a

(possibly non-linear) VAR. Second, we evaluate the expectations terms in the observation equation

using the VAR approximation. Third, we back out the hidden state given VAR dynamics and

observables. The VAR dynamics could be known from simulating a structural model, or estimated

- in the simplest case, iterating between state inference and VAR estimation. We discuss each step

next.

Step 1. We approximate the dynamics of the hidden state xt with a VAR in the hidden state

and the observables. It includes non-linear terms:[
xt

yt

]
≈ a0 +

L∑
ℓ=1

Aℓ

[
xt−ℓ

yt−ℓ

]
+

P∑
p=2

bℓ,px
p
t−ℓ

+ εt. (3.2)

This VAR uses L lags and allows for a P−th order polynomial in the hidden state. While we impose

that the state variable captures the non-linear dynamics, we could test or relax this assumption.

That is, we could check whether bℓ,p is statistically different from zero.
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Step 2. We apply the statistical identity E[Z2] = E[Z]2 +Var[Z] to the measurement equation:

Et[κ1xt+1 + κ2xt+1] = Et[κ1xt+1 + κ2x
2
t+1] + κ22Vart[xt+1]. (3.3)

Step 3. We plug the VAR dynamics (3.2) into the expression for the expectation terms in the

observation equation and solve for the state, treating the measurement error et as zero. Given the

non-linearity, this yields, generally, P solutions if κ2 = 0 and 2P solutions when κ2 ̸= 0. Among

these candidates, we choose solutions based on their predictive density. We could also use economic

intuition to rule out solutions.

The point estimate of the partial filter is a fixed point of VAR parameters and state estimates.

Below, we solve for this fixed point iteratively. The VAR parameters are estimated in the first step

given state estimates. The state estimates are then updated given VAR parameter estimates. If

one is interested in quantifying estimation uncertainty, one renders this iterative procedure into a

Gibbs sampler by drawing the VAR parameters from the posterior, rather than using the point

estimates.

A number of special cases of the system of equations (3.1) illustrate challenges and advantages

of the partial filter. We focus on the following three cases:

1. Fully linear case: If κ2 = γ0 = ρ1 = 0, the model is linear. In this case, the Kalman filter

applies and is optimal when the disturbances are Gaussian.

2. Quadratic observation equation, linear state equation: If ρ1 = γ0 = 0, the state equation is

linear. In this case, we need to restrict µx and bound the support of vt to ensure that the

model is identified: Otherwise, there are generally two sequences {xt} that are consistent

with {yt} and the model is unidentified.

3. Linear observation equation, non-linear state equation: If κ2 = 0, we have an observation

equation that is linear in the forecast Et[xt+1], but we retain the full non-linearity of the state

equation. In this case, even the law of motion is generally a correspondence that can have

disconnected ergodic sets.

By analyzing these three cases, we can show that our simple procedure performs well even in

the presence of misspecification. The filter does well as long as the misspecification is not severe,

i.e., provided that the signal-to-noise ratio is high enough. Also, we provide a comparison with the

linear Kalman filter. Additionally, we consider a special case without misspecification.

More concretely, we conduct a Monte Carlo exercise using N = 100 replications. Throughout,

we consider low to high values for of persistence ρ0 ∈ {0.25, 0.5, 0.75, 0.9, 0.95}. We normalize the

variance of the measurement error σ2
e = 1 and vary the unconditional variance of the stochastic

component of the hidden state on the following grid: {4−2, 1, 22, 52}.6 We set ϕ0 = 4 − ϕ1, and

6The variance adjustment is for the linear law of motion for xt, or for the first-order approximation to the
non-linear law of motion.
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vary the importance of the backward-looking MA component by letting ϕ1 ∈ {0, 1, 2, 3}. We use a

burn-in in the simulations of 100 periods and a sample period of T = 250, a typical sample length

for quarterly post-WWII applications. Except in the application with the non-linear observation

equations, we assume zero means µy = µx = 0 and Gaussian distributions. Throughout, we assume

a single lag in the VAR.

3.1 Linear model without misspecification

Before discussing the case of misspecification, we first examine a special case with neither measure-

ment error nor MA component.

This is equivalent to increasing the signal to noise ratio to infinity in the case with measurement

error.

Compared to the fully linear case under misspecification, in the case of no measurement error

we can set the unconditional standard deviation of the process directly with σ2
u. In addition, in the

linear case (ρ1 = 0) without measurement error, we have that xt and yt are perfectly collinear.

We can rewrite the observation equation as:

yt = (1 + ρ0)xt, (3.4)

where xt follows a zero mean AR(1) process:

xt = ρ0xt−1 + vt. (3.5)

Due to the perfect collinearity of xt and yt, here the partial filter is very simple. We consider an

AR(1), yielding Êt[x
(d)
t+1] = Â1,1[x

(d)
t ] + â1, where â1 is a constant term included in the AR(1) and

that is zero in population. While we could update x̂
(d)
t directly, we simply iterate until convergence

on the following two steps:

For d = 1, 2, . . . do until convergence of {x(d)t }t

Step 1. x
(d)
t = yt − Â11x

(d−1)
t − â

(d−1)
1

Step 2. estimate AR(1) coefficients Â(d), â
(d)
0 regressing


x
(d)
1
...

x
(d)
T

 on


x
(d)
0 1
...

x
(d)
T−1 1

 .

We proceed iteratively for comparison with the more complicated cases. In this simple model,

we could also use a simple two-step procedure. Since for any initial guess of ρ0 ̸= −1 we have

that yt ∝ xt, we could use yt or the initial guess for xt to estimate ρ̂0. We would then update

xt = (1 + ρ̂0)
−1yt.

Figure 1 shows how the fit of the partial filter changes as a function of the persistence of the true

state. Specifically, the left panel is a scatter plot when ρ0 = 0.25, the center panel when ρ0 = 0.75,

and the right panel when ρ0 = 0.95. Within each panel, the true state xt is measured on the

13



ρ0 = 0.25,Var[x] = 1 ρ0 = 0.75,Var[x] = 1 ρ0 = 0.95,Var[x] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45 degree line.

Figure 1: Partial filter in fully linear case without measurement error: Filtered state x̂t vs true xt
for 100 different T = 250 samples for varying degrees of persistence ρ0.

horizontal axis. Different colors correspond to the 100 different Monte Carlo samples. The dashed

line is the 45 degree lines. All realizations are close to the 45 degree line. Comparing the left panel

to the right panel shows that the filtered state becomes more concentrated and is relatively closer

to the true state when the persistence is higher. Given these scatterplots, it is not surprising that

the partial filter here yields close to perfect correlations and that the relative standard deviations

are just slightly above unity. See Appendix 5 for more details.

3.2 Linear case with misspecification

Given the MA(1) error term and knowing the true DGP, we can rewrite the observation equation

as:

yt = (1 + ρ0)xt +
ϕ1√

ϕ2
0 + ϕ2

1

vt + et, (3.6)

where xt follows a zero mean ARMA(1,1) process.

The partial filter here is simple. We consider a linear VAR with a single lag, yielding Êt[x
(d)
t+1] =

Â1,·[x
(d)
t , y

(d)
t ]+ â1. While we could update x̂

(d)
t directly, we simply iterate until convergence on the

following two steps (treating et as zero):

For d = 1, 2, . . . do until convergence of {x(d)t }t

Step 1. x
(d)
t = yt − Â11x

(d−1)
t − Â

(d−1)
12 yt − â

(d−1)
1

Step 2. estimate VAR coefficients Â(d), â
(d)
0 regressing


y1 x

(d)
1

...

yT x
(d)
T

 on


y0 x

(d)
0 1

...

yT−1 x
(d)
T−1 1

 .

In this example as well as in the other two examples, we show two types of results. First, fixing

the parameters of the DGP, we show scatter plots of the filtered series x̂t against the true state xt.
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While ignoring the temporal pattern, it flexibly shows the overall fit and shape of the filtered series.

Second, we vary the parameters of the DGP and show how the correlation and relative standard

deviation of the filtered vs the true series change with the DGP.

Figure 2 shows scatter plots for low to moderate persistence of the state with ϕ1 = 0.7 The

three panels differ in their persistence: The left panel has a low persistence of ρ0 = 0.25, the center

panel of ρ0 = 0.5, and the right panel has a persistence of ρ0 = 0.75. Within each panel, the true

state xt is measured on the horizontal axis. Different colors correspond to the 100 different Monte

Carlo samples. The dashed line is the 45 degree lines. All realizations are close to the 45 degree

line. Comparing the left panel to the right panel shows that the filtered state is relatively closer to

the true state when the persistence is relatively higher.

ρ0 = 0.25,Var[x] = 1 ρ0 = 0.50,Var[x] = 1 ρ0 = 0.75,Var[x] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45 degree line.

Figure 2: Partial filter in the fully linear case: Filtered state x̂t vs true xt for 100 different samples
for varying degrees of persistence ρ0.

Table 1, Panels A1 and B1, evaluates the performance of the partial filter in terms of the

correlation and standard deviation of the filtered and true state. The upper panel fixes the signal-

to-noise ratio (at equal variances) and varies the persistence ρ0, while the lower panel fixes the

persistence at ρ0 = 0.75 and varies the signal-to-noise-ratio. Both panels show median correlations

and relative standard deviations, along with the 68% confidence intervals. Overall, there is little

variation across Monte Carlo simulations, as indicated by the narrow confidence intervals relative

to the median.8 The left column of Panel B1 in the bottom row shows that the median correlations

with a persistence of ρ0 = 0.5 are above 0.9, unless the unconditional standard deviation of xt

is 1
4 , in which case it drops to 0.56. The left column in the top row shows that, holding fixed

the unconditional variance of the state to equal the unit variance of the measurement error, the

correlation ranges from 0.77 to above 0.98.

