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Introduction

e Remember that we want to solve a functional equations of the form:

H(d)=0
for an unknown decision rule d.
e Perturbation solves the problem by specifying:
n

d" (X,@) = Z@, (X — Xo)i

i=0

e We use implicit-function theorems to find coefficients 6;’s.

e Inherently local approximation. Often good global properties.



e Many complicated mathematical problems have:

1. either a particular case

2. or a related problem.
that is easy to solve.
e Often, we can use the solution of the simpler problem as a building block of the general solution.
e Very successful in physics.

e Sometimes perturbation is known as asymptotic methods.



A simple example

e Imagine we want to compute v/26 by hand.

e We do not remember how to do it.

But, we note that

V26 = V25 %1.04 = V25 %+ vV/1.04 =5%v/1.04 ~ 5% 1.02 = 5.1

Exact solution: v/26 = 5.09902.

e More in general:
Vx=+y2x(1+e)=y*x/(1+e)=y*(1+6)

Accuracy depends on how big ¢ is.



Applications in economics

e Judd and Guu (1993) showed how to apply it to economic problems.
e Recently, perturbation methods have been gaining much popularity.

e In particular, second- and third-order approximations are easy to compute and notably improve
accuracy.

e Perturbation theory is the generalization of the well-known linearization strategy.

e Hence, we can use much of what we already know about linearization.



Regular versus singular perturbations

Regular perturbation: a small change in the problem induces a small change in the solution.

Singular perturbation: a small change in the problem induces a /arge change in the solution.

Example: excess demand function.
e Most problems in economics involve regular perturbations.

e Sometimes, however, we can have singularities. Example: introducing a new asset in an incomplete
market model.
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An Economics Application



Stochastic neoclassical growth model

oo
max Eg Z Bt log c;
t=0

s.t. ¢ + kt+1 = lekta, Vt>0
7zt = pze_1 + oer, € ~ N(0,1)

e Note: full depreciation.

e Equilibrium conditions:

1 1
- = BEL‘
Ct Ct+1

Ze1 po—1
ae* ki

Ct + ker1 = e* k"

Zy = pZt—1 + o€t



Solution and steady state

e Exact solution (found by “guess and verify"):

¢ = (1 - aB) e ke

ker1 = afe® ko

e Steady state is also easy to find:

k=(ap)==

¢ =(aB)™ —(ap)T=
z=0

e Steady state in more general models.



The goal

e We are searching for decision rules:

d: Ct = C(kt’zt)
kt+1 = k(kt7zt)

e Then, we have:

I SE aePrtosef (K z,)"
C(ktyzt) tC(k (kt72t);/)zt+0'5t+1)
C(kt,Zt) + k (kt7 Zt) = ez!k;Y

e This is a system of functional equations.



A perturbation solution

e Rewrite the problem in terms of perturbation parameter .
e Different possibilities for A. For this case, | pick:

z; = pzi_1 + Aoer, er ~ N(0,1)

1. When )\ = 1, stochastic case.

2. When X\ = 0, deterministic case (with zp = 0 and then e* = 1).

e Now we are searching for the decision rules:

C = C(kt,Zt;)\)
key1 = k(ktvzt; )\)

10



Taylor’s theorem

e We will build a local approximation around (k, 0; 0).

e Given equilibrium conditions:

E, 1 i aePrATE k(K z, \) T g
c (ke,ze; A) ¢ (k (ke,zei ), pze + Aoeey1; )

€ (kes 26 A) + k (key 26 ) — €™k = 0

We will take derivatives with respect to ki, z;, and A and evaluate them around (k, 0;0).
e Why?
e Apply Taylor's theorem and a version of the implicit-function theorem.
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Asymptotic expansion |

Ct

C(kt, Zt, 1)|k,0,0 =C (k, 0, 0)

+ck (k,0;0) (ke — k) + ¢, (k,0;0) z: + cx (k,0;0)
1 1

+5 e (k, 0:0) (ke — k) + Zcuz (k, 0;0) (ke — k) z¢

2
1 1
+§Ck)\ (qu, 0) (kt e k) —+ ECzk (k,O, 0) Zy (kt = k)
1 1
+§czz (k,0;0) zt2 + ECZA (k,0;0) z

