Perturbation Methods IV: Perturbing the Value Function

(Lectures on Solution Methods for Economists VIII)

Jesús Fernández-Villaverde ${ }^{1}$ and Pablo Guerrón ${ }^{2}$
November 21, 2021
${ }^{1}$ University of Pennsylvania
${ }^{2}$ Boston College

Perturbing the value function

- We worked with the equilibrium conditions of the model.
- Sometimes we may want to perform a perturbation on the value function formulation of the problem.
- Possible reasons:

1. Gain insight.
2. Difficulty in using equilibrium conditions.
3. Evaluate welfare.
4. Initial guess for VFI.

- More general point: we can perturb any operator problem that we find useful.

Basic problem

- The previous problem in recursive form:

$$
\begin{aligned}
V\left(k_{t}, z_{t}\right)= & \max _{c_{t}}\left[\log c_{t}+\beta \mathbb{E}_{t} V\left(k_{t+1}, z_{t+1}\right)\right] \\
& \text { s.t. } c_{t}+k_{t+1}=e^{z_{t}} k_{t}^{\alpha} \\
z_{t}= & \rho z_{t-1}+\sigma \varepsilon_{t}, \varepsilon_{t} \sim \mathcal{N}(0,1)
\end{aligned}
$$

- Write it as:

$$
\begin{gathered}
V\left(k_{t}, z_{t} ; \lambda\right)= \\
\max _{c_{t}}\left[\log c_{t}+\beta \mathbb{E}_{t} V\left(e^{z_{t}} k_{t}^{\alpha}-c_{t}, \rho z_{t}+\lambda \sigma \varepsilon_{t+1} ; \lambda\right)\right]
\end{gathered}
$$

- The solution of this problem is value function $V\left(k_{t}, z_{t} ; \lambda\right)$ and a policy function for consumption $c\left(k_{t}, z_{t} ; \lambda\right)$.

Expanding the value function

The second-order Taylor approximation of the value function around the deterministic steady state $(k, 0 ; 0)$ is:

$$
\begin{gathered}
V\left(k_{t}, z_{t} ; \lambda\right) \simeq \\
+\frac{1}{2} V_{11, s s}\left(k_{t}-k\right)^{2}+\frac{1}{2} V_{12, s s}\left(k_{t}-k\right) z_{t}+\frac{1}{2} V_{13, s s}\left(k_{t}-k\right) \lambda \\
+\frac{1}{2} V_{21, s s} z_{t}\left(k_{t}-k\right)+\frac{1}{2} V_{22, s s} z_{t}^{2}+\frac{1}{2} V_{23, s s} z_{t} \lambda \\
+\frac{1}{2} V_{31, s s} \lambda\left(k_{t}-k\right)+\frac{1}{2} V_{32, s s} \lambda z_{t}+\frac{1}{2} V_{33, s s}^{2} \lambda^{2}
\end{gathered}
$$

where

$$
\begin{aligned}
V_{s s} & =V(k, 0 ; 0) \\
V_{i, s s} & =V_{i}(k, 0 ; 0) \text { for } i=\{1,2,3\} \\
V_{i j, s s} & =V_{i j}(k, 0 ; 0) \text { for } i, j=\{1,2,3\}
\end{aligned}
$$

Expanding the value function

- By certainty equivalence, we will show below that:

$$
V_{3, s s}=V_{13, s s}=V_{23, s s}=0
$$

- Taking advantage of the equality of cross-derivatives, and setting $\lambda=1$, which is just a normalization:

$$
\begin{aligned}
V\left(k_{t}, z_{t} ; 1\right) \simeq & V_{s s}+V_{1, s s}\left(k_{t}-k\right)+V_{2, s s} z_{t} \\
& +\frac{1}{2} V_{11, s s}\left(k_{t}-k\right)^{2}+\frac{1}{2} V_{22, s s} z_{t t}^{2} \\
& +V_{12, s s}\left(k_{t}-k\right) z+\frac{1}{2} V_{33, s s}+\ldots
\end{aligned}
$$

- Note that $V_{33, \text { ss }} \neq 0$, a difference from the standard linear-quadratic approximation to the utility functions.