The relative standard deviation of the filtered and the true state (right columns of panels A1 and

B1 in Table 1) behave similar to the correlations: Except for the signal to noise ratio below unity,

the relative standard deviations are below 1.5. For high signal to noise ratios or very persistent

states, the relative standard deviations are close to unity.

7The results for non-zero ϕ1 are similar, but the higher persistence marginally increases the correlations between
the filtered and true series; see Table A.1 in the Appendix.

8The dispersion across Monte Carlo draws falls with the median correlation.
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(A) Varying the persistence ρ0 of the state given Var[et] = Var[xt]
A1. Linear case

ρ0 Correlation Rel st. dev.

0.25 0.77 [0.74,0.80] 1.31 [1.25,1.38]
0.50 0.85 [0.82,0.87] 1.21 [1.16,1.26]
0.75 0.92 [0.91,0.94] 1.11 [1.08,1.14]
0.90 0.97 [0.95,0.98] 1.04 [1.03,1.06]
0.95 0.98 [0.97,0.99] 1.03 [1.02,1.05]

A2. Quadratic obs. eq.
Correlation Rel st. dev.

0.80 [0.78,0.82] 0.12 [0.12,0.13]
0.97 [0.96,0.98] 0.43 [0.41,0.45]
0.99 [0.99,1.00] 0.97 [0.93,1.00]
1.00 [1.00,1.00] 1.03 [1.02,1.05]
1.00 [1.00,1.00] 1.06 [1.04,1.07]

A3. Non-linear state eq.
Correlation Rel st. dev.

0.90 [0.89,0.90] 1.21 [1.18,1.24]
0.93 [0.92,0.93] 1.19 [1.17,1.21]
0.66 [0.65,0.67] 1.39 [1.38,1.40]
0.76 [0.75,0.77] 1.73 [1.72,1.76]
0.79 [0.79,0.80] 1.93 [1.91,1.95]

(B) Varying the relative standard deviation of measurement error et vs the state xt given ρ0 = 0.75

Var[xt]
1/2 B1. Linear case

/Var[xt]
1/2 Correlation Rel st. dev.

0.25 0.56 [0.51,0.62] 2.70 [2.47,3.06]
1.00 0.92 [0.91,0.94] 1.11 [1.08,1.14]
2.00 0.98 [0.97,0.98] 0.99 [0.98,1.01]
5.00 0.99 [0.99,1.00] 0.96 [0.95,0.97]
10.00 1.00 [0.99,1.00] 0.95 [0.94,0.97]

B2. Quadratic obs. eq.
Correlation Rel st. dev.

0.83 [0.81,0.86] 1.17 [1.13,1.23]
0.99 [0.99,1.00] 0.97 [0.93,1.00]
1.00 [0.99,1.00] 0.95 [0.91,0.99]
1.00 [0.99,1.00] 0.93 [0.90,0.96]
1.00 [0.99,1.00] 0.91 [0.88,0.95]

B3. Non-linear state eq.
Correlation Rel st. dev.

0.65 [0.64,0.65] 1.41 [1.40,1.42]
0.66 [0.65,0.67] 1.39 [1.38,1.40]
0.74 [0.67,0.95] 1.35 [1.12,1.38]
0.97 [0.97,0.98] 1.13 [1.11,1.17]
0.98 [0.97,0.98] 1.11 [1.08,1.15]

Shown are the median correlations and relative standard deviations [68% confidence interval] across simulations.

Table 1: Correlation and relative standard deviation of the filtered vs true state as a function of
the persistence of the hidden state (top panel) and the signal to noise ratio (bottom panel). Model
with measurement error and ARMA(1,1) shocks.

3.3 Quadratic observation equation with misspecification

Next, we consider the linear state equation, but allow for a quadratic state equation. With iid

innovations (ϕ1 = 0), the measurement and state equations imply:

yt = µy + xt + κ1Et[xt+1] + κ2Et[x
2
t+1] + et (3.7)

= µy + xt + κ1ρ0xt + 2κ2ρ0µxxt + κ2(µ
2
x + σ2

u) + κ2ρ
2
0x

2
t + et (3.8)

The case of the quadratic observation equation serves to illustrate an important requirement

for the partial filter: The model has to be identified absent measurement error, i.e. if et = 0.

Otherwise, the model is only set-identified with solutions generically spread across disjoint regions

of the state space. Here, two different values of xt are consistent with a given realization of yt

absent measurement error. In typical applications, however, economic insight can be used to rule

out regions of the state space that give rise to multiplicity.

To ensure that our data generating process has a point-identifiable state, we restrict the mea-

surement yt to be increasing in xt, as in Example 1(b). Since this is only possible with bounded

shocks, we now assume that vt follows a truncated normal distribution.9 Retracing the steps of

example 1(b), we require that:

∂yt
∂xt

= 2ρ20κ2xt + (1 + κ1ρ0 + 2κ2ρ0µx) ≥ 0 ⇔ xt ≥ −1

2

1 + κ1ρ0 + 2κ2ρ0µx

ρ20κ2
(3.9)

Given bounded shocks, xt is bounded from below by µx+u
1−ρ0

, where u is the lower bound on the

9We truncated the normal distribution to [−1, 1] and scale it to have the desired variance σ2
u.
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disturbances. Given ρ0 > 0, the sufficient condition becomes a restriction on the unconditional

mean of the state xt:

µx ≥ ρ20(κ1 − 2uκ2)− κ1ρ0 + ρ0 − 1

2κ2ρ0
(3.10)

In the simulations, we consider two different combinations of κ1 and κ2:

1. Almost linear: κ1 = 10, κ2 =
1
10 , µy = 0. µx set so that (3.10) holds with equality

2. Very non-linear: κ1 =
1
10 , κ2 = 10, µy = 0. µx set so that (3.10) holds with equality

Since we already treated a linear case above, considering a nearly linear case may seem superfluous

because we have documented that the filter works in the linear case with a linear VAR. However, in

non-linear applications we also consider a more flexible approximating model. A priori, the extra

flexibility could impair the filter performance. However, we show that this is not the case even in

the near-linear case.

In this setup, given the possible multiplicity of solutions, we need to choose an initial guess

with a reasonable scale. Here, we use the following guess, based only on observables and the known

parameters of the observation equation:

x̂
(0)
t =

1

κ1 + κ2

1

κ22 + κ21

(
κ22

√
yt + κ21yt

)
+ 0.1×N (0, 1)

We use a VAR with a single lag and a square term in the hidden state xt−1. We initialize the VAR

coefficients to have a persistence in the state of 0.9 and zero loadings otherwise.

Before turning to the results, we illustrate the DGP for various degrees of persistence, ρ0 ∈
{0.25, 0.75, 0.95}. Since the non-linearity only enters via the expected future state, when this state

is not persistent, the model is almost linear – as the left panel in Figure 3 shows. For the higher

degrees of persistence, however, the non-linearity is noticeable: One gauge of that measure is the

relative size of the coefficients in a regression of yt on the true xt and x2t – and the departure from

the 45-degree line in the figures. For ρ0 = 0.25, the non-linearity matters little – the OLS coefficient

on xt is .75, whereas the LS coefficient on x2t is .45 only. The relative magnitudes are reversed when

ρ0 = .75 or ρ0 = .95.

Figure 4 uses a scatter plot to compare the filtered state to the true state for 100 different

sample paths. Each panel plots the true xt on the horizontal axis and the filtered x̂t on the

vertical axis. Different colors indicate different sample paths. The dashed line is the 45-degree line.

The three panels correspond again to ρ0 ∈ {0.25, 0.75, 0.95}, with different colors in each panel

corresponding to different simulated sample paths. With low persistence (left panel), there are

two out of 100 samples paths when the partial filter estimates sequence of states outside the true

parameter region. These are shown as orange and purple clouds in the bottom of the graph and

correspond to the “wrong root” of the non-linear system. In practice, researchers may be able to
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ρ0 = 0.25,Var[x] = 1 ρ0 = 0.75,Var[x] = 1 ρ0 = 0.95,Var[x] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45 degree line.

Figure 3: Very-non linear case (κ1 = 1
10 , κ2 = 10) for varying degrees of persistence ρ0. True state

vs observation with T=25,000 observations.

rule this case out using knowledge of the application. In all other sample paths, the partial filter

has a strong correlation with the truth, but exhibits excess smoothness: The filtered state varies

only between .5 and 1.5, as opposed to −2.5 to 2.5 in the true DGP. As we discuss below, however,

the correlation of the filtered values with the truth is still above .78 in 84% of samples. With higher

persistence (center and right panel), the visual fit is remarkably high across all sample paths and

the correlations exceeds .96 in 84% of sample paths.

ρ0 = 0.25,Var[x] = 1 ρ0 = 0.75,Var[x] = 1 ρ0 = 0.95,Var[x] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45 degree line.

Figure 4: Very-non linear case (κ1 = 1
10 , κ2 = 10) for varying degrees of persistence ρ0. True state

vs partial filter in the fully linear case (bottom row): Filtered state x̂t vs true xt for 100 different
T = 250 samples.

