
Perturbation Methods I: Basic Results

(Lectures on Solution Methods for Economists V)
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Introduction



Introduction

• Remember that we want to solve a functional equations of the form:

H (d) = 0

for an unknown decision rule d .

• Perturbation solves the problem by specifying:

dn (x , θ) =
n∑

i=0

θi (x − x0)i

• We use implicit-function theorems to find coefficients θi ’s.

• Inherently local approximation. Often good global properties.
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Motivation

• Many complicated mathematical problems have:

1. either a particular case

2. or a related problem.

that is easy to solve.

• Often, we can use the solution of the simpler problem as a building block of the general solution.

• Very successful in physics.

• Sometimes perturbation is known as asymptotic methods.
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A simple example

• Imagine we want to compute
√

26 by hand.

• We do not remember how to do it.

• But, we note that

√
26 =

√
25 ∗ 1.04 =

√
25 ∗
√

1.04 = 5 ∗
√

1.04 ≈ 5 ∗ 1.02 = 5.1

• Exact solution:
√

26 = 5.09902.

• More in general: √
x =

√
y2 ∗ (1 + ε) = y ∗

√
(1 + ε) ≈ y ∗ (1 + θ)

• Accuracy depends on how big ε is.
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Applications in economics

• Judd and Guu (1993) showed how to apply it to economic problems.

• Recently, perturbation methods have been gaining much popularity.

• In particular, second- and third-order approximations are easy to compute and notably improve

accuracy.

• Perturbation theory is the generalization of the well-known linearization strategy.

• Hence, we can use much of what we already know about linearization.
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Regular versus singular perturbations

• Regular perturbation: a small change in the problem induces a small change in the solution.

• Singular perturbation: a small change in the problem induces a large change in the solution.

• Example: excess demand function.

• Most problems in economics involve regular perturbations.

• Sometimes, however, we can have singularities. Example: introducing a new asset in an incomplete

market model.
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An Economics Application



Stochastic neoclassical growth model

maxE0

∞∑
t=0

βt log ct

s.t. ct + kt+1 = eztkαt , ∀ t > 0

zt = ρzt−1 + σεt , εt ∼ N (0, 1)

• Note: full depreciation.

• Equilibrium conditions:

1

ct
= βEt

1

ct+1
αezt+1kα−1t+1

ct + kt+1 = eztkαt

zt = ρzt−1 + σεt
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Solution and steady state

• Exact solution (found by “guess and verify”):

ct = (1− αβ) eztkαt

kt+1 = αβeztkαt

• Steady state is also easy to find:

k = (αβ)
1

1−α

c = (αβ)
α

1−α − (αβ)
1

1−α

z = 0

• Steady state in more general models.

8



The goal

• We are searching for decision rules:

d =

{
ct = c (kt , zt)

kt+1 = k (kt , zt)

• Then, we have:

1

c (kt , zt)
= βEt

αeρzt+σεt+1k (kt , zt)
α−1

c (k (kt , zt) , ρzt + σεt+1)

c (kt , zt) + k (kt , zt) = eztkαt

• This is a system of functional equations.
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A perturbation solution

• Rewrite the problem in terms of perturbation parameter λ.

• Different possibilities for λ. For this case, I pick:

zt = ρzt−1 + λσεt , εt ∼ N (0, 1)

1. When λ = 1, stochastic case.

2. When λ = 0, deterministic case (with z0 = 0 and then ezt = 1).

• Now we are searching for the decision rules:

ct = c (kt , zt ;λ)

kt+1 = k (kt , zt ;λ)
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Taylor’s theorem

• We will build a local approximation around (k , 0; 0).

• Given equilibrium conditions:

Et

(
1

c (kt , zt ;λ)
− β αeρzt+λσεt+1k (kt , zt ;λ)α−1

c (k (kt , zt ;λ) , ρzt + λσεt+1;λ)

)
= 0

c (kt , zt ;λ) + k (kt , zt ;λ)− eztkαt = 0

We will take derivatives with respect to kt , zt , and λ and evaluate them around (k, 0; 0).

• Why?

