Perturbation Methods II: General Case

(Lectures on Solution Methods for Economists VI)

Jesús Fernández-Villaverde ${ }^{1}$ and Pablo Guerrón ${ }^{2}$
November 21, 2021
${ }^{1}$ University of Pennsylvania
${ }^{2}$ Boston College

The General case

- Most of arguments in the previous set of lecture notes are easy to generalize.
- The set of equilibrium conditions of many DSGE models can be written using recursive notation as:

$$
\mathbb{E}_{t} \mathcal{H}\left(y, y^{\prime}, x, x^{\prime}\right)=0,
$$

where y_{t} is a $n_{y} \times 1$ vector of controls and x_{t} is a $n_{x} \times 1$ vector of states.

- $n=n_{x}+n_{y}$.
- \mathcal{H} maps $R^{n_{y}} \times R^{n_{y}} \times R^{n_{x}} \times R^{n_{x}}$ into R^{n}.

Partitioning the state vector

- The state vector x_{t} can be partitioned as $x=\left[x_{1} ; x_{2}\right]^{t}$.
- x_{1} is a $\left(n_{x}-n_{\epsilon}\right) \times 1$ vector of endogenous state variables.
- x_{2} is a $n_{\epsilon} \times 1$ vector of exogenous state variables.
-Why do we want to partition the state vector?

Exogenous stochastic process I

$$
x_{2}^{\prime}=A x_{2}+\lambda \eta_{\epsilon} \epsilon^{\prime}
$$

- Process with 3 parts:

1. The deterministic component $A x_{2}$, where A is a $n_{\epsilon} \times n_{\epsilon}$ matrix, with all eigenvalues with modulus less than one.
2. The scaled innovation $\eta_{\epsilon} \epsilon^{\prime}$, where:
$2.1 \eta_{\epsilon}$ is a known $n_{\epsilon} \times n_{\epsilon}$ matrix.
2.2ϵ is a $n_{\epsilon} \times 1$ i.i.d. innovation with bounded support, zero mean, and variance/covariance matrix I.
3. The perturbation parameter λ.

Exogenous stochastic process II

- We can accommodate very general structures of x_{2} through changes in the definition of the state space: i.e., stochastic volatility.
- More general structure:

$$
x_{2}^{\prime}=\Gamma\left(x_{2}\right)+\lambda \eta_{\epsilon} \epsilon^{\prime}
$$

where Γ is a non-linear function satisfying that all eigenvalues of its first derivative evaluated at the non-stochastic steady state lie within the unit circle.

- Note we do not impose Gaussanity.

The perturbation parameter

- The scalar $\lambda \geq 0$ is the perturbation parameter.
- If we set $\lambda=0$, we have a deterministic model.
- Important: there is only ONE perturbation parameter. The matrix η_{ϵ} takes account of relative sizes of different shocks.
- Why bounded support? Samuelson (1970), Jin and Judd (2002).

Solution of the model

- The solution to the model is of the form:

$$
\begin{gathered}
y=g(x ; \lambda) \\
x^{\prime}=h(x ; \lambda)+\lambda \eta \epsilon^{\prime}
\end{gathered}
$$

where g maps $R^{n_{x}} \times R^{+}$into $R^{n_{y}}$ and h maps $R^{n_{x}} \times R^{+}$into $R^{n_{x}}$.

- The matrix η is of order $n_{x} \times n_{\epsilon}$ and is given by:

$$
\eta=\left[\begin{array}{c}
\emptyset \\
\eta_{\epsilon}
\end{array}\right]
$$

Perturbation

- We wish to find a perturbation approximation of the functions g and h around the non-stochastic steady state, $x_{t}=\bar{x}$ and $\lambda=0$.
- We define the non-stochastic steady state as vectors (\bar{x}, \bar{y}) such that:

$$
\mathcal{H}(\bar{y}, \bar{y}, \bar{x}, \bar{x})=0 .
$$

- Note that $\bar{y}=g(\bar{x} ; 0)$ and $\bar{x}=h(\bar{x} ; 0)$.
- This is because, if $\lambda=0, \mathbb{E}_{t} \mathcal{H}=\mathcal{H}$.

