Computational Complexity

(Lectures on Solution Methods for Economists II)

Jesús Fernández-Villaverde ${ }^{1}$ and Pablo Guerrón ${ }^{2}$
March 9, 2022
${ }^{1}$ University of Pennsylvania
${ }^{2}$ Boston College

Computational complexity

- We now visit the main concepts of computational complexity.
- Discrete computational complexity deals with problems that:

1. Can be described by a finite number of parameters.
2. Can be solved in a finite number of step.

- It is based on the Turing model of computation.
- Assumes that a computer can compute a finite number of operations on a finite number of symbols (with unbounded memory and/or storage space).

A Turing machine

- A Turing Machine is a generic model of a computer that can compute functions defined over domains of finitely representative objects.
- A function is computable if exists a computer program that can compute $f(x)$ for any input x in a finite number of time using a finite amount of memory.
- Problem: it can take very long and a lot of memory.
- The theory of computational complexity classifies the problems in terms of time and memory needed.

A metric to measure complexity.

- Let us give a look to the traveling salesman problem.

1. x is a finite list $\left\{c_{1} \ldots c_{n}\right\}$ and a list of distance $\left\{d\left(c_{i}, c_{j}\right)\right\}$.
2. f is an ordering $\left\{c_{\pi(1)} \ldots c_{\pi(n)}\right\}$ that minimizes the length of a trip from $\pi(1)$, visiting all the cities and ending at $\pi(1)$.

- The natural metric of "size" is n, the number of cities.
- comp (n) returns the minimal time required by any algorithm to compute a problem of size n.

Polynomial-time versus exponential-time problems

- A polynomial-time problem has $\operatorname{comp}(n)=O(P(n))$ for some polynomial.
- For example, a multiplication of two $n \times n$ matrices has $\operatorname{comp}(n)=O\left(n^{2376}\right)$.
- Polynomial-time problems are said to be tractable.
- If a problem is not bounded by any $P(n)$ is said to be an exponential-time problem.
- Exponential-time problems are said to be intractable.
- It will be shown that a n-dimensional DP problem is a polynomial-time problem.

Continuous computational complexity

- It deals with continuous mathematical problems.
- This type of problems cannot be solved exactly in a computer.
- We can only compute arbitrarily closed solutions.
- The theory of continuous computational complexity is based on the real number of model instead of the Turing model.

A real number of model

- A real number model is a machine that can compute infinite precision computations and store exact values of real numbers as $2^{1 / 2}$.
- It does not consider approximation error and/or round-off error.

Information-based complexity

- Since continuous time problems depend on an infinite number of parameters.
- Since a computer can only store a finite number of parameters, any algorithm trying to solve a has to deal with partial information.
- For example an integral.
- We have being able to characterize the complexity of some continuous problems as the DP with continuous state variables.

Theory of continuous computational complexity

- A continuous mathematical problem can be defined as:

$$
\Lambda: F \rightarrow B
$$

where F and B are infinite dimensional.

Example I: A multivariate integral

- For example:

$$
\Lambda(f)=\int_{[0,1]^{d}} f(s) \lambda(d s)
$$

where F and B are infinite dimensional.

- $B=R$ and

$$
F=\left\{f:[0,1]^{d} \rightarrow R \mid D^{r} f \text { is continuos and }\left\|D^{r} f\right\| \leq 1\right\}
$$

where

$$
\begin{aligned}
\left\|D^{r} f\right\| & =\max _{k_{1}, \ldots, k_{d} s_{1}, \ldots, s_{d}}\left|\frac{\partial^{r} f\left(s_{1}, \ldots, s_{d}\right)}{\partial^{k_{1}} s_{1} \ldots \partial^{k_{d} s_{d}}}\right| \\
r & =k_{1}+\ldots+k_{d}
\end{aligned}
$$

Example II: A MPD problem

- F consists in all the pairs $f=(u, p)$.
- The operator $\Lambda: F \rightarrow B$ can be written as $V=\Lambda(u, p)$.
- Where in the finite case $V=\left(V_{0}, \ldots, V_{T}\right)$ as described in the recursive algorithm described the other day.
- An in the infinite order case V is the unique solution to the Bellman equation.

The approximation I

- Since $f \in F$ an infinite dimensional space, we can only compute an approximation using a computable mapping $U: F \rightarrow B$ can be computed only using a finite amount of information about f and can be computed using a finite number of algebraic operations.
- Given a norm in B, we can define $\|\Lambda(f)-U(f)\|$.
- $U(f)$ is an ε-approximation of f if $\|\Lambda(f)-U(f)\| \leq \varepsilon$.
- Let us analyze deterministic algorithms.
- $U: F \rightarrow B$ can be represented as the composition of:

$$
U(f)=\phi_{N}\left(I_{N}(f)\right)
$$

where $I_{N}(f): F \rightarrow R^{N}$ maps information about f into R^{N}.

- In general $I_{N}(f)=\left(L_{1}(f), \ldots, L_{N}(f)\right)$ where $L_{i}(f)$ is a functional of f.

The approximation II

- Consider $I_{N}(f): F \rightarrow R$ and $L_{i}(f)=f\left(s_{i}\right)$ for some $s_{i} \in S$.
- In this case, $I_{N}(f)$ is called the standard information

$$
I_{N}(f)=\left(f\left(s_{1}\right), \ldots, f\left(s_{N}\right)\right)
$$

where s_{1}, \ldots, s_{N} can be thought as the "grid points."