• Apply Taylor’s theorem and a version of the implicit-function theorem.
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Asymptotic expansion I

ct = c (kt , zt ; 1)|k,0,0 = c (k , 0; 0)

+ck (k , 0; 0) (kt − k) + cz (k, 0; 0) zt + cλ (k, 0; 0)

+
1

2
ckk (k , 0; 0) (kt − k)2 +

1

2
ckz (k, 0; 0) (kt − k) zt

+
1

2
ckλ (k , 0; 0) (kt − k) +

1

2
czk (k, 0; 0) zt (kt − k)

+
1

2
czz (k , 0; 0) z2t +

1

2
czλ (k, 0; 0) zt

+
1

2
cλk (k , 0; 0) (kt − k) +

1

2
cλz (k, 0; 0)λzt

+
1

2
cλ2 (k , 0; 0) + ...
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Asymptotic expansion II

kt+1 = k (kt , zt ; 1)|k,0,0 = k (k , 0; 0)

+kk (k , 0; 0) (kt − k) + kz (k, 0; 0) zt + kλ (k, 0; 0)

+
1

2
kkk (k , 0; 0) (kt − k)2 +

1

2
kkz (k, 0; 0) (kt − k) zt

+
1

2
kkλ (k , 0; 0) (kt − k) +

1

2
kzk (k, 0; 0) zt (kt − k)

+
1

2
kzz (k , 0; 0) z2t +

1

2
kzλ (k, 0; 0) zt

+
1

2
kλk (k , 0; 0) (kt − k) +

1

2
kλz (k , 0; 0) zt

+
1

2
kλ2 (k , 0; 0) + ...

13



Comment on notation

• From now on, to save on notation, we will write

F (kt , zt ;λ) = Et

[
1

c(kt ,zt ;λ)
− β αe

ρzt+λσεt+1k(kt ,zt ;λ)
α−1

c(k(kt ,zt ;λ),ρzt+λσεt+1;σ)

c (kt , zt ;λ) + k (kt , zt ;λ)− eztkαt

]
=

[
0

0

]

• Note that:

F (kt , zt ;λ) = H (ct , ct+1, kt , kt+1, zt ;λ)

= H (c (kt , zt ;λ) , c (k (kt , zt ;λ) , zt+1;λ) , kt , k (kt , zt ;λ) , zt ;λ)

• I will use Hi to represent the partial derivative of H with respect to the i component and drop the

evaluation at the steady state of the functions when we do not need it.
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First-order approximation

• We take derivatives of F (kt , zt ;λ) around k , 0, and 0.

• With respect to kt :

Fk (k , 0; 0) = 0

• With respect to zt :

Fz (k , 0; 0) = 0

• With respect to λ:

Fλ (k , 0; 0) = 0
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Solving the system I

• Remember that:

F (kt , zt ;λ) =

H (c (kt , zt ;λ) , c (k (kt , zt ;λ) , zt+1;λ) , kt , k (kt , zt ;λ) , zt ;λ) = 0

• Because F (kt , zt ;λ) must be equal to zero for any possible values of kt , zt , and λ, the derivatives of

any order of F must also be zero.

• Then:

Fk (k , 0; 0) = H1ck +H2ckkk +H3 +H4kk = 0

Fz (k , 0; 0) = H1cz +H2 (ckkz + czρ) +H4kz +H5 = 0

Fλ (k , 0; 0) = H1cλ +H2 (ckkλ + cλ) +H4kλ +H6 = 0
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Solving the system II

• Note that:

Fk (k , 0; 0) = H1ck +H2ckkk +H3 +H4kk = 0

Fz (k , 0; 0) = H1cz +H2 (ckkz + czρ) +H4kz +H5 = 0

is a quadratic system of four equations on four unknowns: ck , cz , kk , and kz .

• Procedures to solve quadratic systems:

1. Blanchard and Kahn (1980).

2. Uhlig (1999).

3. Sims (2000).

4. Klein (2000).

• All of them equivalent.

• Why quadratic? Stable and unstable manifold.
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Solving the system III

• Also, note that:

Fλ (k , 0; 0) = H1cλ +H2 (ckkλ + cλ) +H4kλ +H6 = 0

is a linear and homogeneous system in cλ and kλ.

• Hence:

cλ = kλ = 0

• This means the system is certainty equivalent.

• Interpretation⇒no precautionary behavior.

• Difference between risk-aversion and precautionary behavior. Leland (1968), Kimball (1990).

• Risk-aversion depends on the second derivative (concave utility).

• Precautionary behavior depends on the third derivative (convex marginal utility).
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Comparison with linearization

• After Kydland and Prescott (1982) a popular method to solve economic models has been the use of a

LQ approximation of the objective function of the agents.

• Close relative: linearization of equilibrium conditions.

• When properly implemented linearization, LQ, and first-order perturbation are equivalent.