Plugging-in the proposed solution

- Substituting the proposed solution, we define:

$$
F(x ; \lambda) \equiv \mathbb{E}_{t} \mathcal{H}\left(g(x ; \lambda), g\left(h(x ; \lambda)+\eta \lambda \epsilon^{\prime}, \lambda\right), x, h(x ; \lambda)+\eta \lambda \epsilon^{\prime}\right)=0
$$

- Since $F(x ; \lambda)=0$ for any values of x and λ, the derivatives of any order of F must also be equal to zero.
- Formally:

$$
F_{x^{k} \lambda^{j}}(x ; \lambda)=0 \quad \forall x, \lambda, j, k,
$$

where $F_{x^{\star} \lambda^{j}}(x, \lambda)$ denotes the derivative of F with respect to x taken k times and with respect to λ taken j times.

First-order approximation

- We are looking for approximations to g and h around $(x, \lambda)=(\bar{x}, 0)$ of the form:

$$
\begin{aligned}
g(x ; \lambda) & =g(\bar{x} ; 0)+g_{x}(\bar{x} ; 0)(x-\bar{x})+g_{\lambda}(\bar{x} ; 0) \lambda \\
h(x ; \lambda) & =h(\bar{x} ; 0)+h_{x}(\bar{x} ; 0)(x-\bar{x})+h_{\lambda}(\bar{x} ; 0) \lambda
\end{aligned}
$$

- As explained earlier, $g(\bar{x} ; 0)=\bar{y}$ and $h(\bar{x} ; 0)=\bar{x}$.
- The remaining four unknown coefficients of the first-order approximation to g and h are found by using the fact that:

$$
F_{x}(\bar{x} ; 0)=0
$$

and

$$
F_{\lambda}(\bar{x} ; 0)=0
$$

- Before doing so, we need to introduce the tensor notation.

Tensors

- General trick from physics.
- An $n^{\text {th }}$-rank tensor in a m-dimensional space is an operator that has n indices and m^{n} components and obeys certain transformation rules.
- $\left[\mathcal{H}_{y}\right]_{\alpha}^{i}$ is the (i, α) element of the derivative of \mathcal{H} with respect to y :

1. The derivative of \mathcal{H} with respect to y is an $n \times n_{y}$ matrix.
2. Thus, $\left[\mathcal{H}_{y}\right]_{\alpha}^{i}$ is the element of this matrix located at the intersection of the i-th row and α-th column.
3. Thus, $\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{x}\right]_{j}^{\beta}=\sum_{\alpha=1}^{n_{y}} \sum_{\beta=1}^{n_{x}} \frac{\partial \mathcal{H}^{i}}{\partial y^{\alpha}} \frac{\partial^{\alpha}}{\partial x^{\beta}} \frac{\partial h^{\beta}}{\partial x^{j}}$.

- $\left[\mathcal{H}_{y^{\prime} y^{\prime}}\right]_{\alpha \gamma}^{i}$:

1. $\mathcal{H}_{y^{\prime} y^{\prime}}$ is a three dimensional array with n rows, n_{y} columns, and n_{y} pages.
2. Then $\left[\mathcal{H}_{y^{\prime} y^{\prime}}\right]_{\alpha \gamma}^{i}$ denotes the element of $\mathcal{H}_{y^{\prime} y^{\prime}}$ located at the intersection of row i, column α and page γ.

Solving the system I

- g_{x} and h_{x} can be found as the solution to the system:

$$
\begin{aligned}
{\left[F_{x}(\bar{x} ; 0)\right]_{j}^{i} } & =\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{x}\right]_{j}^{\beta}+\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{x}\right]_{j}^{\alpha}+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{x}\right]_{j}^{\beta}+\left[\mathcal{H}_{x}\right]_{j}^{i}=0 ; \\
i & =1, \ldots, n ; \quad j, \beta=1, \ldots, n_{x} ; \quad \alpha=1, \ldots, n_{y}
\end{aligned}
$$

- Note that the derivatives of \mathcal{H} evaluated at $\left(y, y^{\prime}, x, x^{\prime}\right)=(\bar{y}, \bar{y}, \bar{x}, \bar{x})$ are known.
- Then, we have a system of $n \times n_{x}$ quadratic equations in the $n \times n_{x}$ unknowns given by the elements of g_{x} and h_{x}.
- We can solve with a standard quadratic matrix equation solver.

