

Perturbation Methods III: Change of Variables

(Lectures on Solution Methods for Economists VII)

Jesús Fernández-Villaverde¹ and Pablo Guerrón²

November 21, 2021

¹University of Pennsylvania

²Boston College

Erik Eady

It is not the process of linearization that limits insight.

It is the nature of the state that we choose to linearize about.

Change of variables

- We approximated our solution in levels.
- We could have done it in logs.
- Why stop there? Why not in powers of the state variables?
- Judd (2002) has provided methods for changes of variables.
- We apply and extend ideas to the stochastic neoclassical growth model.

A general transformation

• We look at solutions of the form:

$$c^{\mu} - c_0^{\mu} = a\left(k^{\zeta} - k_0^{\zeta}\right) + bz$$

$$k'^{\gamma} - k_0^{\gamma} = c\left(k^{\zeta} - k_0^{\zeta}\right) + dz$$

- Note that:
 - 1. If γ , ζ , and μ are 1, we get the linear representation.
 - 2. As γ , ζ , and μ tend to zero, we get the loglinear approximation.

Theory

• The first order solution can be written as

$$f(x) \simeq f(a) + (x - a) f'(a)$$

- Expand g(y) = h(f(X(y))) around b = Y(a), where X(y) is the inverse of Y(x).
- Then:

$$g(y) = h(f(X(y))) = g(b) + g_{\alpha}(b)(Y^{\alpha}(x) - b^{\alpha})$$

where $g_{\alpha} = h_A f_i^A X_{\alpha}^i$ comes from the application of the chain rule.

• From this expression it is easy to see that if we have computed the values of f_i^A , then it is straightforward to find the value of g_{α} .

4

Coefficients relation

• Remember that the linear solution is:

$$(k'-k_0) = a_1(k-k_0) + b_1z$$

 $(l-l_0) = c_1(k-k_0) + d_1z$

• Then we show that:

$a_3=rac{\gamma}{\zeta}k_0^{\gamma-\zeta}a_1$	$b_3 = \gamma k_0^{\gamma - 1} b_1$
$c_3 = \frac{\mu}{\zeta} I_0^{\mu - 1} k_0^{1 - \zeta} c_1$	$d_3 = \mu I_0^{\mu - 1} d_1$

Finding the parameters

- Minimize over a grid the Euler Error.
- Some optimal results

Euler Equation Errors

	γ	ζ	μ	SEE
	1	1	1	0.0856279
	0.986534	0.991673	2.47856	0.0279944
Ī				

Sensitivity analysis

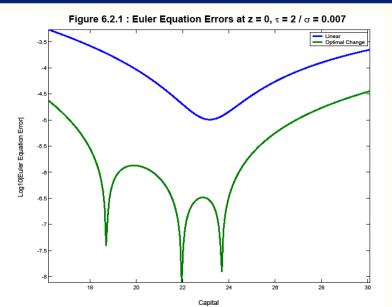
- Different parameter values.
- Most interesting finding is when we change σ :

Optimal Parameters for different σ 's

σ	γ	ζ	μ
0.014	0.98140	0.98766	2.47753
0.028	1.04804	1.05265	1.73209
0.056	1.23753	1.22394	0.77869

• A first order approximation corrects for changes in variance!

Euler equation errors



A quasi-optimal approximation

- Sensitivity analysis reveals that for different parametrizations $\gamma \simeq \zeta$.
- This suggests the quasi-optimal approximation:

$$k'^{\gamma} - k_0^{\gamma} = a_3 (k^{\gamma} - k_0^{\gamma}) + b_3 z$$

 $I^{\mu} - I_0^{\mu} = c_3 (k^{\gamma} - k_0^{\gamma}) + d_3 z$

• Note that if define $\hat{k} = k^{\gamma} - k_0^{\gamma}$ and $\hat{l} = l^{\mu} - l_0^{\mu}$ we get:

$$\widehat{k}' = a_3 \widehat{k} + b_3 z$$

$$\widehat{l} = c_3 \widehat{k} + d_3 z$$

- Linear system:
 - 1. Use for analytical study.
 - 2. Use for estimation with a Kalman Filter.