1 1
5 0xk (K, 0:0) (ke = K) + 5eaz (K, 0:0) Az

1
5 0x (k,0:0) + ..
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Asymptotic expansion |l

ket

k (k, zt; 1)\,(7070 = k (k,0;0)
ki (K, 0;0) (ke — K) + kg (K, 0;0) z + ky (K, 0;0)

1 1

+5 ke (k,0;0) (ke — k)? + > Kz (K, 0;0) (ke = K) z
1 1

+§kk)\ (k.O, 0) (kt — k) + ékzk (k,0,0) Zt (kt — k)
1 , 1

+§kzz(k,0;0) z; + ékZ)‘ (k,0;0) z
1 1

+§k)\k (k70?0)(kt — k) + Ek)\z(k,O;O)Zt

1
5 ke (k,0;0) + .
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Comment on notation

e From now on, to save on notation, we will write

1 _ /8aepzﬁ»koaulk(khzt;k)u—l O
c(ke,ze;N) c(k(ke,ze;N),pze+AoEri1;0) =

C(kt, Zt, )\) + k (kt7zt; )\) — eztkta

F (kt,zt; A) = ]Et

e Note that:

F(ktazt; >\) =H (Ct, Ct+1, K, kt+172t; )\)
=H (c(ke,ze; A), € (k (key i A) 5 ze41; A) s keo k (Key e A) 5 223 A)

e | will use H; to represent the partial derivative of H with respect to the i component and drop the
evaluation at the steady state of the functions when we do not need it.
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First-order approximation

e We take derivatives of F (k¢,z:; \) around k,0, and 0.

e With respect to k;:

Fi (k,0;0) =0
e With respect to z:

F,(k,0;0) =0
e With respect to A:

Fx(k,0;0)=0

15



Solving the system |

e Remember that:

F(kt7zt; A) =
H(c(ke,ze; N), c(k (keyzey )y zeg1i A)  key k (keyzey )z, A) =0

e Because F (k¢, z:; \) must be equal to zero for any possible values of k;, z;, and )\, the derivatives of
any order of F must also be zero.

e Then:

Fi (k,O; 0) = Hick + Hockki + Hz + Hake =0
F, (k,O;O) = Hic, + Ho (Ckkz + Czp) + Hak, +Hs =0
Fy (k,O;O) =Hicn + Ho (Ckk,\ + C>\) + Haky +Heg =0
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Solving the system Il

e Note that:
Fi (k,0;0) = Hyick + Hockkk + Hz + Hake =0
F.(k,0;0) = Hic, + Ho (ckk, + czp) + Hak, +Hs =0
is a quadratic system of four equations on four unknowns: cx, ¢, ki, and k.

e Procedures to solve quadratic systems:

1. Blanchard and Kahn (1980).

2. Uhlig (1999).

3. Sims (2000).

4. Klein (2000).
e All of them equivalent.

e Why quadratic? Stable and unstable manifold. 17



Solving the system llI

e Also, note that:
Fy (k,O;O) =Hicy + Ho (Ckk)\ + C)\) + Haky +He =0

is a linear and homogeneous system in ¢y and k.

Hence:

C)\:k,\zo

This means the system is certainty equivalent.

Interpretation=-no precautionary behavior.

e Difference between risk-aversion and precautionary behavior. Leland (1968), Kimball (1990).

Risk-aversion depends on the second derivative (concave utility).

e Precautionary behavior depends on the third derivative (convex marginal utility).

18



Comparison with linearization

After Kydland and Prescott (1982) a popular method to solve economic models has been the use of a

LQ approximation of the objective function of the agents.

Close relative: linearization of equilibrium conditions.

When properly implemented linearization, LQ, and first-order perturbation are equivalent.

Advantages of linearization:

1. Theorems.

2. Higher order terms.

19



Second-order approximation

e We take second-order derivatives of F (ki, z;; \) around k,0, and O:

o O O o o o

We substitute the coefficients that we already know.