• Advantages of linearization:

1. Theorems.

2. Higher order terms.
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Second-order approximation

• We take second-order derivatives of F (kt , zt ;λ) around k, 0, and 0:

Fkk (k , 0; 0) = 0

Fkz (k , 0; 0) = 0

Fkλ (k , 0; 0) = 0

Fzz (k , 0; 0) = 0

Fzλ (k , 0; 0) = 0

Fλλ (k , 0; 0) = 0

• We substitute the coefficients that we already know.

• A linear system of 12 equations on 12 unknowns (remember Young’s theorem!). Why linear?

• Cross-terms on kλ and zλ are zero.

• More general result: all the terms in odd derivatives of λ are zero. 20



Correction for risk

• We have the term 1
2cλ2 (k , 0; 0).

• Captures precautionary behavior.

• We do not have certainty equivalence any more!

• Important advantage of second order approximation.

• Changes ergodic distribution of states.
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Higher-order terms

• We can continue the iteration for as long as we want.

• Great advantage of procedure: it is recursive!

• Often, a few iterations will be enough.

• The level of accuracy depends on the goal of the exercise:

1. Welfare analysis: Kim and Kim (2001).

2. Empirical strategies: Fernández-Villaverde, Rubio-Raḿırez, and Santos (2006).
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A Numerical Example



A numerical example

Parameter β α ρ σ

Value 0.99 0.33 0.95 0.01

• Steady State:

c = 0.388069 k = 0.1883

• First-order components:

ck (k , 0; 0) = 0.680101 kk (k, 0; 0) = 0.33

cz (k , 0; 0) = 0.388069 kz (k, 0; 0) = 0.1883

• Second-order components:

ckk (k , 0; 0) = −2.41990 kkk (k, 0; 0) = −1.1742

ckz (k , 0; 0) = 0.680099 kkz (k, 0; 0) = 0.33

czz (k , 0; 0) = 0.388064 kzz (k, 0; 0) = 0.1883

cλ2 (k , 0; 0) = 0 kλ2 (k, 0; 0) = 0

• cλ (k, 0; 0) = kλ (k, 0; 0) = ckλ (k , 0; 0) = kkλ (k , 0; 0) = czλ (k, 0; 0) = kzλ (k, 0; 0) = 0. 23



Comparison

ct = 0.6733eztk0.33
t

ct ' 0.388069 + 0.680101 (kt − k) + 0.388069zt

−2.41990

2
(kt − k)2 + 0.680099 (kt − k) zt +

0.388064

2
z2t

and:

kt+1 = 0.3267eztk0.33
t

kt+1 ' 0.1883 + 0.33 (kt − k) + 0.1883zt

−1.1742

2
(kt − k)2 + 0.33 (kt − k) zt +

0.1883

2
z2t
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Computer

• In practice you do all this approximations with a computer:

1. First-, second-, and third- order: Dynare.

2. Higher order: Mathematica, Dynare++.

• Burden: analytical derivatives.

• Why are numerical derivatives a bad idea?

• Alternatives: automatic differentiation?
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Local properties of the solution I

• Perturbation is a local method.

• It approximates the solution around the deterministic steady state of the problem.

• It is valid within a radius of convergence.
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Local properties of the solution II

• What is the radius of convergence of a power series around x? An r ∈ R∞+ such that ∀x ′,
|x ′ − z | < r , the power series of x ′ will converge.

A Remarkable Result from Complex Analysis

The radius of convergence is always equal to the distance from the center to the nearest point where the

decision rule has a (non-removable) singularity. If no such point exists then the radius of convergence is

infinite.

• Singularity here refers to poles, fractional powers, and other branch powers or discontinuities of the

functional or its derivatives.
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Local properties of the solution III

• Holomorphic functions are analytic:

1. A function is holomorphic at a point x if it is differentiable at every point within some open disk

centered at x .

2. A function is analytic at x if in some open disk centered at x it can be expanded as a convergent power

series:

f (z) =
∞∑
n=0

θn (z − x)n

• Distance is in the complex plane.

• Often, we can check numerically that perturbations have good non-local behavior.

• However: problem with boundaries.
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Non-local accuracy test

• Proposed by Judd (1992) and Judd and Guu (1997).

• Given the Euler equation:
1

c i (kt , zt)
= Et

(
αezt+1k i (kt , zt)

α−1

c i (k i (kt , zt), zt+1)

)
we can define:

EE i (kt , zt) ≡ 1− c i (kt , zt)Et

(
αezt+1k i (kt , zt)

α−1

c i (k i (kt , zt), zt+1)

)

• Units of reporting.

• Interpretation.
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Figure 8: Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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Figure 9: Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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