

Linearization

(Lectures on Solution Methods for Economists V: Appendix)

Jesús Fernández-Villaverde¹ and Pablo Guerrón²

November 21, 2021

 $^{^{1}}$ University of Pennsylvania

²Boston College

Basic RBC

• Benchmark set up:

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \log c_t + \psi \log \left(1 - l_t \right) \right\}$$

$$c_{t} + k_{t+1} = k_{t}^{\alpha} (e^{z_{t}} l_{t})^{1-\alpha} + (1-\delta) k_{t}, \forall t > 0$$

$$z_{t} = \rho z_{t-1} + \varepsilon_{t}, \ \varepsilon_{t} \sim \mathcal{N}(0, \sigma)$$

- This is a dynamic optimization problem.
- The previous problem does not have a "paper and pencil" solution.
- Traditional solution: linearization.

1

Equilibrium conditions

• From the household problem+firms's problem+aggregate conditions:

$$\frac{1}{c_{t}} = \beta \mathbb{E}_{t} \left\{ \frac{1}{c_{t+1}} \left(1 + \alpha k_{t+1}^{\alpha - 1} \left(e^{z_{t+1}} l_{t+1} \right)^{1 - \alpha} - \delta \right) \right\}
\psi \frac{c_{t}}{1 - l_{t}} = (1 - \alpha) k_{t}^{\alpha} \left(e^{z_{t}} l_{t} \right)^{1 - \alpha} l_{t}^{-1}
c_{t} + k_{t+1} = k_{t}^{\alpha} \left(e^{z_{t}} l_{t} \right)^{1 - \alpha} + (1 - \delta) k_{t}
z_{t} = \rho z_{t-1} + \varepsilon_{t}$$

• Do we substitute first?

Steady state I

• If $\sigma = 0$, the equilibrium conditions are:

$$\frac{1}{c_t} = \beta \frac{1}{c_{t+1}} \left(1 + \alpha k_{t+1}^{\alpha - 1} l_{t+1}^{1 - \alpha} - \delta \right)$$

$$\psi \frac{c_t}{1 - l_t} = (1 - \alpha) k_t^{\alpha} l_t^{1 - \alpha}$$

$$c_t + k_{t+1} = k_t^{\alpha} l_t^{1 - \alpha} + (1 - \delta) k_t$$

• The equilibrium conditions imply a steady state:

$$\frac{1}{c} = \beta \frac{1}{c} \left(1 + \alpha k^{\alpha - 1} I^{1 - \alpha} - \delta \right)$$
$$\psi \frac{c}{1 - I} = (1 - \alpha) k^{\alpha} I^{-\alpha}$$
$$c + \delta k = k^{\alpha} I^{1 - \alpha}$$

Steady state II

Solution:

$$k = \frac{\mu}{\Omega + \varphi \mu}$$

$$l = \varphi k$$

$$c = \Omega k$$

$$y = k^{\alpha} l^{1-\alpha}$$

where
$$\varphi = \left(\frac{1}{\alpha}\left(\frac{1}{\beta} - 1 + \delta\right)\right)^{\frac{1}{1-\alpha}}$$
, $\Omega = \varphi^{1-\alpha} - \delta$, and $\mu = \frac{1}{\psi}\left(1 - \alpha\right)\varphi^{-\alpha}$.

Linearization I

- Loglinearization or linearization?
- Loglinearization:
 - 1. Take variable x_t and substitute by $xe^{\hat{x}_t}$ where:

$$\widehat{x}_t = \log \frac{x_t}{x}$$

- 2. A variable \hat{x}_t represents the log-deviation with respect to the steady state.
- 3. Linearize with respect to \hat{x}_t .
- Advantages and disadvantages.
- We can linearize and perform later a change of variables.

Linearization II

We linearize:

$$\frac{1}{c_t} = \beta \mathbb{E}_t \left\{ \frac{1}{c_{t+1}} \left(1 + \alpha k_{t+1}^{\alpha - 1} \left(e^{z_{t+1}} I_{t+1} \right)^{1 - \alpha} - \delta \right) \right\}
\psi \frac{c_t}{1 - I_t} = (1 - \alpha) k_t^{\alpha} \left(e^{z_t} I_t \right)^{1 - \alpha} I_t^{-1}
c_t + k_{t+1} = k_t^{\alpha} \left(e^{z_t} I_t \right)^{1 - \alpha} + (1 - \delta) k_t
z_t = \rho z_{t-1} + \varepsilon_t$$

around I, k, and c with a First-order Taylor Expansion.

