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Introduction



Perturbation

e Advantages:

1. Intuitive.

N

. Straightforward to compute.

3. Fast.

»

. Accurate.

e Problem with simulations.



First-order approximation

e First-order approximation of a canonical RBC model without persistence in productivity shocks:

Z(\t+l = ali(\t + axee, & N(O, 1)

e Then:
i(\t+1 = a (31271 + 325t71) + axes

s
= ajki—1+ @131 + ares

e Since a; < 1 and assuming ko =0
t
kiy1 = a» Z 311€t—j
j=0

which is a well-understood system.



Higher-order approximations

e Second-order approximation:

Etﬂ =ap + alﬁt + ases + 831(\3 + age? + 851(\1»51», er ~N(0,1)

e Then:
Etﬂ = ap+ a1 (ao + alﬁt + arer + 33;,_? + a4€f + 35Et5t) + arer
~ ~ - 2
+a3 (ao + arks + arer + agkt2 + a4sf + a5ktat) + a4ef

+as (ao + ali(\t + arer + 331(;2 + 3453 + 35/k\tr€t> Et

e We have terms in k3 and k.



For a large realization of ¢, the terms in k3 and k* make the system explode.

This will happen as soon as we have a large simulation=- no unconditional moments would exist

based on this approximation.

This is true even when the corresponding linear approximation is stable.

e Then:
1. How do you calibrate? (translation, spread, and deformation).
2. How do you GMM or SMM?

3. Asymptotics?



e For second-order approximations, Kim et al. (2008): pruning.
e |dea:
kevi = ao+ a1 (ao + arke + axee + a3k + age? + 85i(\t€t) 1 ases
+a3 (ao + ala + arer + 33?3 + a45f + 25/k\t8t>2 + a4sf

+as (ao + alﬂ + azer + 3323 + 3453 9P a5Et5r) Et

e We omit terms raised to powers higher than 2.

e Pruned approximation does not explode.



e Build a pruned state-space system.

e Apply pruning to an approximation of any arbitrary order.

e Prove that first and second unconditional moments exist.

e Closed-form expressions for first and second unconditional moments and IRFs.

e Conditions for the existence of some higher unconditional moments, such as skewness and kurtosis.
e Apply to a New Keynesian model with EZ preferences.

e Software available online.



Consequences

1. GMM and IRF-matching can be implemented without simulation.

2. First and second unconditional moments or IRFs can be computed in a trivial amount of time for
medium-sized DSGE models approximated up to third-order.

3. Use the unconditional moment conditions in optimal GMM estimation to build a limited information
likelihood function for Bayesian inference (Kim, 2002).

4. Foundation for indirect inference as in Smith (1993) and SMM as in Duffie and Singleton (1993).

5. Calibration.



State-Space Representations



Dynamic models and state-space representations

e Dynamic model:

Xer1 = h(x¢,0) + oneg g, €041 ~ 11D (0,1)
Yt = g(xt,0)

e What is behind this system?

e General structure (use of augmented state vector).



The state-space system |

Perturbation methods approximate h (x;, o) and g (x;, o) with Taylor-series expansions around

e =@ =0

A first-order approximated state-space system replaces g (x;,0) and h(x;, o) with gyx; and hyx;.

e If ¥ mod (eig (hy)) < 1, the approximation fluctuates around the steady state (also its mean value).

Thus, easy to calibrate the model based on first and second moments or to estimate it using Bayesian
methods, MLE, GMM, SMM, etc.



The state-space system IlI

e We can replace g (x¢, 0) and h (x¢, o) with their higher-order Taylor-series expansions.

e However, the approximated state-space system cannot, in general, be shown to have any finite
moments.

e Also, it often displays explosive dynamics.
e This occurs even with simple versions of the New Keynesian model.

e Hence, it is difficult to use the approximated state-space system to calibrate or to estimate the
parameters of the model.
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The pruning method: second-order approximation |

e Partition states:

e Original state-space representation:
( ) s 1 f s f s 1 2
Xp o1 = hy (X +xt)+§Hxx ((xt+xt)®(xt+xt))+§hgga + one, g

1 1
y§2) = ngE*Q) + EGXX (X(tQ) ® X(t2)> + 5&7002
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The pruning method: second-order approximation Il

e New state-space representation:

X§+1 = hxxi +oN€
x5, = hex; + %HXX (xf ® xg) + %h(m(n
v = gx{
yi =& (x{ +x) + %Gxx (xf @ xp) + %gwo-2

e All variables are second-order polynomials of the innovations.
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The pruning method: third-order approximation |

e Partition states:

e Original state-space representation:

1 1
Xg1 ~ h® 5HXX (x?) ® xg3)) i 6Hxxx <x§3) 2x g x£3))
1 3 |
+§h0—0—0'2 + ého—a—xgzxg ) + ého—a—o—O-?) + Jn6t+l
1 1
¥ = g+ 26 (0 8x) + 26 (X 8 x &)

+1 + 3 o2x® 4 L o3
(TO'O- goX logoxon
2g 6g t 6g
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The pruning method: third-order approximation II

e New state-space representation:

Second-order pruned state-space representation—+

1
X = X 4 Ho (X{ @) + Hou (Xt @ x{ @ x7)
3 2 f, 1 3
+6hm7x0' X; + 6hm7¢70
1
v = g (kX x) 56 (@ xp) +2 (xt @ x7))

1

3 1
2g0002 + 7gcm'x0—2xtrf + 7gaaao'3

1
+ & G (xf @ xf @ xf) + c ¢

e All variables are third-order polynomials of the innovations.
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Higher-order approximations

e We can generalize previous steps:

1. Decompose the state variables into first-, second-, ... , and kth-order effects.
2. Set up laws of motions for the state variables capturing only first-, second-, ... , and kth-order effects.

3. Construct the expression for control variables by preserving only effects up to kth-order.
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Statistical properties: second-order approximation |

Theorem
IfY mod (eig (hy)) < 1 and €;11 has finite fourth moments, the pruned state-space system has finite first

and second moments.

Theorem
If¥Y mod (eig (hy)) < 1 and €;41 has finite sixth and eighth moments, the pruned state-space system has

finite third and fourth moments.
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Statistical properties: second-order approximation |

e We introduce the vectors
(2) _ / / y
7l — [ (xg) (x3) (x{ ® xi) }
€t+1
€r41 ® €ry1 — vec (1)

f

€r41 © Xy
f

X; @ €rq1

2
§£+)1 =

e First moment:
E {x(f)} =FE [xi] + E[x3]
—— =
=0 #0

1 /(1 _ 1
E[x;] = (I — hy) ! <2Hxx (I1— hy®hy) ! (on @ on) vec (1) + 2hm,(72)

E[y}) = CPE [20] + 4@
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Statistical properties: second-order approximation IlI

e Second moment:

(o) - A ) () 0 ) ()
Cov( Z;{pZ ) ( 2)/ ((2) for | =1,2,3,...

v {xgz)} =V (x ) V (x§) + Cov (x x;) + Cov (xi,xg)
Viyil = COV[z] (c®)’

Cov (y§,yi,) = C@ Cov( 2,2 ) (C(2 ) for 1 =1,2,3, ...

where we solve for V (z?)) by standard methods for discrete Lyapunov equations.
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Statistical properties: second-order approximation IV

e Generalized impulse response function (GIRF): Koop et al. (1996)

GIRFyar (I, v, w;) = E [vare|we, e.11 = v] — E [vary/|w]

e Importance in models with volatility shocks.

19



Statistical properties: third-order approximation |

Theorem
IfV mod (eig (hy)) < 1 and €;,1 has finite sixth moments, the pruned state-space system has finite first
and second moments.

Theorem
ItV mod (eig (hy)) < 1 and €;11 has finite ninth and twelfth moments, the pruned state-space system has
finite third and fourth moments.
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Application




Application |

e A middle-scale New Keynesian model with habit formation and EZ preferences.
e Why?
1. Standard model for policy analysis.

2. Sizable higher-order terms.

3. The model should not generate explosive sample paths when simulated with the unpruned state-space

system.
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Application Il

e What will we do?

1. Check the accuracy of pruned state-space representations.
2. Estimate the model with GMM and SMM.

3. Explore its properties.
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Households |

o Preferences:

Ve ut+5(Ef [Vtﬁ’ﬂ)ﬁ if up > 0 for all t
- us— (]Et [(7\/#1)17(1)3])% if up <0 forall t
where - -
w= g B2t gy %“f?m
and

log di1 = palog d; + €q,¢+1, €4,e ~IID (0,03)
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Households I

e The budget constraint:

e Capital:

it k Xt .
~ + /Dt,t+1Xt+1dwt,t+1 = wihy + riks + oy + divy
t t

Ct+T

. 2
. Ii
kt+1:(175)kt+lt7§ (¢> kt
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Firms

e Final firm:
1 ) n/(n—1)
= ([ )
0

e Intermediate goods producers:

Yit = atkft (Zthi7t)179

log z¢41 = log z; + log ftz,ss
o
* 1-60
Zy = ’Y‘t Zy

log ary1 = palogar + €541, €ac ~ZID (0, 03)

e Two versions: Calvo and quadratic price adjustment costs £, > 0 w.r.t. 7.
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Government

e Taylor rule for the monetary authority:

rtl:(l_pr)rss+prrt 11+B7r|og +ﬂy|0g *}/t
Tss P4 Yss
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13 state variables.