A linear system of 12 equations on 12 unknowns (remember Young's theorem!). Why linear?

e Cross-terms on kA and z\ are zero.

20

More general result: all the terms in odd derivatives of A are zero.



Correction for risk

o We have the term 1c,2 (k,0;0).

Captures precautionary behavior.
e We do not have certainty equivalence any more!

e Important advantage of second order approximation.

Changes ergodic distribution of states.

21



Higher-order terms

e We can continue the iteration for as long as we want.

Great advantage of procedure: it is recursive!

Often, a few iterations will be enough.

The level of accuracy depends on the goal of the exercise:

1. Welfare analysis: Kim and Kim (2001).

2. Empirical strategies: Ferndndez-Villaverde, Rubio-Ramirez, and Santos (2006).

22



A Numerical Example



A numerical example

‘Parameter B @ P o ‘
| Value [0.99 | 0.33]0.95 | 0.01 |

Steady State:
c=0.388069 k =0.1883

First-order components:

¢k (k,0;0) = 0.680101 Ky (k,0;0) = 0.33
¢, (k,0;0) = 0.388069  k; (k,0;0) = 0.1883

Second-order components:

ik (k,0;0) = —2.41990  kyy (k,0;0) = —1.1742

(k,0;0) = (k,0;0) =

ciz (k,0;0) = 0.680099 kg, (k,0;0) = 0.33

C2r (k,0;0) = o 388064 ks, (k,0;0) = o 1883
(k,0;0) = (k,0;0) =

Cy2 k,OO k)\z k,OO

e ) (k,0;0) = ky (k,0;0) = ckx (k,0;0) = kix (k,0;0) = ¢, (k,0;0) = k,» (k,0;0) = 0. 3



Comparison

¢t = 0.6733e* k-3

¢t ~ 0.388069 + 0.680101 (k; — k) + 0.388069z;

ey 0.388064
e U k)? + 0.680099 (k; — k) z; + —

and:

kiy1 = 0.3267e% k233

11742 0.1883
5 (ke — k)* +0.33 (ke — k) z¢ + . b
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Capital Next Period

Capital Next Period
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In practice you do all this approximations with a computer:

1. First-, second-, and third- order: Dynare.

2. Higher order: Mathematica, Dynare++.

Burden: analytical derivatives.
e Why are numerical derivatives a bad idea?

e Alternatives: automatic differentiation?

26



Local properties of the solution |

e Perturbation is a local method.
e |t approximates the solution around the deterministic steady state of the problem.

e It is valid within a radius of convergence.

27



Local properties of the solution Il

e What is the radius of convergence of a power series around x? An r € RS such that Vx’,

|x" — z| < r, the power series of x” will converge.

A Remarkable Result from Complex Analysis
The radius of convergence is always equal to the distance from the center to the nearest point where the
decision rule has a (non-removable) singularity. If no such point exists then the radius of convergence is

infinite.

e Singularity here refers to poles, fractional powers, and other branch powers or discontinuities of the

functional or its derivatives.

28



Local properties of the solution IlI

e Holomorphic functions are analytic:

1. A function is holomorphic at a point x if it is differentiable at every point within some open disk
centered at x.

2. A function is analytic at x if in some open disk centered at x it can be expanded as a convergent power

series:
[e o)

F(z) = 0n(z—x)"
n=0
e Distance is in the complex plane.

e Often, we can check numerically that perturbations have good non-local behavior.

e However: problem with boundaries.

29



Non-local accuracy test

Proposed by Judd (1992) and Judd and Guu (1997).

Given the Euler equation:

1 —F ((Yethrlki(kt,Zt)a_l)
c' (ke ,zt) ' c’ (ki(ke, zt), ze41)

we can define:

. . Zz+1ki k.. a—1
EE (ke ze)=1—c' (ke ,2z) Ee (“e (ke, z:) >

Ci(ki(kt-,zt)-,zt+1)

Units of reporting.

Interpretation.
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Log10|Euler Equation Error|
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Log10|Euler Equation Error|
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