Linearization III

We get:

$$-\frac{1}{c}(c_{t}-c) = \mathbb{E}_{t} \left\{ \begin{array}{c} -\frac{1}{c}(c_{t+1}-c) + \alpha(1-\alpha)\beta\frac{y}{k}z_{t+1} + \\ \alpha(\alpha-1)\beta\frac{y}{k^{2}}(k_{t+1}-k) + \alpha(1-\alpha)\beta\frac{y}{kl}(l_{t+1}-l) \end{array} \right\}$$

$$\frac{1}{c}(c_{t}-c) + \frac{1}{(1-l)}(l_{t}-l) = (1-\alpha)z_{t} + \frac{\alpha}{k}(k_{t}-k) - \frac{\alpha}{l}(l_{t}-l)$$

$$(c_{t}-c) + (k_{t+1}-k) = \left\{ \begin{array}{c} y\left((1-\alpha)z_{t} + \frac{\alpha}{k}(k_{t}-k) + \frac{(1-\alpha)}{l}(l_{t}-l)\right) \\ + (1-\delta)(k_{t}-k) \end{array} \right\}$$

$$z_{t} = \rho z_{t-1} + \varepsilon_{t}$$

7

Rewriting the system I

$$\alpha_{1}(c_{t}-c) = \mathbb{E}_{t} \left\{ \alpha_{1}(c_{t+1}-c) + \alpha_{2}z_{t+1} + \alpha_{3}(k_{t+1}-k) + \alpha_{4}(l_{t+1}-l) \right\}$$

$$(c_{t}-c) = \alpha_{5}z_{t} + \frac{\alpha}{k}c(k_{t}-k) + \alpha_{6}(l_{t}-l)$$

$$(c_{t}-c) + (k_{t+1}-k) = \alpha_{7}z_{t} + \alpha_{8}(k_{t}-k) + \alpha_{9}(l_{t}-l)$$

$$z_{t} = \rho z_{t-1} + \varepsilon_{t}$$

$$\begin{array}{ll} \alpha_1 = -\frac{1}{c} & \alpha_2 = \alpha \left(1 - \alpha\right) \beta \frac{y}{k} \\ \alpha_3 = \alpha \left(\alpha - 1\right) \beta \frac{y}{k^2} & \alpha_4 = \alpha \left(1 - \alpha\right) \beta \frac{y}{kl} \\ \alpha_5 = \left(1 - \alpha\right) c & \alpha_6 = -\left(\frac{\alpha}{l} + \frac{1}{(1 - l)}\right) c \\ \alpha_7 = \left(1 - \alpha\right) y & \alpha_8 = y \frac{\alpha}{k} + \left(1 - \delta\right) \\ \alpha_9 = y \frac{(1 - \alpha)}{l} & y = k^{\alpha} l^{1 - \alpha} \end{array}$$

Rewriting the system II

After some algebra the system is reduced to:

$$A(k_{t+1}-k)+B(k_t-k)+C(l_t-l)+Dz_t=0$$

$$\mathbb{E}_{t}\left(\begin{array}{c}G\left(k_{t+1}-k\right)+H\left(k_{t}-k\right)+J\left(l_{t+1}-l\right)\\+K\left(l_{t}-l\right)+Lz_{t+1}+Mz_{t}\end{array}\right)=0$$

$$\mathbb{E}_{t}z_{t+1}=\rho z_{t}$$

- We have eliminated one control: c_t . This is not necessary in general:
 - 1. Policy functions that we find.
 - 2. Numerical differences.
- How do we solve this system of equations? Different yet equivalent approaches.

Undetermined coefficients

We guess policy functions of the form

$$(k_{t+1} - k) = P_1 (k_t - k) + P_2 z_t$$

 $(l_t - l) = R_1 (k_t - k) + R_2 z_t$

• Plug them in, use linearity of expectation and

$$\mathbb{E}_t z_{t+1} = \rho z_t$$

to get:

$$A(P_{1}(k_{t}-k)+P_{2}z_{t})+B(k_{t}-k)+C(R_{1}(k_{t}-k)+R_{2}z_{t})+Dz_{t}=0$$

$$G(P_{1}(k_{t}-k)+P_{2}z_{t})+H(k_{t}-k)+J(R_{1}(P_{1}(k_{t}-k)+P_{2}z_{t})+R_{2}Nz_{t})$$

$$+K(R_{1}(k_{t}-k)+R_{2}z_{t})+(LN+M)z_{t}=0$$

Solving the system I

- Since these equations need to hold for any value $(k_{t+1} k)$ or z_t , we need to equate each coefficient to zero.
- Coefficients on $(k_t k)$:

$$AP_1 + B + CR_1 = 0$$

 $GP_1 + H + JR_1P_1 + KR_1 = 0$

• Coefficients on **z**_t:

$$AP_2 + CR_2 + D = 0$$

 $(G + JR_1) P_2 + JR_2N + KR_2 + LN + M = 0$

Solving the system II

• We have a system of four equations on four unknowns.