We detrend variables.

Second- and third-order approximation.

We check the Euler equation errors to compare the accuracy of pruned and unpruned state-space

systems with a standard calibration.

e Results are even better for large innovations.
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First-order Second-order

RMSE RMSEP RMSE
Benchmark
Household’s value function 10767 09382 0-5998
Household's FOC for consumption 49.8994 1.8884 1.8069
Household's FOC for capital 55079 02006 0-1976
Household’s FOC for labor 04605 0-1769 05305
Household’s FOC for investment 00570 0-0092 01023
Euler-eq. for one-period interest rate 4.9705 0.1930 0.1922
Firm's FOC for prices 3.8978 0.2026 0.1709
Income identity 0.1028 0.1004 0.1840
Law of mation for capital 0.1295 0.0239 0.2499
Average error 7.3447 0.4148 0.4482
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First-order Third-order
RMSE RMSEP RMSE

Benchmark

Household's value function 1.0767 0.4801 0.3269
Household's FOC for consumption 498994 0.7840 11971
Household’s FOC for capital 55079 0-0907 01473
Household’s FOC for labor 04605 0-0406 01831
Household's FOC for investment 0.0570 0.0023 0.0553
Euler-eq. for one-period interest rate 4.9705 0.0770 0.1320
Firm's FOC for prices 38978 0-0903 00845
Income identity 0.1028 0.0405 0.1333
Law of motion for capital 01295 0-0056 01327
Average error 7.3447 0.1790 0.2658

29



e Version with Calvo pricing.
e US Macro and financial data from 1961Q3 to 2007Q4:
1. consumption growth Ac;
2. investment growth Aij;
3. inflation ¢
4. 1l-quarter nominal interest rate r 1
5. 10-year nominal interest rate r; 4o
6. 10-year ex post excess holding period return xhre a0 = log (Pt,30/Pe—1,40) — re—1,1
7. log of hours log h;.
e Use GMM and SMM.

e Computation: 0.03 seconds in second-order, 0.8 seconds in third-order, 1.4 for GIRFs (all in Matlalsp



GMM2nd GMM3rd SMM3rd
B 0.9925 0.9926 0.9926
(0.0021) (0.0002) (0.0023)
b 0.6889 0.7137 0.7332
(0.0194) (0.0004) (0.0085)
hss | 0.3402 0.3401 0.3409
(0.0010) (0.0004) (0.0065)
01 6.1405 6.1252 6.1169
(1.2583) (0.0002) (0.0040)
b2 1.5730 1.5339 1.5940
(0.1400) (0.0008) (0.0009)
¢3 | —196.31 —197.36 —194.22
(51.90) (0.01) (0.01)
K 4.1088 3.5910 3.5629
(0.7213) (0.0160) (0.1085)
« 0.9269 0.9189 0.9195
(0.0044) (0.0026) (0.0024)
Pr 0.6769 0.6759 0.6635
(0.6086) (0.0723) (0.1464)
B 3.9856 3.6974 3.6216
(8.2779) (0.7892) (1.8555)
By 0.5553 0.50691 0.5027
(1.5452) (0.1465) (0.3685)
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MY, ss

Hz,ss

Oq

Od
skew,
tail,
Sker

taily

GMMan

1.0018
(0.0012)

1.0050
(0.0005)

0.9192
(0.0081)

0.9915
(0.0023)

1.0407
(0.0134)

0.0171
(0.0006)

0.0144
(0.0017)

GM M3rd

1.0017
(0.0007)

1.0051
(0.0004)

0.9165
(0.0030)

0.9914
(0.0005)

1.0419
(0.0022)

0.0183
(0.0005)

0.0144
(0.0005)

SMM3rd

1.0016
(0.0006)

1.0052
(0.0003)

0.9139
(0.0036)

0.9911
(0.0019)

1.0432
(0.0057)

0.0183
(0.0003)

0.0143
(0.0018)

0.2296
(0.0298)

1.2526
(0.0437)

0.0693
(0.4530)

1.1329
(3.4724)

32



Data GMM?™@  GMM3 SMM3
Means
Ac; x 100 2.439 2.399 2.429 2.435
Ay x 100 3.105 3.111 3.099 3.088
T x 100 3.757 3.681 3.724 3.738
re,1 < 100 5.605 5.565 5.548 5.582
rea0 % 100 6.993 6.925 6.955 6.977
xhre a0 x 100 | 1.724 1.689 1.730 1.717
log h; -1.084  -1.083 -1.083 -1.083
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Standard deviations (in pct)
Ac

JAVE

Tt

re1

't 40

xhre 40

log h;