Table 1, panels A2 and B2, shows how the fit of the partial filter changes as a function of the

signal-to-noise ratio and the persistence of the true state. Specifically, it lists the median correlation

between the true and filtered states (along with 68% confidence intervals) in the left column, and

the relative standard deviations of the filtered state relative to the true state in the right column.

The bottom panel varies the variance of xt, for fixed ρ0 = .75. The top panel fixes the variance

of xt and varies ρ0. Turning to the results, the left column shows that the median correlation is

above 0.8 in all cases shown, and often well above 0.95 with tight confidence intervals. The right
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column shows that, the standard deviation of the estimated state is near that of the true state for

a persistence of ρ0 ≥ 0.75. However, as indicated in the scatter plots in Figure 4, the filter estimate

is excessively smooth when the persistence is low. With ρ0 = 0.25, the relative standard deviation

is only 0.12. It rises to 0.43 with ρ0 = 0.5 and approaches unity quickly for ρ0 = 0.75 or higher.

While the previous figures considered the very non-linear DGP, the results are even stronger

with a DGP that is close to linear. In principle, the approximating model is overparameterized

with a linear DGP. Table A.2 in the Appendix compares the results for correlations and relative

standard deviations for the very non-linear and the near-linear cases when we vary the signal-to-

noise ratio and the persistence as before. The partial filter produces higher correlations and relative

standard deviations even closer to one than in the very non-linear case summarized in Table 1: The

correlations are now .9 or higher, as opposed to .80 or higher in the very non-linear case. The worst

relative standard deviation is now .39 to .12 in the very non-linear case. The confidence intervals

remain tight.

3.4 Linear observation equation, non-linear state equation with misspecification

We now consider a different form of non-linearity: A non-linear state equation with non-linear

persistence and a cosine forcing term. Specifically, the model is now:

yt = xt + κ1Et[xt+1] + et (3.11a)

xt = γ0 cos(γ1(t− 1)) +

(
ρ0 +

ρ1
1 + x2t−1

)
xt−1 + ut, (3.11b)

ut =
ϕ0vt + ϕ1vt−1√

ϕ2
0 + ϕ2

1

, (3.11c)

where et ∼ iid(0, σ2
e) and vt ∼ iid(0, σ2

u). Here, we set ρ1 = 25, γ0 = 8, γ1 = 1.2. As we illustrate

below, these parameter values interact with ρ0 to give rise to rich non-linearities.

ρ0 = 0.25,Var[x] = 1 ρ0 = 0.50,Var[x] = 1 ρ0 = 0.75,Var[x] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45 degree line.

Figure 5: Linear observation equation, non-linear state equation for varying degrees of persistence
ρ0. True state vs observation with T=25,000 observations.

To illustrate this data-generating process, we once again turn to scatter plots. Figure 5 shows

the relationship between the hidden state and the measurement for ϕ0 = 0. Even though we have
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that κ2 = 0, the measurement is related to the state non-linearly because of the expectations term,

which varies non-linearly. In all cases, the state space contains regions where one value of xt can be

associated with different measurements. This is due to the non-linear state dynamics: The current

state xt is related to the state yesterday xt−1 in a similar non-linear fashion as the measurement yt

is related to the current state (not shown).

Despite the significant non-linearities, the partial filter does exceedingly well. Figure 6 shows

that across all 100 sample paths, the filtered estimates are close to the 45 degree line. Even in the

one sample path for ρ0 = 0.75 where the state dynamics are in the negative region, a region of the

state space outside the restricted domain in the data generating process and not visited during any

other simulation, the filter successfully captures this.

ρ0 = 0.25,Var[x] = 1 ρ0 = 0.50,Var[x] = 1 ρ0 = 0.75,Var[x] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45 degree line.

Figure 6: Linear observation equation, non-linear state equation for varying degrees of persistence
ρ0. Filtered state x̂t vs true xt for 100 different T = 250 samples.

Table 1 panels A3 and B3 quantify the performance of the partial filter with the non-linear law

of motion. As before, the left column lists the median correlation of the filtered estimates and the

truth along with 68% confidence intervals. The right column shows the relative standard deviation

of the filtered estimate. For an intermediate persistence ρ0 = 0.75, the correlation ranges from 0.65

to 0.98, as the variance of the state increases relative to the measurement error variance. Fixing

the variance of the hidden state shows that the correlation can dip from above 0.9 to 0.65 when

ρ0 = 0.75, but is otherwise always above 0.75. The relative standard deviation in the right column

is slightly high, but of the right order of magnitude.

3.5 Comparison with the Kalman Filter

While the Kalman Filter is not applicable in all of the scalar examples that we are considering,

it is still a useful benchmark. Because it is widely used for filtering dynamic economies, applied

researchers may consider it as a natural starting point even when it is misspecified.

We document that both the partial filter and the Kalman filter typically yield state estimates

that are high relative to the truth. However, the partial filter is more robust in the non-linear
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applications and yields relative standard deviations that are more consistently close to unity. See

A.4.

4 Application: A Sudden Stops Model

To evaluate the partial information filter, we apply it to a popular non-linear economy: the sudden

stops model of Mendoza (2010). The model introduces a loan-to-value (LTV) constraint in the

workhorse RBC small-open economy model.

4.1 Model structure

Time t is discrete and goes forever. The economy is inhabited by a representative firm and a

representative household. The firm produces a tradable good yt with a technology yt = eϵ
A
t Akγt L

α
t v

η
t ,

where kt is capital, Lt is labor, vt are imported intermediate goods, ϵAt is a productivity shock, and

γ+α+η = 1. The tradable good is sold at a world-determined price (normalized as the numeraire).

Imported inputs are purchased at an exogenous price log pt = log p+ ϵPt , where ϵPt is a price shock.

Working capital loans pay for a fraction ϕ of the cost of imported inputs and labor in advance of

sales. These loans are obtained from foreign lenders at the beginning of each period and repaid at

the end of the period. Lenders charge the world gross real interest rate logRt = logR+ ϵRt on these

loans, where ϵRt is an interest rate shock. The shocks in the economy, st = {ϵAt , ϵPt , ϵRt }, follow a

joint first-order Markov process with unconditional zero means.

The household has a utility function over sequences of consumption ct and labor:

E0

∞∑
t=0

βt

(
ct − Lω

t
ω

)1−σ

1− σ
,

where β is the discount factor, ω determines the elasticity of labor supply, and σ controls risk

aversion. Note that we follow the specification in Mendoza and Villalvazo (2020) with a standard

time-separable expected utility with exogenous discounting, instead of the case with endogenous

discounting as in Mendoza (2010).

The household can accumulate capital subject to quadratic adjustment costs:

kt+1 = (1− δ)kt + ĩt −
a

2

(kt+1 − kt)
2

kt
, (4.1)

where δ is the depreciation rate, ĩt is gross investment, and a is a constant scaling the adjustment

costs. Because of the adjustment costs, capital has a market price qt possibly different from one.

The household can also trade a one-period, zero-coupon foreign bond bt+1 at a price qbt = R−1
t

(where bt < 0 means the household is borrowing).
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Since the household owns the firm, the household maximizes its preferences subject to the

budget constraint:

(1 + τ)ct + ĩ = yt − ptvt − ϕ(Rt − 1)(wtLt + ptvt)− qbt bt+1 + bt. (4.2)

The left-hand-side of this budget constraint tells us that the resources of this economy are used for

consumption, taxed at a constant rate τ and gross investment.10 The resources on the right-hand

side come from output net of imported inputs and the servicing of working capital loans, and the

change in the foreign bond position.

In addition, the household is subject to a collateral constraint:

ϕRt(wtLt + ptvt)− qbt bt+1 ≤ κqtkt+1. (4.3)

Equation (4.3) limits the total debt (working capital loans plus negative positions in bonds) to be

less or equal to a fraction κ of the market value of the end-of-period capital stock. We define a

crisis in our model as a period in which the collateral constraint is binding

The prices qt and wt that appear in equations (4.2) and (4.3) are endogenous market prices

taken as given by the household when solving its optimization problem. Since the wage rate must

be on the labor supply curve (i.e., it must equal the tax-adjusted marginal disutility of labor), we

require that wt = Lω−1(1 + τ). Similarly, the price of capital must satisfy qt =
∂ĩt

∂kt+1
.

The equilibrium conditions of the model boil down to:

uc(t) = RtβEt[uc(t+ 1)] + µt(1 + τ) (4.4)

qt =
Et [Mt+1]Et [dt+1 + qt+1] + Covt(Mt+1, dt+1 + qt+1)

RtEt [Mt+1] + µ̃t [(1 + τ)− κ]
(4.5)

Lω−1
t (1 + τ) =

eϵ
A
t Akγt L

α
t v

η
t

(1 + ϕ(Rt − 1) + µ̃t(1 + τ)ϕRt)
, (4.6)

where uc(t) ≡
(
ct − Lω

t
ω

)−σ
is the marginal utility of consumption, dt are the dividends from capital

(since we substituted Rq
t+1 ≡ (dt+1 + qt+1)/qt), Mt+1 ≡ βuc(t+1)

uc(t)
is the stochastic discount factor,

and µ̃t ≡ µt

uc(t)
is the multiplier of the budget constraint rescaled by uc(t). See Mendoza and

Villalvazo (2020, p. 86) for details.

4.2 Calibration and solution

To enhance the comparability of our exercise with previous results in the literature, we borrow all

our parameter values from Mendoza and Villalvazo (2020), except the discount factor β, which we

lower marginally from 0.92 to 0.918 to yield an average crisis probability of 30.8% (see Table 2

10While the model does not include a government, a time-invariant consumption tax τ help us to match the average
share of government expenditures in GDP in the data. Given the structure of the utility function, a constant tax
does not distort the savings-consumption margin and it does not create a time-varying distortion on labor supply.
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below). The calibration is annual. However, since the ratio of flows to stocks scales in the period

length, we can apply the model to quarterly data below without much effort.