Solving the system II

- g_{λ} and h_{λ} are the solution to the n equations:

$$
\begin{gathered}
{\left[\mathcal{F}_{\lambda}(\bar{x} ; 0)\right]^{i}=} \\
\mathbb{E}_{t}\left\{\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{\lambda}\right]^{\beta}+\left[\mathcal{H}_{y}\right]_{[}^{j}\left[g_{x}\right]_{]^{\alpha}}^{\alpha}[\eta]_{\phi}^{\beta}\left[\epsilon^{\prime}\right]^{\phi}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{\lambda}\right]^{\alpha}\right. \\
\left.+\left[\mathcal{H}_{y}\right]_{\alpha}\left[g_{\lambda}\right]^{\alpha}+\left[\mathcal{H}_{x}\right]_{\beta}^{i}\left[h_{\lambda}\right]^{\beta}+\left[\mathcal{H}_{x}\right]_{\beta}^{i}[\eta]_{\phi}^{\beta}\left[\epsilon^{\prime}\right]^{\phi}\right\} \\
i=1, \ldots, n ; \quad \alpha=1, \ldots, n_{y} ; \quad \beta=1, \ldots, n_{x} ; \quad \phi=1, \ldots, n_{\epsilon} .
\end{gathered}
$$

- Then:

$$
\begin{gathered}
{\left[\mathcal{F}_{\lambda}(\bar{x} ; 0)\right]^{i}} \\
=\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{\lambda}\right]^{\beta}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{\lambda}\right]^{\alpha}+\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{\lambda}\right]^{\alpha}+\left[f_{x}\right]_{\beta}^{i}\left[h_{\lambda}\right]^{\beta}=0 ; \\
i=1, \ldots, n_{;} \quad \alpha=1, \ldots, n_{y} ; \quad \beta=1, \ldots, n_{x} ; \quad \phi=1, \ldots, n_{\epsilon} .
\end{gathered}
$$

- Certainty equivalence: linear and homogeneous equation in g_{λ} and h_{λ}. Thus, if a unique solution exists, it satisfies:

$$
\begin{aligned}
& h_{\lambda}=0 \\
& g_{\lambda}=0
\end{aligned}
$$

Second-order approximation I

The second-order approximations to g around $(x ; \lambda)=(\bar{x} ; 0)$ is

$$
\begin{aligned}
{[g(x ; \lambda)]^{i}=} & {[g(\bar{x} ; 0)]^{i}+\left[g_{x}(\bar{x} ; 0)\right]_{a}^{i}[(x-\bar{x})]_{a}+\left[g_{\lambda}(\bar{x} ; 0)\right]^{i}[\lambda] } \\
& +\frac{1}{2}\left[g_{x x}(\bar{x} ; 0)\right]_{a b}^{i}[(x-\bar{x})]_{a}[(x-\bar{x})]_{b} \\
& +\frac{1}{2}\left[g_{x \lambda}(\bar{x} ; 0)\right]_{a}^{i}[(x-\bar{x})]_{a}[\lambda] \\
& +\frac{1}{2}\left[g_{\lambda x}(\bar{x} ; 0)\right]_{a}^{i}[(x-\bar{x})]_{a}[\lambda] \\
& +\frac{1}{2}\left[g_{\lambda \lambda}(\bar{x} ; 0)\right]^{i}[\lambda][\lambda]
\end{aligned}
$$

where $i=1, \ldots, n_{y}, a, b=1, \ldots, n_{x}$, and $j=1, \ldots, n_{x}$.

Second-order approximation II

The second-order approximations to h around $(x ; \lambda)=(\bar{x} ; 0)$ is

$$
\begin{aligned}
{[h(x ; \lambda)]^{j}=} & {[h(\bar{x} ; 0)]^{j}+\left[h_{x}(\bar{x} ; 0)\right]_{a}^{j}[(x-\bar{x})]_{a}+\left[h_{\lambda}(\bar{x} ; 0)\right]^{j}[\lambda] } \\
& +\frac{1}{2}\left[h_{x x}(\bar{x} ; 0)\right]_{a b}^{j}[(x-\bar{x})]_{a}[(x-\bar{x})]_{b} \\
& +\frac{1}{2}\left[h_{x \lambda}(\bar{x} ; 0)\right]_{a}^{j}[(x-\bar{x})]_{a}[\lambda] \\
& +\frac{1}{2}\left[h_{\lambda x}(\bar{x} ; 0)\right]_{a}^{j}[(x-\bar{x})]_{a}[\lambda] \\
& +\frac{1}{2}\left[h_{\lambda \lambda}(\bar{x} ; 0)\right]^{j}[\lambda][\lambda],
\end{aligned}
$$

where $i=1, \ldots, n_{y}, a, b=1, \ldots, n_{x}$, and $j=1, \ldots, n_{x}$.

