§§ UNIVERSITY of PENNSYLVANIA

Linearization

(Lectures on Solution Methods for Economists V: Appendix)

Jesis Fernandez-Villaverde! and Pablo Guerrén?

November 21, 2021

LUniversity of Pennsylvania

2Boston College



Basic RBC

e Benchmark set up:

max E Zﬂt {logc: + ¢ log (1 — 1)}

t=0
Ctkesr = KO(e) T +(1—08)k, V>0
zz = pz_1+er, e ~N(0,0)

e This is a dynamic optimization problem.
e The previous problem does not have a “paper and pencil” solution.

e Traditional solution: linearization.



Equilibrium conditions

e From the household problem+firms's problem-+aggregate conditions:

(1+ kst ()™ - 5) }

(1 —a)k® (e h) Y

’(/}1 - /t
e+ kepr = k& (€)Y 4+ (1= 6) ke

Zy = pzi_1 t &t

e Do we substitute first?



Steady state |

e If o =0, the equilibrium conditions are:

1 1 a—1/1—-«
o= BCtJrl (1+ akt i —0)
C —
wl—tlt =(1-a)kl;

Ct+kt+1 == k?/tlia +(1 _6) kt

e The equilibrium conditions imply a steady state:
1 1
= =B= (14 ak* 1> —4)
c c
c
YT
c+ 6k = k*I'=

=(1—-a)k*I™@



Steady state Il

Solution:
I
k =
Q+pu
I = ek
c = Qk
y = kallfa

1

where ¢ = (é (%—1+5))myg:¢17(x—6, andy:%(l—a)apﬂ*.



Linearization |

e Loglinearization or linearization?

e Loglinearization:
1. Take variable x; and substitute by xe® where:

~ Xt
Xt = log —
X

2. A variable X; represents the log-deviation with respect to the steady state.

3. Linearize with respect to X:.
e Advantages and disadvantages.

e We can linearize and perform later a change of variables.



Linearization |1

We linearize:

1 1 .
— = /BEt { (1 + (lktogjll (eZ[Jrl /t+1)1 — 5) }

Ct Ct+1

Ct
1/)1 )

e+ ke = k& (e%1,) 7+ (1= 6) ke

Zy = pZy—1 tT €t

=(1—a) k@ (e*l) ™It

around /, k, and ¢ with a First-order Taylor Expansion.



Linearization Il|

We get:

71(C —¢)=E —¢(er1—c)+a(l—a)Bizent
e | ala—1)8% (ks — k) +a(l—a) B2 (fesr — 1)
%(q—c)+(1i/) (/t—/):(l—a)zt—k;(kt—k)—%(/t—/)

y (W= )zet § (ke — k) + &5 (- 1) }
(1 6) (ke — K)

Zy = pZ—1 + &t

(Ct_C)+(kt+1—k):{



Rewriting the system |

(651 (Ct — C) = ]Et {(Xl (Ct+1 — C) + Q2Zp 11 + a3 (kt+1 — k) —+ g (/H-l — /)}
(¢t — ) = asz + %c(kt — k) +ag (l — 1)
(Ct — C) + (kf-‘rl — k) = a7z + ag (kt — k) + Qg (/t — /)

Zy = pZt—1 + €t

o =-1 az =a(l—a)Bf
as=a(la-1)E a=a(l-a)By
as =(1—a)c asz—(%+ﬁ)c
ar=(1-a)y ag =y +(1-9)
Qg :y(l—/"‘) y = ko l-a




Rewriting the system Il

e After some algebra the system is reduced to:
A(kiz1 — k) +B(ke—k)+ C(li = 1)+ Dz =0
E G(kee1 —K)+H(ke — k) +J (1 — 1) 0
‘ +K (Il = 1) + Lzerq + Mz,

Eiziy1 = pze

e We have eliminated one control: ¢;. This is not necessary in general:
1. Policy functions that we find.

2. Numerical differences.

e How do we solve this system of equations? Different yet equivalent approaches.