Parameter value

Average productivity: A 6.982
Capital share: γ 0.31
Labor share: α 0.59
Imported inputs share: η 0.10
Working capital parameter: ϕ 0.2579
Discount factor: β 0.918
Labor elasticity coefficient: ω 1.8461
Risk aversion coefficient: σ 2.0
Depreciation rate: δ 0.088
Capital adjustment cost: a 2.75
Tax on consumption: τ 0.17
Collateral coefficient: κ 0.20

Productivity shock: persistence 0.537
Productivity shock: s.d. 1.340
Imported input price shock: persistence 0.737
Imported input price shock: s.d. 3.345
Interest rate shock: persistence 0.572
Interest rate shock: s.d. 1.958

Table 2: Model calibration.

While the whole point of the partial filter is to allow a researcher to study the data without

solving the model, we need to compute the model to perform our Monte Carlo experiment that

demonstrates that such a task can be accomplished. We do so following fixed-point iteration (FiPIt)

algorithm developed in Mendoza and Villalvazo (2020). The algorithm works by conjecturing the

decision rule for bonds and the capital pricing function, deriving a set of implied decision rules that

follow from these conjectures, and solving the Euler equations for bonds and capital via fixed-point

iteration to find new values of the bonds decision rule and capital pricing function.

Since this algorithm works over a discrete state space, we define discrete grids for the three

states of the economy, (b, k, s). For the endogenous states, we define grids with M nodes for bonds

and N nodes for capital, respectively. The grid for the shock triples s ∈ S comes from Mendoza

(2010), who assumes that S has eight triples (i.e. each shock has two realizations) and an associated

8× 8 Markov transition probability matrix. Mendoza (2010) computes S and its transition matrix

to match the persistence and volatility of total factor productivity, the intermediate input prices,

and the world real interest rate.

4.2.1 The partial filter

Since here the shocks are revealed by static observables, we focus instead on filtering the unobserved

co-state variables. Let us assume that the goal of a researcher is to filter the multiplier on the

collateral constraint, expressed in units of consumption µ̃t =
µt

uc,t
, and the price of capital qt without
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having to solve for the whole model. Our assumption represents the goals of many researchers:

to learn about two variables of key importance for the behavior of the model that are either

unobservable, µ̃t, or hard to measure, qt (the indices of capital prices are subject to much discussion).

Also, we can implement our filter in two scenarios: when the researcher is willing to assume some

parameter values and when the parameter values are unknown. We will focus on the former case

but briefly discuss the latter.

In comparison, we assume that we can measure Ct and Lt (which gives us uc,t, recall we have

fixed already parameter values), Rt, and dt. For many countries, these four series are readily

available (for example, dt can be construed from national income and product accounts). Hence,

we define the vector of observables yt = [uc, Lt, Rt, dt].

The first step in implementing the partial filter is to define the hidden state vector xt = [µ̃t, qt]

and select two equilibrium conditions of the model that are likely to be informative about xt, the

Euler equation (4.4) rewritten as:

µ̃t =
uc(t)−RtβEt[uc(t+ 1)]

(1 + τ)

1

uc(t)
, (4.7)

and the relative price of capital (4.5) becomes:

qt =

β
uc,t

Et [uc,t+1]Et [dt+1 + qt+1] +
β

uc,t
Covt(uc,t+1, dt+1 + qt+1)

Rt
β

uc,t
Et [uc,t+1] + µ̃t [(1 + τ)− κ]

, (4.8)

when we substitute Mt+1 ≡ βuc(t+1)
uc(t)

. This last expression is particularly convenient because, below,

we will specify our VAR in terms of the marginal utility of consumption. Notice that we can filter

out µ̃t with uc, Lt, Rt. In contrast, to filter out qt, we also need dt.

In addition to equations (4.7) and (4.8), we will also use the slackness condition:

µ̃t

[
qbt bt+1 − ϕRt [wtLt + ptvt] + κqtkt+1

]
= 0, (4.9)

which we can simplify further by taking advantage of the fact that, in equilibrium wtLt + ptvt =

(α+η)yt, i.e., a constant fraction of output is spent on labor and imported inputs (this result comes

directly from having competitive markets and a Cobb-Douglas production function). We use this

condition to adjust our state estimates. When the borrowing constraint is binding, but µ̃t is not

estimated to be positive, we lower our estimate of the expected future utility – and vice versa when

the borrowing is slack and yet the estimated µ̃t is inferred to be positive.11

Thus, we have a 2-dimensional g-function:

g(xt+1,yt+1,xt,yt) = [y1,t+1;y4,t+1 + x2,t+1;βy1,t+1/y1,t] (4.10)

11We refrain from using this equation to filter Tobin’s q directly, because of measurement error: The observed
debt is averaged across maturities and not risk-free, causing a discrepancy between the model and the data. In the
data for Mexico, we would otherwise infer an implausible increase in Tobin’s q when the borrowing constraint binds:
Given observables, only an increased collateral value could otherwise justify the observed borrowing.
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and an f-function:

f(xt,yt,Et[xt+1,yt+1,xt,yt]) =

 −µ̃t +
uc(t)−RtβEt[uc,t+1]

(1+τ)
1

uc(t)

−qt +
β

uc,t
Et[uc,t+1]Et[dt+1+qt+1]+

β
uc,t

Covt(uc,t+1,dt+1+qt+1)

Rt
β

uc,t
Et[uc,t+1]+µ̃t[(1+τ)−κ]

 = 0

(4.11)

When the borrowing constraint is slack, we solve f for [µ̃t, qt]. When the borrowing constraint is

binding (or violated) but µ̃t = 0, we add a time-varying intercepts in the VAR that lowers Et[uc,t+1]

to be consistent with the binding constraint at time t. Similarly, when the constraint is not binding

but µ̃t > 0, we introduce a time-varying intercept that raises Et[uc,t+1] to lower the inferred µ̃t.

The second step in implementing the partial filter is to run a VAR(x) on yt,xt and use it to

approximate the expectations and covariances in f(·). In the VAR(1) case, we collect the VAR

variables in the vector ξ
(d)
t = [uc,t, Lt, Rt, dt, µ̃

(d)
t , q

(d)
t ] – the case of more lags can be handled via

the companion form of the VAR. Then, we use the fact that ξ
(d)
t = a(d) + A(d)ξ

(d)
t−1 + ε

(d)
t and

Σ(d) = V̂ar[ε
(d)
t ] to write:

f1(x
(d)
t ,yt, Ê

(d)
t [g(x

(d−1)
t+1 ,yt+1,x

(d−1)
t ,yt]) ≈ −x

(d)
1,t +

uc(t)−Rtβe
′
1(a

(d) +A(d)x
(d−1)
t )

(1 + τ)

1

uc(t)

and

f2(x
(d)
t ,yt, Ê

(d)
t [g(x

(d−1)
t+1 ,yt+1,x

(d−1)
t ,yt]) ≈ −x

(d)
2,t

+

β
uc(t)

e′1(a
(d) +A(d)x

(d−1)
t )(e′4 + e′6)(a

(d) +A(d)x
(d−1)
t )

Rt
β

uc(t)
e′1(a

(d) +A(d)x
(d−1)
t ) + µ̃t

(d)[(1 + τ)− κ]

+

β
uc(t)

[(Σ
(d)
1,4 +Σ

(d)
1,6)]

Rt
β

uc(t)
e′1(a

(d) +A(d)x
(d−1)
t ) + µ̃t

(d)[(1 + τ)− κ]

For numerical stability, we do not immediately update the state estimates. Instead, we use a

third step to slowly update the guesses. Specifically, we update the state estimates for q̂t and ̂̃µt,

using iterative rules of the form q̂
(d)
t = (1− s)q̂

(d−1)
t + sx

(d)
2,t . Updating the state estimates slowly

improves convergence. Because in the model µ̃t ≥ 0, we also censor ̂̃µt at a small negative number.

See Appendix B.2 for details.

Everything we have done so far is quite straightforward: (i) we selected two equilibrium con-

ditions plus the slackness condition of the model based on their informativeness about the states

we wanted to learn about and performed basic algebraic manipulations with them; (ii) we run a

VAR on four observables and used the results to substitute variances and covariances on the three

equations from step (i); and (iii) slowly updated our estimates for q̂t and ̂̃µt. None of these steps

requires much computational effort.

25



4.3 Simulation study

We simulate the model 100 times for 250 periods using the solution method presented in Subsection

4.2. Since our experiments with univariate processes in Section 3 suggested that the partial filter

recovers the hidden state more reliably when the persistence of the state is higher, we look at

sample paths from our economy with different properties.

More concretely, we retain only simulated samples when we are in a crisis (e.g., µt > 0) between

10 and 15% of the periods, when we are in a crisis between 30 and 35% of the periods, and when

we are in a crisis between 50 and 55% of the periods until we have accumulated 100 samples each.

Since in all simulated samples we are using the same calibration, this choice means that we are

implicitly selecting the shock realizations that give us the patterns that we are looking for.12 Then,

we apply our partial filter as outlined above to the selected simulated samples.