Second-order approximation III

- The unknowns of these expansions are $\left[g_{x x}\right]_{a b}^{i},\left[g_{x \lambda}\right]_{a}^{i},\left[g_{\lambda x}\right]_{a}^{i},\left[g_{\lambda \lambda}\right]^{i},\left[h_{x x}\right]_{a b}^{j},\left[h_{x \lambda}\right]_{a}^{j},\left[h_{\lambda x}\right]_{a}^{j},\left[h_{\lambda \lambda}\right]^{j}$.
- These coefficients can be identified by taking the derivative of $F(x ; \lambda)$ with respect to x and λ twice and evaluating them at $(x ; \lambda)=(\bar{x} ; 0)$.
- By the arguments provided earlier, these derivatives must be zero.

Solving the system I

We use $F_{x x}(\bar{x} ; 0)$ to identify $g_{x x}(\bar{x} ; 0)$ and $h_{x x}(\bar{x} ; 0)$:

$$
\begin{aligned}
& {\left[F_{x x}(\bar{x} ; 0)\right]_{j k}^{i}=} \\
& \left(\left[\mathcal{H}_{y^{\prime} y^{\prime}}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{y^{\prime} y}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{k}^{\gamma}+\left[\mathcal{H}_{y^{\prime} x^{\prime}}\right]_{\alpha \delta}^{i}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{y^{\prime} x}\right]_{\alpha k}^{i}\right)\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{x}\right]_{j}^{\beta} \\
& +\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x x}\right]_{\beta \delta}^{\alpha}\left[h_{x}\right]_{k}^{\delta}\left[h_{x}\right]_{j}^{\beta}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{x x}\right]_{j k}^{\beta} \\
& +\left(\left[\mathcal{H}_{y y^{\prime}}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{y y}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{k}^{\gamma}+\left[\mathcal{H}_{y x^{\prime}}\right]_{\alpha \delta}^{i}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{y x}\right]_{\alpha k}^{i}\right)\left[g_{x}\right]_{j}^{\alpha} \\
& +\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{x x}\right]_{j k}^{\alpha} \\
& +\left(\left[\mathcal{H}_{x^{\prime} y^{\prime}}\right]_{\beta \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{x^{\prime} y}\right]_{\beta \gamma}^{i}\left[g_{x}\right]_{k}^{\gamma}+\left[\mathcal{H}_{x^{\prime} x^{\prime}}\right]_{\beta \delta}^{i}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{x^{\prime} x}\right]_{\beta k}^{i}\right)\left[h_{x}\right]_{j}^{\beta} \\
& +\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{x x}\right]_{j k}^{\beta} \\
& +\left[\mathcal{H}_{x y^{\prime}}\right]_{j \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{x y}\right]_{j \gamma}^{i}\left[g_{x}\right]_{k}^{\gamma}+\left[\mathcal{H}_{x x}\right]_{j \delta}^{i}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{x x}\right]_{j k}^{i}=0 ; \\
& i=1, \ldots n, \quad j, k, \beta, \delta=1, \ldots n_{x} ; \quad \alpha, \gamma=1, \ldots n_{y} .
\end{aligned}
$$

Solving the system II

- We know the derivatives of \mathcal{H}.
- We also know the first derivatives of g and h evaluated at $\left(y, y^{\prime}, x, x^{\prime}\right)=(\bar{y}, \bar{y}, \bar{x}, \bar{x})$.
- Hence, the above expression represents a system of $n \times n_{x} \times n_{x}$ linear equations in then $n \times n_{x} \times n_{x}$ unknowns elements of $g_{x x}$ and $h_{x x}$.