Undetermined coefficients

e We guess policy functions of the form
(kt+1—k) = Pl (kt_k)+P22t
(/tfl) = R]_ (ktfk)+R2Zt

e Plug them in, use linearity of expectation and
Eiziy1 = pz:

to get:
A(P]_(kt—k)+P22t)+B(kt—k)+C(Rl(kt—k)+R2Zt)+th:O

G(Pl(ktfk)‘i’P2Zt)+H(ktfk)‘i’J(R]_(P](kt*k)+P22f)+R2NZt)

+K (Ry (ki — k) + Roze) + (LN + M)z, =0
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Solving the system |

e Since these equations need to hold for any value (k11 — k) or z;, we need to equate each coefficient

to zero.

e Coefficients on (k; — k):

e Coefficients on z;:

AP1+B+CR; =0
GP1 +H+ JRiP1 + KRy =0

(G4 JR1) P2+ JRoN + KRy + LN + M =0

11



Solving the system Il

e We have a system of four equations on four unknowns.

e To solve it, first note that Ry = —% (AP, + B) = —L AP, — £B

1
© ©

e Then:

B K GC KB — HC
P? ATt L
1+(A+J JA)P1+ a0

a quadratic equation on Py.

12



Solving the system llI

e We have two solutions:

0.5
1 B K GC B K GC\°> KB-HC
Pr=-3 _A_J+Ji<<A+_JA> _4JA>

one stable and another unstable.

e If we pick the stable root and find R; = f% (AP1 + B), we have to a system of two linear equations
on two unknowns with solution:

~D(JN + K)+ CLN + CM
AJN + AK — CG — CJR;

—ALN — AM + DG + DJR,
AJN + AK — CG — CJR;

P>

R, =

13



Practical implementation

e How do we do this in practice?

e Solving quadratic equations: “A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily”
by Harald Uhlig.

e Using dynare.

14



General structure of linearized system

Given m states sy, n controls y;, and k exogenous stochastic processes z;;1, we have:

ASt + Bstf]. + Cyt + th =X()
E: (Fsey1 4 Gse + Hse—1 + Jyep1 + Kye + Lzeys + Mz:) =0

Eizi1 = Nz,

where C is of size | x n, | > n and of rank n, F is of size (m+ n—[) x n, and that N has only stable
eigenvalues.

15



Policy functions |

We guess policy functions of the form:

s¢ = Ps;_1 + Qz
Y = Rs;_1 + Uz

where P, Q, R, and U are matrices such that the computed equilibrium is stable.

16



Policy functions Il

For simplicity, suppose | = n (standard case, see Uhlig's chapter for the general case). Then:
1. P satisfies the matrix quadratic equation:
(F=JCT'A)P?— (JCT'B—G+KC'A)P—KC'B+H=0
The equilibrium is stable iff max (abs (eig (P))) < 1.

2. R is given by:
R=-C'(AP+B)
3. Q satisfies:
N' @ (F—JCTA) + Ik ® (JR+ FP + G — KC 1 A) vec (Q)
=vec ((JCT'D—L)N+KC'D— M)
4. U satisfies:

U=-C'(AQ+ D) .



How to solve quadratic equations

To solve for the m x m matrix P in
WP _TP-0=0

1. Define the 2m x 2m matrices:

_[I’ e],andA_

Im m

v Op
Om Im

2. Let s be the generalized eigenvector and A be the corresponding generalized eigenvalue of = w.r.t. A.
Then, we can write s’ = [Ax’, x] for some x € R".
3. If 3 m generalized eigenvalues A1, \p, ..., A, with generalized eigenvectors sy, ..., s, of = w.r.t. A,
written as s = [Ax/, x/] for some x; € R™ and if (x1, ..., Xm) is linearly independent, then:
P=QAQ !

is a solution to the matrix quadratic equation where Q = [xq, ..., x] and A = [A1, ..., A\p]. The
solution of P is stable if max|A;| < 1. Conversely, any diagonalizable solution P can be written in

this way. 18