Expanding the consumption function

- The policy function for consumption can be expanded as:

$$
c_{t}=c\left(k_{t}, z_{t} ; \lambda\right) \simeq c_{s s}+c_{1, s s}\left(k_{t}-k\right)+c_{2, s s} z_{t}+c_{3, s s} \chi+\ldots
$$

where:

$$
\begin{aligned}
& c_{1, s s}=c_{1}\left(k_{s s}, 0 ; 0\right) \\
& c_{2, s s}=c_{2}\left(k_{s s}, 0 ; 0\right) \\
& c_{3, s s}=c_{3}\left(k_{s s}, 0 ; 0\right)
\end{aligned}
$$

- Since the first derivatives of the consumption function only depend on the first and second derivatives of the value function, we must have that $c_{3, s s}=0$ (precautionary consumption depends on the third derivative of the value function, Kimball, 1990).

Linear components of the value function

- As before, we first find the steady state of the model:

$$
\begin{gathered}
k=(\alpha \beta)^{\frac{1}{1-\alpha}} \\
c=(\alpha \beta)^{\frac{\alpha}{1-\alpha}}-(\alpha \beta)^{\frac{1}{1-\alpha}} \\
V_{s s}=\frac{\log c}{1-\beta}
\end{gathered}
$$

- We substitute the decision rules into the value function and drop the max operator:

$$
\begin{gathered}
V\left(k_{t}, z_{t} ; \lambda\right)-\log c\left(k_{t}, z_{t} ; \lambda\right) \\
+\beta \mathbb{E}_{t} V\left(e^{z_{t}} k_{t}^{\alpha}-c\left(k_{t}, z_{t} ; \lambda\right), \rho z_{t}+\lambda \sigma \varepsilon_{t+1} ; \lambda\right)=0
\end{gathered}
$$

- We take derivatives of the value function with respect to the control $\left(c_{t}\right)$, the states $\left(k_{t}, z_{t}\right)$, and the perturbation parameter λ.

Derivatives

- Derivative with respect to c_{t} :

$$
c_{t}^{-1}-\beta \mathbb{E}_{t} V_{1, t+1}=0
$$

- Derivative with respect to k_{t} :

$$
V_{1, t}=\beta \mathbb{E}_{t} V_{1, t+1}\left(\alpha e^{z_{t}} k_{t}^{\alpha-1}\right)
$$

- Derivative with respect to z_{t} :

$$
V_{2, t}=\beta \mathbb{E}_{t}\left[V_{1, t+1} e^{z_{t}} k_{t}^{\alpha}+\rho V_{2, t+1}\right]
$$

- Derivative with respect to λ :

$$
V_{3, t}=\beta \mathbb{E}_{t}\left[V_{2, t+1} \sigma \varepsilon_{t+1}+V_{3, t+1}\right]
$$

- We apply the envelope theorem to eliminate the derivatives of consumption with respect to k_{t}, z_{t}, and λ.

System of equations I

Now, we have the system:

$$
\begin{gathered}
c_{t}^{-1}-\beta \mathbb{E}_{t} V_{1, t+1}=0 \\
V_{1, t}=\beta \mathbb{E}_{t} V_{1, t+1} \alpha e^{z_{t}} k_{t}^{\alpha-1} \\
V_{2, t}=\beta \mathbb{E}_{t}\left[V_{1, t+1} e^{z_{t}} k_{t}^{\alpha}+\rho V_{2, t+1}\right] \\
V_{3, t}=\beta \mathbb{E}_{t}\left[V_{2, t+1} \sigma \varepsilon_{t+1}+V_{3, t+1}\right] \\
z_{t}=\rho z_{t-1}+\lambda \sigma \varepsilon_{t}
\end{gathered}
$$

System of equations II

If we set $\lambda=0$ and compute the steady state, we get a system of four equations on four unknowns, k, $V_{1, s 5}, V_{2,5 s}$, and $V_{3, s 5}$:

$$
\begin{gathered}
\frac{1}{c}-\beta V_{1, s s}=0 \\
V_{1, s s}=\beta V_{1, s s} \alpha k^{\alpha-1} \\
V_{2, s s}=\beta\left[V_{1, s s} k^{\theta}+\rho V_{2, s s}\right] \\
V_{3, s s}=\beta V_{3, s s}
\end{gathered}
$$

- Then:

1. $V_{1, s s}=\frac{1}{\beta c}>0$.
2. $V_{2, s s}=\frac{\beta}{1-\beta_{\rho}} \frac{k^{\alpha}}{c}=\frac{\beta}{(1-\alpha \beta)(1-\beta \rho)}>0$.
3. $V_{3, s s}=0$.