4.3.1 Results

Table 3 reports the correlation and relative standard deviation for the two filtered variables for each

of the three crisis frequency scenarios. The partial filter does well in recovering the price of capital

qt, independent of the crisis frequency in the sample: the median correlation across simulations is

above 0.8 in all three scenarios. The median standard deviation of the estimated q̂t relative to the

true qt ranges from 1.03 to 1.16. The inner 68% confidence intervals for the correlations are skewed

to the left, while the confidence intervals for relative standard deviations are skewed to the right.

The performance is weaker for µ̃t, but the estimates are solid throughout, with correlations rising

from 0.32 to 0.51 with the crisis frequency. The relative standard deviation of the filtered µ̃t is

lower, with the median falling slightly from 0.80 to 0.68. One reason may be that higher sudden

stop frequencies make the non-linearities in the model more pronounced and thus complicate the

filtering exercise.13

Sudden stop

freq. [ %] corr(q̂t, qt) corr(̂̃µt, µ̃t) Rel. std. dev. qt Rel. std. dev. µ̃t

[10.0, 15.0] 0.84 [0.71, 0.94] 0.32 [0.12, 0.50] 1.11 [0.96, 1.37] 0.80 [0.35, 1.46]
[30.0, 35.0] 0.81 [0.65, 0.94] 0.35 [0.11, 0.53] 1.16 [0.97, 1.42] 0.68 [0.38, 1.07]
[50.0, 55.0] 0.85 [0.65, 0.95] 0.51 [0.25, 0.71] 1.03 [0.91, 1.38] 0.68 [0.50, 0.91]

Table 3: Medians [68% CI] of correlations, relative standard deviations, and classifications errors

The fact that the performance for µ̃t is weaker is not a surprise: µ̃t has a mass-point at zero, a

non-linearity that our extremely simple filter is unlikely to be able to capture well. But, how much

12Average technology declines and the average import price increases with the frequency of crisis. Technology
shocks average 1.002 when the crisis frequency is in [10%, 15%], but they only average 0.9995 when the crisis frequency
is in [50%, 55%]. Import price shocks average 1.0250 with a low crisis probability and 1.032 with a high crisis frequency.
While the second moments remain stable, some higher moments also differ. For example, in the high crisis frequency
sample, the interest rate shock has a skewness of 0.36, as opposed to -0.09 in the low crisis simulation.

13Out of a total of 300 simulations for the three crisis frequencies, all but six converge. We drop the simulations
that have not converged. The results remain virtually unchanged, however, if they are included.
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economic information does a researcher lose in practice? We argue that it is much more relevant

to gauge how well our partial filter does at learning when the borrowing constraint binds, the most

relevant information for policymakers. Table 4 lists the false positive and false negative rates when

classifying crises, that is how often we estimate that the constraint is binding when it is not and

vice versa, how often we miss that the constraint is binding. Here, our partial filter displays a great

performance, with median false positives between 4.0% when the true crisis frequency is 10%-15%

and 12.5% when the true crisis frequency is between 50% and 55%. The false negative rates , in

contrast, tend to be higher when the crisis frequency is lower. When the crisis frequency is around

10%, the median false negative rate is 13.8%; it only measures 7.1% when the crisis frequency is

around 50%. We read the results of Table 4 as a very solid performance of our extremely simple

filter.14

Sudden stop Crisis classification
frequency False positives False negatives

[10.0, 15.0] 4.0 [1.6, 6.0] 13.8 [5.6, 20.8]
[30.0, 35.0] 9.4 [6.2, 12.9] 15.7 [8.2, 22.0]
[50.0, 55.0] 12.5 [10.2, 15.9] 7.1 [3.2, 15.1]

Table 4: Crisis classification errors

Figure 7 shows the data underlying the previous tables. Each column corresponds to one of the

three targeted in-sample crisis frequencies. The top panels show the time path of the true (blue)

and estimated (orange) time series for q̂t for the sample with the median correlation. In line with

Table 3, the two lines track each other well in all three cases. The amplitude is somewhat more

closely aligned when the crisis frequency is higher, reflecting the higher relative standard deviation.

Comparing the simulated time series for qt with the filtered counterparts shows that the partial

filter reliably recovers the large movements in qt, but misses smaller changes. The bottom panel

shows scatter plots of the relationship between the true and the filtered qt, with different colors

indicating different sample paths. While there is some dispersion around the 45-degree line and

the filtered q tends to have a wider range, the scatter plots show that the partial filter recovers the

right pattern of q overall.

Figure 8 shows representative sample paths and overall scatter plots for µ̃t. As before, the top

panels show the sample paths for the filtered and actual multipliers for the median correlation.

Clearly, as the crisis frequency increases, the top panels are less sparse. When the crisis frequency

is low, the partial filter successfully identifies most crises correctly: Four crises, including the most

severe and most persistent crisis around period 140, are called correctly. There is a false negative

around period 130, and a false positive shortly after period 200. With the less sparsely populated

14We checked that when we do not use the slackness condition to infer µ̃t, the correlation increases with the crisis
frequency from a median of 0.36 to a median of 0.75. The median correlation for Tobin’s q is 0.98 throughout and
the relative standard deviations are closer to uity for both q and µ̃. However, the false positive rate is much higher,
with the median at about one third. See Appendix B.3. Moreover, the filtering algorithm did not converge for 13%
of simulations, as opposed to just 2% when using the slackness condition.
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Figure 7: Sample paths for qt with the median correlation (top panel) and scatter plot pooling all
samples (bottom panel) as a function of the in-sample crisis frequency.

panels with a higher crisis frequency, the partial filter also misses few crises, but fails to correctly

call the severity of the worst crises, shown as tall blue spikes. The scatter plots in the bottom

panels similarly show that there is less mass on the horizontal axes. Even conditional on being

positive, the true µ̃ are higher (located further to the right) as the crisis frequency rises, indicating

that the crises are, on average, not only more frequent but also more severe. The scatter plots

with the higher crisis frequency more clearly show the positive correlation between the true and

filtered values. However, the mass is concentrated below the 45-degree line, in line with the relative

standard deviation that is lower for the filtered µ̃.

4.4 Application to Mexico

Having established that the filter performs well in a Monte Carlo experiment, we apply it to Mexican

quarterly data from 1980q1 to 2018q4.

Data and partial filter specification. To account for trends outside the model, we detrend the

variables (in logs) using the HP filter and re-center them at the model-implied means (in levels). We

use data on real consumption and hours worked to construct marginal utility. Our measure of the

world real interest rate is the LIBOR spliced with the 3-months U.S. T-bill rate and converted to

real terms using the U.S. CPI. We take dividends from the S&P/IFCG M MEXICO index, spliced

after 2008Q3 with the MSCI MEXICO index. We construct the annual capital stock needed to
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Figure 8: Sample paths for the multiplier on the borrowing constraint µ̃t for the sample paths
with the median correlation (top panel) and scatter plot pooling all samples (bottom panel) as a
function of the in-sample crisis frequency.

evaluate the borrowing constraint using the perpetual inventory method and linearly interpolate

to obtain a quarterly series. See Appendix B.1 for details.

We use the same specification of the partial filter as in our simulation study before. This algo-

rithm is a fixed point algorithm that ignores uncertainty about the parameters of the approximating

VAR: In the step that updates parameters, it uses the point estimates. Here, we also provide results

using the Gibbs sampler, which takes a draw from the posterior distribution of the approximating

VAR. For each parameter draw, we then solve for filtered sequences.15 We initialize qt = 1 and

µ̃
(0)
t = 0.01 and add white noise to each series to avoid singularity in the initial VAR estimates. We

then set a(0),A(0),Σ(0) to the OLS estimates associated with ξ
(0)
t = [uc,t, Lt, Rt, dt, µ̃

(0)
t , q

(0)
t ]. 16

Results. Does our partial filter recover the Mexican debt crises during our sample? Yes. Fig-

ure 9(a) shows the filtered multiplier on the borrowing constraint, µ̃t, and plots a number of

economic events that we suspect could lead to a binding borrowing constraint. These events are:

15The filtering step is again parameterized the same as in the simulation study. For successive parameter draws,
we initialize the algorithm with the filtered sequence from the previous draws, unless in the rare event that this
leads to a divergent filtering sequence. In the case the initial condition leads to divergence, we initialize the filtering
sequence instead of in the initial draw.

16As before, we use the slackness condition to shift the future expected marginal utility up or down to ensure the
slackness condition binds and binds during a reasonable fraction of the sample. Specifically, we lower (raise) future
expected marginal utility if the borrowing constraint is violated and µ̃t = 0 (if the slackness condition is above its
15th percentile and µ̃t > 0).
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(1) the debt crisis of 1982q3; (2) the collapse of oil prices in 1986 that predated Black Friday in

1987q3; (3) the “Tequila Crisis” of 1994q4; (4) The Asian crisis of 1997q3; (5) the Russian crisis and

LTCM crisis of 1998q3; and (6) the Global Financial Crisis associated with the collapse of Lehman

Brothers in 2008q3. The partial filter is successful in identifying these crisis events but one: the

Asian crisis of 1997q3. However, it is unclear whether this crisis should have a direct impact on

Mexico and the filter identifies the subsequent financial turmoil in 1998. While the duration of

these crisis events is unclear, there are no clear false positives.
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Figure 9: Filtered values of µ̃t and qt.

The initial guess, a 0-1 dummy for whether the collateral constraint would be violated given a

counterfactual qt = 1, does well in capturing the crises. But the filtered results do not inherit the

false positive from the initial guess. Indeed, starting from a completely random initial guess yields

a similar crisis classification; see Figure B.1.