- $\phi_{N}\left(I_{N}(f)\right)$ is a function that maps $I_{N}(f)$ into B.
- I_{N}, ϕ_{N}, and N are choice variables to get an accuracy ε.

The computational cost

- Call $c(U, f)$ the computational cost of computing and approximation solution $U(f)$.

$$
c(U, f)=c_{1}\left(I_{N}, f\right)+c_{2}\left(\phi_{N}, I_{N}(f)\right)
$$

where $c_{1}\left(I_{N}, f\right)$ is the cost of computing f at s_{1}, \ldots, s_{N} and $c_{2}\left(\phi_{N}, I_{N}(f)\right)$ is the cost of using $f\left(s_{1}\right), \ldots, f\left(s_{N}\right)$ to compute $U(f)=\phi_{N}\left(I_{N}(f)\right)$.

The computational cost of example

- The multivariate integration problem.
- Step 0: Chose s_{1}, \ldots, s_{N} in $[0,1]^{d}$.
- Step 1: Calculate $f\left(s_{1}\right), \ldots, f\left(s_{N}\right)$.
- Step 2:

$$
\phi_{N}\left(I_{N}(f)\right)=\frac{\sum_{i=1}^{N} f\left(s_{i}\right)}{N}
$$

- It can be shown that in this case $c_{1}\left(I_{N}, f\right)$ and $c_{2}\left(\phi_{N}, I_{N}(f)\right)$ are proportional to N.
- ε - Complexity is the minimal cost of computing an ε-approximation to $\Lambda(f)$.
- The worst case deterministic complexity of a problem \wedge is:

$$
\operatorname{comp}^{\text {wor-det }}(\varepsilon)=\inf _{U}\{c(U) \mid e(U) \leq \varepsilon\}
$$

where $c(U)=\sup _{f \in F} c(U, f)$ and $e(U)=\sup _{f \in F}\|\Lambda(f)-U(f)\|$.

- For the multivariate integration problem, it can be shown that:

$$
\text { comp }{ }^{\text {wor-det }}(\varepsilon)=O\left(\frac{1}{\varepsilon^{d / r}}\right)
$$

- Given Θ, ε, and r, exponential function on $d \rightarrow$ curse of dimensionality.
- Chow and Tsitsiklis $(1989,1991)$ show that the MPD problem is also subject to the course of dimensionality.

Random algorithms

- Random algorithms break the course of dimensionality.
- $\widetilde{U}: F \rightarrow B$ can be represented as the composition of:

$$
\widetilde{U}(f)=\widetilde{\phi}_{N}\left(\tilde{I}_{N}(f)\right)
$$

where $\widetilde{I}_{N}(f)$ is a random information operator nd $\widetilde{\phi}_{N}\left(\widetilde{I}_{N}(f)\right)$ is a random algorithm.

- The multivariate integration problem:

1. IID draws $\widetilde{s}_{1}, \ldots, \widetilde{s}_{N}$ from $[0,1]^{d}$.
2. Calculate $f\left(\widetilde{s}_{1}\right), \ldots, f\left(\widetilde{s}_{N}\right)$.
3. We compute:

$$
\phi_{N}\left(I_{N}(f)\right)=\frac{\sum_{i=1}^{N} f\left(\widetilde{s}_{i}\right)}{N}
$$

-complexity of random algorithms I

- \widetilde{U} is a random variable.
- Let us define the underlying probability space $(\Omega, \operatorname{Bore}(\Omega), \mu)$.
- $\widetilde{I}_{N}: \Omega \rightarrow R^{N}$.
- $\widetilde{\phi}_{N}: \Omega \times R^{N} \rightarrow B$.
- So that \widetilde{U} is a well-defined random variable for each $f \in F$.
- The worst case randomized complexity of a problem Λ is:

$$
\operatorname{comp}^{\text {wor-ran }}(\varepsilon)=\inf _{\widetilde{U}}\{c(\widetilde{U}) \mid e(\widetilde{U}) \leq \varepsilon\}
$$

where

$$
\begin{aligned}
& e(\widetilde{U})=\sup _{f \in F} \int\|\Lambda(f)-\widetilde{U}(\omega, f)\| \mu(d \omega) \\
& c(\widetilde{U})=\sup _{f \in F} \int c(\widetilde{U}(\omega, f), f) \mu(d \omega)
\end{aligned}
$$

-complexity of random algorithms II

- For the multivariate integration problem, it can be shown that

$$
\operatorname{comp}^{w o r-r a n}(\varepsilon)=O\left(\frac{1}{\varepsilon^{2}}\right)
$$

- There is not course of dimensionality.
- However: are random variables really random?
- We know that this is not the case: we only have pseudo-random numbers.
- Therefore, random algorithms are deterministic algorithms.
- A problem?

Random algorithms not always a solution

- Sometimes even random algorithms cannot solve the course of dimensionality when we evaluate algorithms using the worse case.
- Examples nonlinear optimization and the solution to PDE.
- An option is to evaluate the algorithm on basis of the average rather than the worst case.
- The average case deterministic complexity of a problem Λ is:

$$
\operatorname{comp}^{\text {ave-ran }}(\varepsilon)=\inf _{U}\{c(U) \mid e(U) \leq \varepsilon\}
$$

where

$$
\begin{gathered}
e(U)=\int\|\Lambda(f)-U(f)\| \mu(d f) \\
c(U)=\int c(U(f), f) \mu(d f)
\end{gathered}
$$

- Why deterministic? They are equivalent.
- It is difficult to define priors: μ.