Quadratic components of the value function

From the previous derivations, we have:

$$
\begin{gathered}
c_{t}^{-1}-\beta \mathbb{E}_{t} V_{1, t+1}=0 \\
V_{1, t}=\beta \mathbb{E}_{t} V_{1, t+1} \alpha e^{z_{t}} k_{t}^{\alpha-1} \\
V_{2, t}=\beta \mathbb{E}_{t}\left[V_{1, t+1} e^{z_{t}} k_{t}^{\alpha}+\rho V_{2, t+1}\right] \\
V_{3, t}=\beta \mathbb{E}_{t}\left[V_{2, t+1} \sigma \varepsilon_{t+1}+V_{3, t+1}\right]
\end{gathered}
$$

- We will now take derivatives of each of the four equations with respect to k_{t}, z_{t}, and λ.
- We will take advantage of the equality of cross derivatives.
- The envelope theorem does not hold anymore (we are taking derivatives of the derivatives of the value function).

The welfare cost of the business cycle

- An advantage of performing the perturbation on the value function is that we have evaluation of welfare readily available.
- Note that at the deterministic steady state, we have:

$$
V(k, 0 ; \chi) \simeq V_{s s}+\frac{1}{2} V_{33, s s}
$$

- Hence $\frac{1}{2} V_{33, \text { ss }}$ is a measure of the welfare cost of the business cycle.
- Note that this quantity is not necessarily negative. Indeed, it may well be positive in many models, like in a RBC with leisure choice. See Cho and Cooley (2000).

Our example

- We know that $V_{s s}=\frac{\log c}{1-\beta}$.
- Then, we can compute the decrease in consumption τ that will make the household indifferent between consuming $(1-\tau) c$ units per period with certainty or c_{t} units with uncertainty.
- To do so, note that:

$$
\begin{gathered}
\frac{\log c}{1-\beta}+\frac{1}{2} V_{33, s s}=\frac{\log c}{1-\beta}+\frac{\log (1-\tau)}{1-\beta} \Rightarrow \\
\tau=1-\exp \left(\frac{1-\beta}{2} V_{33, s s}\right)
\end{gathered}
$$

A numerical example I

- A more realistic example

$$
\begin{gathered}
V\left(k_{t}, z_{t}\right)=\max _{c_{t}}\left[(1-\beta) \frac{c_{t}^{1-\gamma}}{1-\gamma}+\beta \mathbb{E}_{t} V\left(k_{t+1}, z_{t+1}\right)\right] \\
\text { s.t. } c_{t}+k_{t+1}=e^{z_{t}} k_{t}^{\theta}+(1-\delta) k_{t} \\
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t}, \varepsilon_{t} \sim \mathcal{N}(0,1)
\end{gathered}
$$

- We pick standard parameter values by setting

$$
\beta=0.99, \gamma=2, \delta=0.0294, \theta=0.3, \text { and } \rho=0.95
$$

A numerical example II

- Then, we get:

$$
\begin{aligned}
V\left(k_{t}, z_{t} ; 1\right) \simeq & -0.54000+0.00295\left(k_{t}-k_{s s}\right)+0.11684 z_{t} \\
& -0.00007\left(k_{t}-k_{s s}\right)^{2}-0.00985 z_{t}^{2} \\
& -0.97508-0.00225\left(k_{t}-k_{s s}\right) z_{t} \\
c\left(k_{t}, z_{t} ; 1\right) \simeq & 1.85193+0.04220\left(k_{t}-k_{s s}\right)+0.74318 z_{t}
\end{aligned}
$$

- Also, the consumption equivalent of the welfare cost of the business cycle is $8.8475 \mathrm{e}-005$, even lower than Lucas' (1987) original computation because of the smoothing possibilities implied by the presence of capital.
- Use as an initial guess for VFI.