• To solve it, first note that
$$R_1 = -\frac{1}{C}\left(AP_1 + B\right) = -\frac{1}{C}AP_1 - \frac{1}{C}B$$

• Then:

$$P_1^2 + \left(\frac{B}{A} + \frac{K}{J} - \frac{GC}{JA}\right)P_1 + \frac{KB - HC}{JA} = 0$$

a quadratic equation on P_1 .

Solving the system III

• We have two solutions:

$$P_{1} = -\frac{1}{2} \left(-\frac{B}{A} - \frac{K}{J} + \frac{GC}{JA} \pm \left(\left(\frac{B}{A} + \frac{K}{J} - \frac{GC}{JA} \right)^{2} - 4 \frac{KB - HC}{JA} \right)^{0.5} \right)$$

one stable and another unstable.

• If we pick the stable root and find $R_1 = -\frac{1}{C}(AP_1 + B)$, we have to a system of two linear equations on two unknowns with solution:

$$P_{2} = \frac{-D(JN + K) + CLN + CM}{AJN + AK - CG - CJR_{1}}$$

$$R_{2} = \frac{-ALN - AM + DG + DJR_{1}}{AJN + AK - CG - CJR_{1}}$$

Practical implementation

- How do we do this in practice?
- Solving quadratic equations: "A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily" by Harald Uhlig.
- Using dynare.

General structure of linearized system

Given m states s_t , n controls y_t , and k exogenous stochastic processes z_{t+1} , we have:

$$As_{t} + Bs_{t-1} + Cy_{t} + Dz_{t} = 0$$

$$\mathbb{E}_{t} (Fs_{t+1} + Gs_{t} + Hs_{t-1} + Jy_{t+1} + Ky_{t} + Lz_{t+1} + Mz_{t}) = 0$$

$$\mathbb{E}_{t} z_{t+1} = Nz_{t}$$

where C is of size $l \times n$, $l \ge n$ and of rank n, F is of size $(m+n-l) \times n$, and that N has only stable eigenvalues.

Policy functions I

We guess policy functions of the form:

$$s_t = Ps_{t-1} + Qz_t$$
$$y_t = Rs_{t-1} + Uz_t$$

where P, Q, R, and U are matrices such that the computed equilibrium is stable.

Policy functions II

For simplicity, suppose l=n (standard case, see Uhlig's chapter for the general case). Then:

1. *P* satisfies the matrix quadratic equation:

$$(F - JC^{-1}A) P^2 - (JC^{-1}B - G + KC^{-1}A) P - KC^{-1}B + H = 0$$

The equilibrium is stable iff $\max(abs(eig(P))) < 1$.

2. *R* is given by:

$$R = -C^{-1}(AP + B)$$

3. *Q* satisfies:

$$N' \otimes (F - JC^{-1}A) + I_k \otimes (JR + FP + G - KC^{-1}A) \operatorname{vec}(Q)$$

= $\operatorname{vec}((JC^{-1}D - L) N + KC^{-1}D - M)$

4. *U* satisfies:

$$U = -C^{-1} \left(AQ + D \right)$$

How to solve quadratic equations

To solve for the $m \times m$ matrix P in

$$\Psi P^2 - \Gamma P - \Theta = 0$$

1. Define the $2m \times 2m$ matrices:

$$\Xi = \begin{bmatrix} \Gamma & \Theta \\ I_m & 0_m \end{bmatrix}, \text{ and } \Delta = \begin{bmatrix} \Psi & 0_m \\ 0_m & I_m \end{bmatrix}$$

- 2. Let s be the generalized eigenvector and λ be the corresponding generalized eigenvalue of Ξ w.r.t. Δ . Then, we can write $s' = [\lambda x', x']$ for some $x \in \mathbb{R}^m$.
- 3. If \exists m generalized eigenvalues $\lambda_1, \lambda_2, ..., \lambda_m$ with generalized eigenvectors $s_1, ..., s_m$ of Ξ w.r.t. Δ , written as $s' = [\lambda x_i', x_i']$ for some $x_i \in \mathbb{R}^m$ and if $(x_1, ..., x_m)$ is linearly independent, then:

$$P = \Omega \Lambda \Omega^{-1}$$

18

is a solution to the matrix quadratic equation where $\Omega = [x_1, ..., x_m]$ and $\Lambda = [\lambda_1, ..., \lambda_m]$. The solution of P is stable if $\max |\lambda_i| < 1$. Conversely, any diagonalizable solution P can be written in this way.