Figure 9(b) shows the corresponding movement in qt. The blue line represents the filtered value

for qt. the same crisis events that are associated with a binding borrowing constraint are also

associated with a lower price of capital – which is natural because the binding borrowing constraint

drives up the rate of return the representative household requires. Moreover, the filter shows that

the inference about Tobin’s q is not driven by our initial guess, displayed in orange.

Parameter uncertainty. While we treated the estimated expectations as certain in the analysis

so far, we can quantify the effect of parameter uncertainty on expectations and thus the filtered

estimates using a Gibbs sampler. We iterate between estimating the VAR with a Minnesota-type

prior and filtering µ̃t and qt, which, in turn, enter the VAR as data.17

Allowing for parameter uncertainty broadly confirms the results from the fixed point algorithm

obtained so far. First, the partial filter with parameter uncertainty identifies almost exactly the

same crises as the fixed point algorithm. Figure 10(a) shows 68% and 90% credible sets, the posterior

17Our prior for the VAR parameters centers the VAR parameters at independent, stationary AR(1)s with persis-
tence of 0.9 and standard deviations given by the trainings sample.
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median, and the fixed point estimates of the multiplier on the borrowing constraint. While the

credible sets are wide in some periods, the filter rarely identifies positive multipliers outside crisis

times. During these times, the multiplier is positive with at least 95% posterior probability. The

posterior median shows one false positive in 1989.

(a) µ̃t (b) qt

Posterior median and 68% and 90% credible sets

Figure 10: Filtered values of µ̃t and qt.

Another feature of the posterior uncertainty is its asymmetry. The assymmetry is more no-

ticeable in the multiplier estimates, although large right tails in the estimates of µ̃t also manifest

themselves as asymmetric credible sets for Tobin’s q, for example during the Global Financial

Crisis. Overall, the effects of parameter uncertainty are relatively small.

5 Conclusion

The partial information filter allows applied researchers to evaluate the historical implications of

their models, without fully specifying the model – and even solving the model. This is important,

because non-linear dynamic models are often matched to certain moments, but without specifying

enough shock processes and shock dynamics required for full information methods. And even when

full information non-linear filters are available, the computational cost of these filters may discour-

age researchers from evaluating the historical implications of their model. Our partial information

filter thus has the potential to allow for better scrutiny of dynamic macro models. It may thus be

an important complement to likelihood-free methods in model estimation.

Our analysis study points to two requirements for the partial information filter. First, the

measurement equations need to uniquely identify the state absent measurement error. Second, the

results are robust to misspecification if the measurement is not too noisy, and the state needs to

exhibit enough persistence.
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Appendix A: Scalar model

A.1 No measurement error

Here we provide additional correlation and standard deviation plots for the linear case without

measurement error. In Figure A.1 we plot the median correlation between the true and filtered

states (along with 68% and 90% confidence intervals) in the top row, and the relative standard

deviations of the filtered state relative to the true state in the bottom row.

Varying σu Varying ρ

C
or
re
la
ti
on

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

unconditional st.dev. of state error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o

rr
e

la
ti
o

n
 o

f 
tr

u
e

 a
n

d
 f

il
te

re
d

 s
ta

te

=0.75  u
t
=1.00  v

t
+0.00  v

t-1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

persistence rho

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o
rr

e
la

ti
o
n
 o

f 
tr

u
e
 a

n
d
 f
ilt

e
re

d
 s

ta
te

St.Dev.[x]=1  u
t
=1.00  v

t
+0.00  v

t-1

re
la
ti
ve

st
.
d
ev
.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

unconditional st.dev. of state error

0

0.5

1

1.5

2

re
la

ti
v
e

 s
t.

d
e

v
. 

o
f 

tr
u

e
 a

n
d

 f
il
te

re
d

 s
ta

te

=0.75  u
t
=1.00  v

t
+0.00  v

t-1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

persistence rho

0

0.2

0.4

0.6

0.8

1

re
la

ti
v
e
 s

t.
d
e
v
. 
o
f 
tr

u
e
 a

n
d
 f
ilt

e
re

d
 s

ta
te

St.Dev.[x]=1  u
t
=1.00  v

t
+0.00  v

t-1

Shown are the 68% and 90% confidence intervals across Monte Carlo simulations, along with the median.

Figure A.1: Partial filter in the fully linear case without measurement error: Correlation and
relative standard deviation of the filtered state x̂t vs true xt for varying degrees of persistence ρ0.
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The two panels on the left vary σu, for fixed ρ0 = .75. The two panels on the right fix σu = 1

and vary ρ0. Turning to the results, the top row shows that the median correlation is close to 1

in all cases shown, and always above 0.95 with tight confidence intervals. The bottom row shows

that, the standard deviation of the estimated state is slightly above that of the true state for all

levels of σu and ρ0.
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A.2 Filtering with the non-linear VAR

For now, we proceed in a simple special case: ρ1 = γ = ϕ1 = 0. In this case, the observation

equation becomes:

yt = xt(1 + κ1ρ0) + κ2ρ
2
0x

2
t + et (3.1a’)

Now assume that we estimate the restricted non-linear VAR:[
xt

yt

]
= µ+A

[
xt−1

yt−1

]
+Bx2t−1 + ϵt (A.1)

The VAR implies that Ê(d)
t [xt+1] = Â

(d)
1,◦[xt, yt]

′ + µ̂
(d)
1 + B̂

(d)
1,1x

2
t .and that V̂art[xt+1] = Σ̂1,1, some

constant.

Using the sequence x̂
(d−1)
t for the VAR estimation, yields the following fixed point problem

(setting et to zero):

x̂
(d)
t = yt − κ1Ê

(d)
t [xt+1]− κ2Ê

(d)
t [xt+1]

2 − κ2Σ̂1,1

= yt − κ1Â
(d)
1,◦[xt, yt]

′ − κ1µ̂
(d)
1 − κ1B̂

(d)
1,1x

2
t − κ2(Â

(d)
1,◦[xt, yt]

′ + µ̂
(d)
1 + B̂

(d)
1,1x

2
t )

2 − κ2Σ̂1,1 (A.2)

Note that this is a quadratic equation which, generally, has two solutions. The problem remains of

which root to pick. Denote these solutions as x̂t,+ and x̂t,−.

Note that the VAR has implications for the likelihood of either solution:

Pr{xt ≤ x̂t,+|x̂t−1, yt−1} = Φ

(
x̂t,+ − µ1 −A1,◦[xt−1, yt−1]

′ −B1,1x
2
t−1

||Σ(chol)
1,◦ ||

)
(A.3)

Thus, we can choose the more likely solution.

Also, we can do more, since the forecast error in xt is, generally, correlated with the forecast

error in yt: ϵt = Σ(chol)ut ∼ N (0,Σ). Then ϵ1,t|ϵ2,t ∼ N (Σ−1
2,2Σ2,1ϵ2,t,Σ1,1 − (Σ−1

2,2Σ2,1)
2). Defining

ϵ̂t,2 as the forecast error in yt we then have:

Pr{xt ≤ x̂t,+|x̂t−1, yt−1, yt} = Φ

 x̂t,+ − µ1 −A1,◦[xt−1, yt−1]
′ −B1,1x

2
t−1 − Σ−1

2,2Σ2,1ϵ̂2,t√
Σ1,1 − (Σ−1

2,2Σ2,1)2

 (A.4)

To proceed, we could thus pick the root with the highest density, using the the pdf that corresponds

to the CDF in (A.4).
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A.3 Additional results
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Shown are the 68% and 90% confidence intervals across Monte Carlo simulations, along with the median.

Figure A.2: Almost linear model: κ1 = 10, κ2 =
1
10 : 90 percent and 68 percent confidence intervals

in Monte Carlo, along with median. T = 250 observations.
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(a) Varying the persistence ρ0 of the state given Var[et] = Var[xt]
Linear case

ρ0 Correlation Rel st. dev.

0.25 0.79 [0.76,0.81] 1.36 [1.29,1.48]
0.50 0.86 [0.84,0.88] 1.27 [1.20,1.35]
0.75 0.93 [0.92,0.94] 1.14 [1.08,1.21]
0.90 0.97 [0.96,0.98] 1.06 [1.02,1.11]
0.95 0.98 [0.97,0.99] 1.04 [1.01,1.07]

Quadratic obs. eq.
Correlation Rel st. dev.

0.77 [0.74,0.80] 0.13 [0.12,0.14]
0.96 [0.94,0.97] 0.42 [0.40,0.46]
0.99 [0.98,0.99] 0.97 [0.94,1.00]
1.00 [1.00,1.00] 1.06 [1.04,1.12]
1.00 [1.00,1.00] 1.06 [1.05,1.08]

Non-linear state eq.
Correlation Rel st. dev.

0.90 [0.89,0.91] 1.21 [1.19,1.25]
0.93 [0.92,0.93] 1.20 [1.17,1.23]
0.66 [0.65,0.67] 1.39 [1.37,1.40]
0.76 [0.76,0.77] 1.74 [1.72,1.76]
0.79 [0.79,0.80] 1.93 [1.91,1.95]

(b) Varying the relative standard deviation of measurement error et vs the state xt given ρ0 = 0.75

Var[xt]
1/2 Linear case

/Var[et]
1/2 Correlation Rel st. dev.

0.25 0.53 [0.49,0.59] 2.66 [2.34,2.93]
1.00 0.93 [0.92,0.94] 1.14 [1.08,1.21]
2.00 0.98 [0.97,0.98] 1.04 [1.01,1.08]
5.00 1.00 [0.99,1.00] 1.01 [0.98,1.04]
10.00 1.00 [0.99,1.00] 1.01 [0.98,1.04]

Quadratic obs. eq.
Correlation Rel st. dev.