Data

2.685
8.914
2.481
2.701
2.401
22.978
1.676

GMM2nd

1.362
8.888
3.744
4.020
2.325
22.646
3.659

GMM3rcI

1.191
8.878
3.918
4.061
2.326
22.883
3.740

SMM3rd

1.127
8.944
3.897
4.060
2.308
22.949
3.721
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Auto-correlations: 1 lag
corr (Acy, Ace—1)

corr (Aig, Aiy—1)
corr (Ty, Te—1)
corr (req, re—1,1)
COff( It 40, re— 140)
corr (xhre g, xhre—1 40)
corr (log hy, log hy—1)

Data

0.254
0.506
0.859
0.942
0.963
-0.024
0.792

GMMan

0.702
0.493
0.988
0.989
0.969
0.000
0.726

GMM3rd

0.726
0.480
0.986
0.987
0.969
-0.003
0.678

SM M3rd

0.7407
0.4817
0.9861
0.987
0.968
-0.003
0.6706
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Data GMM?2"  GMM3d SMMm3d

Skewness

Ac; -0.679 0.024 0.034 0.193
YAV -0.762  -0.191 -0.254 -0.122
T 1.213 0.013 0.014 -0.054
re 1.053 0.012 0.011 -0.051
rt,40 0.967 0.014 0.017 -0.043
xhry a0 0.364 -0.026 -0.028 0.368
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Kurtosis
Ac

JAVAS

Tt

r

I't .40
xhr 40

Data

5.766
5.223
4.232
4.594
3.602
5.121

GMM2nd

3.011
3.157
2.987
2.968
2.987
3.003

GMM3rd

3.015
3.279
2.985
2.975
2.979
3.006

SMM3rd

3.547
4.425
3.040
3.033
3.028
5.167
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Data GMM?™  GMM3  SMMm3d
corr (Ace, Aly) 0.594 0.590 0.579 0.582
corr (Acy, 7¢) -0.362  -0.238 -0.296 -0.310
corr (Act, e 1) -0.278  -0.210 -0.274 -0.290
corr (Acy, rt.40) -0.178  -0.3337 -0.355 -0.366
corr (Acy, xhre a0) | 0.271 0.691 0.655 0.641
corr (Acy,log hy) | 0.065 -0.677 -0.670 -0.674
corr (Aiy, ) -0.242  -0.075 -0.098 -0.098
corr (A, ry 1) -0.265  -0.058 -0.084 -0.088
corr (Aly, rt.a0) -0.153  -0.130 -0.133 -0.135
corr (Aiy, xhre a9) | 0.021 0.015 0.024 0.027
corr (Al log hy) 0.232  -0.398 -0.406 -0.418
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corr (e, re.1)
corr (T, rt.a0)
corr (¢, xhry a0)
corr (¢, log hy)

corr (re1, e,a0)

corr (re 1, xhre 40)

corr (re1,10g he)

corr (re a0, xhre 40)

corr (rt a0, log ht)
(

corr (xhr a9, log hy)

Data

0.628
0.479
-0.249
-0.467

0.861
-0.233
-0.369
-0.121
-0.409
-0.132

GM M2nd
0.994
0.990
-0.130
0.132

0.986
-0.122
0.177
-0.247
0.229
-0.644

GMM3rd
0.997
0.988

-0.142
0.128

0.991
-0.137
0.153
-0.248
0.238
-0.680

SMM3rd
0.997
0.987

-0.141
0.154

0.991
-0.138
0.180
-0.249
0.268
-0.690
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GMM2nd GMM3rd SMM3rd
Objective function: @ | 0.0920 0.1055 0.0958
Number of moments 42 42 54
Number of parameters | 18 18 22
P-value 0.8437 0.7183 0.9797
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Approximation order = 1 —+— Approximation order = 3

E c L ]
« 10 ¢ t x10° R
6 0.03
4 0.02 *
P 0.01 2
o o
0 10 20 0 10 20 0 10 20
) ; 3 v xhr,
X 10 t1 X 10 140 40
o o 0.06
. 0.5 0.04
1 0.02
2
15 ol
0 10 20 0 10 20 0 10 20
. h - s
X 10 t x10° t o
or ot O++
0.015
1 1 0.01
» 0.005
T 2 0
0 10 20 0 10 20 0 10 20
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Approximation order = 1 —+— Approximation order = 3

E C, - 1 -
¢ t x 10" t x 10"
(}»
O -1
-10 ”
20
| 3
0 10 20 0 10 20 0
* 't x 10" 140 x10°
0»
6
1 4
2
:W 2
0 10 20 0 10 20 0
5 ht ©10° S
0 1
2 0.01
-4
. 0.005
8L 0

o