Solving the system III

Similarly, $g_{\lambda \lambda}$ and $h_{\lambda \lambda}$ can be obtained by solving:

$$
\begin{aligned}
{\left[F_{\lambda \lambda}(\bar{x} ; 0)\right]^{i}=} & {\left[\mathcal{H} y_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{\lambda \lambda}\right]^{\beta} } \\
& +\left[\mathcal{H}_{y^{\prime} y^{\prime}}^{\prime}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}[\eta]_{\xi}^{\delta}\left[g_{x}\right]_{\beta}^{\alpha}[\eta]_{\phi}^{\beta}[l]_{\xi}^{\phi} \\
& +\left[\mathcal{H}_{y^{\prime} x^{\prime}}\right]_{\alpha \delta}^{i}[\eta]_{\xi}^{\delta}\left[g_{x}\right]_{\beta}^{\alpha}[\eta]_{\phi}^{\beta}[I]_{\xi}^{\phi} \\
& +\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha^{i}}^{i}\left[g_{x x}\right]_{\beta \delta}^{\alpha}[\eta]_{\xi}^{\delta}[\eta]_{\phi}^{\beta}[I]_{\xi}^{\phi}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{\lambda \lambda}\right]^{\alpha} \\
& +\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{\lambda \lambda}\right]^{\alpha}+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{\lambda \lambda}\right]^{\beta} \\
& +\left[\mathcal{H}_{x^{\prime} y^{\prime}}\right]_{\beta \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}[\eta]_{\xi}^{\delta}[\eta]_{\phi}^{\beta}[I]_{\xi}^{\phi} \\
& +\left[\mathcal{H}_{\left.x^{\prime} x^{\prime}\right]^{\prime}}^{i}\right]_{\beta \delta}[\eta]_{\xi}^{\delta}[\eta]_{\phi}^{\beta}[I]_{\xi}^{\phi}=0 ; \\
i= & 1, \ldots, n ; \alpha, \gamma=1, \ldots, n_{y} ; \beta, \delta=1, \ldots, n_{x} ; \phi, \xi=1, \ldots, n_{\epsilon}
\end{aligned}
$$

a system of n linear equations in the n unknowns given by the elements of $g_{\lambda \lambda}$ and $h_{\lambda \lambda}$.

Cross-derivatives

- The cross derivatives $g_{x \lambda}$ and $h_{x \lambda}$ are zero when evaluated at $(\bar{x}, 0)$.
- Why? Write the system $F_{\lambda x}(\bar{x} ; 0)=0$ taking into account that all terms containing either g_{λ} or h_{λ} are zero at ($\bar{x}, 0$).
- Then:

$$
\begin{gathered}
{\left[F_{\lambda x}(\bar{x} ; 0)\right]_{j}^{i}=\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{\lambda x}\right]_{j}^{\beta}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{\lambda x}\right]_{\gamma}^{\alpha}\left[h_{x}\right]_{j}^{\gamma}+} \\
\quad\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{\lambda x}\right]_{j}^{\alpha}+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{\lambda x}\right]_{j}^{\beta}=0 ; \\
\quad i=1, \ldots n ; \quad \alpha=1, \ldots, n_{y} ; \quad \beta, \gamma, j=1, \ldots, n_{x} .
\end{gathered}
$$

- This is a system of $n \times n_{x}$ equations in the $n \times n_{x}$ unknowns given by the elements of $g_{\lambda x}$ and $h_{\lambda x}$.
- The system is homogeneous in the unknowns.
- Thus, if a unique solution exists, it is given by:

$$
\begin{aligned}
& g_{\lambda x}=0 \\
& h_{\lambda x}=0
\end{aligned}
$$

Structure of the solution

- The perturbation solution of the model satisfies:

$$
\begin{aligned}
g_{\lambda}(\bar{x} ; 0) & =0 \\
h_{\lambda}(\bar{x} ; 0) & =0 \\
g_{x \lambda}(\bar{x} ; 0) & =0 \\
h_{x \lambda}(\bar{x} ; 0) & =0
\end{aligned}
$$

- Standard deviation only appears in:

1. A constant term given by $\frac{1}{2} g_{\lambda \lambda} \lambda^{2}$ for the control vector y_{t}.
2. The first $n_{X}-n_{\epsilon}$ elements of $\frac{1}{2} h_{\lambda \lambda} \lambda^{2}$.

- Correction for risk.
- Quadratic terms in endogenous state vector x_{1}.
- Those terms capture non-linear behavior.

Higher-order approximations

- We can iterate this procedure as many times as we want.
- We can obtain n-th order approximations.
- Problems:

1. Existence of higher order derivatives (Santos, 1992).
2. Numerical instabilities.
3. Computational costs.