0.80 [0.75,0.84] 1.11 [1.05,1.20]
0.99 [0.98,0.99] 0.97 [0.94,1.00]
0.99 [0.98,0.99] 0.96 [0.93,0.99]
0.99 [0.98,0.99] 0.95 [0.93,0.98]
0.99 [0.98,0.99] 0.93 [0.91,0.97]

Non-linear state eq.
Correlation Rel st. dev.

0.65 [0.64,0.65] 1.41 [1.40,1.42]
0.66 [0.65,0.67] 1.39 [1.37,1.40]
0.88 [0.67,0.96] 1.26 [1.11,1.37]
0.97 [0.97,0.98] 1.15 [1.12,1.18]
0.98 [0.97,0.98] 1.14 [1.11,1.17]

Shown are the median correlations and relative standard deviations [68% confidence interval] across simulations.
The parameters are calibrated to target the variance of the linear xt process.

Table A.1: Correlation and relative standard deviation of the filtered vs true state as a function of
the persistence of the hidden state (top panel) and the signal to noise ratio (bottom panel). Model
with measurement error and ARMA(1,1) shocks.

(a) Varying the persistence ρ0 of the state given Var[et] = Var[xt]

Var[xt]
1/2 Quadratic obs. eq.: non-lin

ρ0 Correlation Rel st. dev.

0.25 0.80 [0.78,0.82] 0.12 [0.12,0.13]
0.50 0.97 [0.96,0.98] 0.43 [0.41,0.45]
0.75 0.99 [0.99,1.00] 0.97 [0.93,1.00]
0.90 1.00 [1.00,1.00] 1.03 [1.02,1.05]
0.95 1.00 [1.00,1.00] 1.06 [1.04,1.07]

Quadratic obs. eq.: near-lin
Correlation Rel st. dev.

0.96 [0.96,0.97] 0.39 [0.39,0.40]
0.99 [0.98,0.99] 0.63 [0.63,0.64]
0.99 [0.99,0.99] 0.87 [0.86,0.88]
0.99 [0.99,1.00] 1.01 [1.00,1.02]
0.99 [0.99,1.00] 1.05 [1.04,1.06]

(b) Varying the relative standard deviation of measurement error et vs the state xt given ρ0 = 0.75

Var[xt]
1/2 Quadratic obs. eq.: non-lin

/Var[et]
1/2 Correlation Rel st. dev.

0.25 0.83 [0.81,0.86] 1.17 [1.13,1.23]
1.00 0.99 [0.99,1.00] 0.97 [0.93,1.00]
2.00 1.00 [0.99,1.00] 0.95 [0.91,0.99]
5.00 1.00 [0.99,1.00] 0.93 [0.90,0.96]
10.00 1.00 [0.99,1.00] 0.91 [0.88,0.95]

Quadratic obs. eq.: near-lin
Correlation Rel st. dev.

0.90 [0.89,0.92] 0.97 [0.94,1.00]
0.99 [0.99,0.99] 0.87 [0.86,0.88]
1.00 [1.00,1.00] 0.87 [0.86,0.87]
1.00 [1.00,1.00] 0.87 [0.86,0.87]
1.00 [1.00,1.00] 0.87 [0.87,0.88]

Shown are the median correlations and relative standard deviations [68% confidence interval] across simulations.
The parameters are calibrated to target the variance of the linear xt process.

Table A.2: Correlation and relative standard deviation of the filtered vs true state as a function
of the persistence of the hidden state (top panel) and the signal to noise ratio (bottom panel).
Model quadratic observation equation with very non-linear and near-linear specifications. Model
with measurement error and AR(1) shocks.
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A.4 Comparison with the Kalman filter

As we have shown, the partial information filter does well when the hidden state is sufficiently

persistent and volatile, relative to the measurement error.

Comparing the partial filter with the Kalman filter is instructive to understand the role of

measurement error. For simplicity, consider the fully linear case without expectations (κ1 =

κ2 = ρ1 = γ = 0). Since we treat the measurement error as zero, our partial filter gain is

simply 1. In this linear environment, the Kalman filter would be optimal. Its gain would be

β̂ = Vart−1[yt]
−1Covt−1[xt] =

Vart−1[xt]

Vart−1[xt]+σ2
e
. If σ2

e is large, then β̂ ≪ 1.

Moreover, the Kalman filter is a good benchmark for the performance of the partial filter. While

it is not straightforward to apply in general non-linear models, the Kalman filter is the best linear

filter. We focus on the two cases when we have non-linearities. Here, we apply the Kalman filter

assuming a simple AR(1) for the hidden state, as a practitioner might – ignoring the non-linearities.

Figure A.3 compares the Kalman filter for the very non-linear measurement equation, assuming

a linear system with κ2 = 0 for the Kalman filter in the very non-linear case (κ1 = 1
10 , κ2 = 10).18

Comparing the Kalman filter in the left column with the partial filter in the right column shows

that both have an excellent correlation with the true state (top row). However, the Kalman filter

dramatically misses the standard deviation of the true state in its filtered estimates, unlike the

partial filter (bottom row). While less dramatic, the same pattern even holds with minor non-

linearities (κ1 = 10, κ2 = 1
10) and when the hidden state follows a pure AR(1), rather than an

ARMA(1,1) – see Figure A.4. Also in that case the partial filter does much better at estimating

the true scale of the hidden state.

Figure A.6 shows that in the case of the non-linear state equation the partial filter outperforms

a simple linear Kalman filter.19 Both models are misspecified here, and both can attain a very high

correlation of the filtered state with the truth, and almost the right scale when the signal-to-noise

ratio is high. However, the performance of the Kalman filter is fairly robust, while the linear filter

does poorly when the signal-to-noise ratio is low.

18We allow the Kalman filter to estimate κ1 to allow it to fit the scale of xt better. We also estimate the Kalman
filter with the true κ1 and choose the estimate with the higher likelihood for our comparison.

19Here, we use two different starting points of the persistence ρ0 for the Kalman filter – both the true value, and
the linear autocorrelation of the true state with its first lag in the simulated sample.
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Shown are the 68% and 90% confidence intervals across Monte Carlo simulations, along with the median. Dark blue:

Kalman filter. Light blue: Kalman smoother.

Figure A.3: Kalman filter vs partial information filter. Quadratic observation equation with κ1 =
1
10 , κ2 = 10 and linear state equation: 90 percent and 68 percent confidence intervals in Monte
Carlo, along with median. T = 250 observations.
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Shown are the 68% and 90% confidence intervals across Monte Carlo simulations, along with the median. Dark blue:

Kalman filter. Light blue: Kalman smoother.

Figure A.4: Kalman filter vs partial information filter. Quadratic observation equation with κ1 =
1
10 , κ2 = 10 and linear state equation: 90 percent and 68 percent confidence intervals in Monte
Carlo, along with median. T = 250 observations.
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Shown are the 68% and 90% confidence intervals across Monte Carlo simulations, along with the median. Dark blue:

Kalman filter. Light blue: Kalman smoother.

Figure A.5: Kalman filter vs partial information filter. Non-linear law of motion: 90 percent and
68 percent confidence intervals in Monte Carlo, along with median. T = 250 observations.
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Shown are the 68% and 90% confidence intervals across Monte Carlo simulations, along with the median. Dark blue:

Kalman filter. Light blue: Kalman smoother.

Figure A.6: Kalman filter vs partial information filter. Non-linear law of motion: 90 percent and
68 percent confidence intervals in Monte Carlo, along with median. T = 250 observations.
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Appendix: Sudden Stop Model

This appendix presents additional results for the filtering exercise on the sudden stop model

B.1 Data

When we filter the model with Mexican data, our measure for real consumption and real GDP are

also taken from FRED (mnemonics NAEXKP02MXQ661S and NAEXKP01MXQ661S).

Our measure for hours worked is an index of monthly hours worked in the Mexican manufac-

turing sector (FRED mnemonic: HOHWMN03MXQ661N). We convert the measure to logs and

regress it on quarterly dummies to remove seasonalities. Because manufacturing hours are about

twice as volatile as overall hours, we divide the fluctuations by a factor of two.20

With respect to the interest rate, when available, we use the LIBOR as our measure of the

world interest rate (FRED mnemonic: USD3MTD156N; since 2022 this series is no longer available

on FRED). Prior to the availability, we use the 3-month U.S. treasury rate (FRED mnemonic:

DTB3), shifted so that during the first period of overlap the two measures agree. To convert these

nominal measures into real rates, we subtract the one-year realized change in the log of the U.S.

CPI (FRED mnemonic: CPIAUCNS).

We construct the dividend series using the dividends from the S&P/IFCG M MEXICO (IFG-

MMX) index, appended after 2008Q3 with the MSCI MEXICO (MSMEXFL) index. We rescale

the latter series to have the same mean as the IFGMMX series, calculated over the 1988Q1 to

2008Q3 sample. We then denominate dividends in 1980Q1 dollars, take the log, use the x13 filter

to deseasonalize them, and then detrend log real dividends using the (quarterly) HP-filter. Last,

we rescale the mean to match the model mean marginal product of capital.

To evaluate the slackness condition, we need data on GDP and capital formation. We use annual

data from INEGI.21 Specifically, we use Annual Gross Domestic Product (GDP) by Expenditure at

constant 2013 prices in National Currency, using Gross fixed capital formation and Gross domestic

product (GDP). To construct capital, we assume the capital stock starts at the same average value

of GDP in 1960 as in the model, and then we add the investment series to the capital stock estimate,

using depreciation of 8.8%. This is correct according to the model up to a first-order approximation.

We obtain data for debt from Banco de Mexico.22 We compute the quarterly debt in current

prices pesos using the end of quarter value. We convert the resultant values to a 2013 base year

like the other variables in the slackness condition.

20In the U.S., the ratio of standard deviations of average weekly hours in manufacturing relative to the total
private sector is 2.51 at a quarterly frequency and 1.95 at an annual frequency from 1965 to 2021 (based on the series
with mnemonics AWHMAN and AWHNONAG). For Mexico, where we can only compare it to annual data from
1995 onward (mnemonic AVHWPEMXA065NRUG), the ratio is 1.52. While the annual data from Mexico indicate
a slightly lower volatility, applying the same ratio of annual to quarterly volatility from the U.S. to Mexican data

suggests an adjustment by a factor of 1.96:
sd

q
mfg,US

sda
mfg,US

sdmfg,MX = 2.51
1.95

1.52 = 1.96.
21https://statistics.cepal.org/portal/cepalstat/open-data.html?lang=es.
22https://www.banxico.org.mx/SieInternet/consultarDirectorioInternetAction.do?sector=9&accion=

consultarCuadro&idCuadro=CG7&locale=es.
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We center all variables at the model-implied means, before detrending with the HP filter. Results

with the Baxter-King filter are similar.
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B.2 Details of the implementation of the filter

Algorithm 1 Fixed-point algorithm for the Sudden Stop model

Step 0 Initialize the starting guesses as q
(0)
t = 1+U [−600−1, 600−1] and µ̃t as a dummy for the event

of a violated borrowing constraint at qt = 1, i.e. as a dummy for ϕRt(wtLt+ptvt)−qbt bt+1 >
κkt+1. Set d = 0 and an upper bound on iterations D.

Step 1 Set d = d+ 1.

Step 2 Estimate the VAR parameters â(d), Â(d), Σ̂(d) using OLS on the data and the scaled guesses

for [q
(d−1)
t /q̄(d−1), µ̃

(d−1)
t ].

Step 3 Solve for the latent variables [q
(d)
t , µ̃

(d)
t ]T given â(d), Â(d), Σ̂(d).

(a) Solve (4.10) and (4.11) for [q
(d)
∗t , µ̃

(d)
∗t ]

T with Et[uc,t+1] = Ê(d)
t [uc,t+1]+∆

(d)
t = e′u,c(a

(d)+

A(d)x̂
(d−1)
t ) + ∆

(d−1)
t .

(b) Update ∆
(d)
t : If the implied solution violates the borrowing constraint at time s but

µ̃
(d)
∗t = 0(≤ 0), set ∆

(d)
s = ∆

(d−)
s − 4e− 6 for all s with binding constraints. If µ̃

(d)
∗t > 0,

but the borrowing constraint is higher than in pth percentile in sample, set ∆
(d)
s =

∆
(d−)
s + 4e− 6. In the simulation, we set p equal to the target in-sample frequency

plus 10pp (i.e., p ∈ {0.25, 0.45, 0.55}). In the empirical application, we set p = 0.15.

(c) Set q
(d)
t = (1 − s

(d−1)
q )q

(d−1)
t + s

(d−1)
q q

(d)
∗t and µ̃

(d)
t = max{(1 − s

(d−1)
µ )µ̃

(d−1)
t +

s
(d−1)
µ µ̃

(d)
∗t ,−5e−4}. Here, s(d−1)

q = s
(d−1)
µ = 0.01 for d = 1, . . . , D/10, s

(d−1)
q = s

(d−1)
µ =

0.02 for d = D/10 + 1, . . . , D/5, and s
(d−1)
q = s

(d−1)
µ = 0.0025 for d = D/5, . . . , D.

(d) For d ≤ D/20 truncate q
(d)
t at 1± 0.1 and and q

(d)
t =

q
(d)
t

T−1
∑

s q
(d)
S

.

Step 4 If T−1
∑T

t=1|q
(d)
t − q∗t |> 1e−6 or the number of periods with positive multipliers µ̃t changes

within the last 100 iterations, go to Step 1. Else save and report the estimates.

Panels (a) and (b) of Figure B.1 shows that, on short-lived crisis in 1990 aside, the inference on

the crisis periods does not hinge on the initial guess. Still, there are some differences in the inferred

severity of the crisis. These, in turn, have some effects on the inferred values of Tobin’s q during

crisis times, such as in the period following 1995. Overall, however, the inference depends little on

the initial conditions.

Figure B.2 shows that the filtered Tobin’s q closely tracks the fluctuations in measured dividends,

crisis periods aside.

Figure B.3 shows that the Gibbs posterior has converged. It compares the 90% and 68% credible

sets as well as the medians for the hidden co-state variables qt and µ̃t for the initial 500 draws (after

discarding a burn-in; shown as area plots) and the subsequent 500 draws (shown as dashed lines).

The credible sets are hard to tell apart and only small inaccuracies are visible for the 90% credible

set. For example, the lower panel shows that in the Global Financial Crisis the 95th percentile
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(a) µ̃t: Initial guess based on constraint (b) µ̃t: Random initial guess
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(c) qt: Initial guess based on constraint (d) qt: Random initial guess
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Figure B.1: Filtered values of µ̃t (top) and qt (bottom) given different initial guesses.

1980 1985 1990 1995 2000 2005 2010 2015 2020

0.85

0.9

0.95

1

1.05

1.1

1.15

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Partial filter

Dividends series

Figure B.2: Comparison of qt in the partial filter and the dividend series.

is slightly higher in the 2nd half of the posterior than in the first half. However, even for other

local extremes in the Lagrange multiplier, such as in the mid 1990s, the credible sets are hard to

distinguish. The estimates for Tobin’s q line up even more closely than those for µ̃.
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(a) Tobin’s q

(b) Lagrange multiplier µ̃

Shown are the median, 68% and 90% credible sets for the first half and the second half of the posterior draws.

Figure B.3: Comparison of the posterior based on the first half and the second half of the Gibbs
sampler draws.
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B.3 Filtering results without the slackness condition

Here, we compare results with and without using the slackness condition on the same simulated

data. Without the slackness condition, we use the same convergence criterion for both q and µ̃ and

do not use time-dummies to shift the expectation of uct. The results show an improved correlation

of the filtered and the true µ̃ (see Figure B.1), but a worse crisis classification (see Figure B.2).

No slackness condition
Sudden stop

freq. [ %] corr(q̂t, qt) corr(̂̃µt, µ̃t) Rel. std. dev. qt Rel. std. dev. µ̃t

[10.0, 15.0] 0.98 [0.94, 0.99] 0.36 [0.04, 0.59] 1.03 [0.99, 1.09] 1.06 [0.59, 1.64]
[30.0, 35.0] 0.98 [0.93, 0.99] 0.62 [0.29, 0.77] 1.05 [1.01, 1.14] 0.70 [0.50, 1.10]
[50.0, 55.0] 0.98 [0.95, 0.99] 0.75 [0.60, 0.83] 1.04 [1.01, 1.10] 0.80 [0.60, 1.00]

With slackness condition
Sudden stop

freq. [ %] corr(q̂t, qt) corr(̂̃µt, µ̃t) Rel. std. dev. qt Rel. std. dev. µ̃t

[10.0, 15.0] 0.84 [0.71, 0.94] 0.32 [0.12, 0.50] 1.11 [0.96, 1.37] 0.80 [0.35, 1.46]
[30.0, 35.0] 0.81 [0.65, 0.94] 0.35 [0.11, 0.53] 1.16 [0.97, 1.42] 0.68 [0.38, 1.07]
[50.0, 55.0] 0.85 [0.65, 0.95] 0.51 [0.25, 0.71] 1.03 [0.91, 1.38] 0.68 [0.50, 0.91]

Table B.1: Medians [68% CI] of correlations, relative standard deviations, and classifications errors.
Comparison

No slackness
Sudden stop Crisis classification
frequency False positives False negatives

[10.0, 15.0] 32.8 [16.4, 52.7] 6.8 [0.0, 27.4]
[30.0, 35.0] 33.6 [15.3, 48.8] 7.9 [0.0, 20.2]
[50.0, 55.0] 33.3 [17.0, 43.1] 2.8 [0.0, 12.9]

With slackness
Crisis classification

False positives False negatives

4.0 [1.6, 6.0] 13.8 [5.6, 20.8]
9.4 [6.2, 12.9] 15.7 [8.2, 22.0]
12.5 [10.2, 15.9] 7.1 [3.2, 15.1]

Table B.2: Medians [68% CI] of correlations, relative standard deviations, and classifications errors.
Comparison

49


	Introduction
	The partial information filter 
	Environment 
	Algorithms
	Extensions

	A scalar example 
	Linear model without misspecification
	Linear case with misspecification
	Quadratic observation equation with misspecification
	Linear observation equation, non-linear state equation with misspecification
	Comparison with the Kalman Filter

	Application: A Sudden Stops Model 
	Model structure
	Calibration and solution
	The partial filter

	Simulation study
	Results

	Application to Mexico

	Conclusion 
	No measurement error
	Filtering with the non-linear VAR
	Additional results
	Comparison with the Kalman filter 
	Data 
	Details of the implementation of the filter 
	Filtering results without the slackness condition 


