

# **Computational Complexity**

(Lectures on Solution Methods for Economists II)

Jesús Fernández-Villaverde<sup>1</sup> and Pablo Guerrón<sup>2</sup> March 9, 2022

<sup>1</sup>University of Pennsylvania

 $^2$ Boston College

- We now visit the main concepts of computational complexity.
- Discrete computational complexity deals with problems that:
  - 1. Can be described by a finite number of parameters.
  - 2. Can be solved in a finite number of step.
- It is based on the *Turing model of computation*.
- Assumes that a computer can compute a finite number of operations on a finite number of symbols (with unbounded memory and/or storage space).

- A Turing Machine is a generic model of a computer that can compute functions defined over domains of finitely representative objects.
- A function is computable if exists a computer program that can compute f(x) for any input x in a finite number of time using a finite amount of memory.
- Problem: it can take very long and a lot of memory.
- The theory of computational complexity classifies the problems in terms of time and memory needed.

- Let us give a look to the traveling salesman problem.
  - 1. x is a finite list  $\{c_1 \ldots c_n\}$  and a list of distance  $\{d(c_i, c_j)\}$ .
  - f is an ordering {c<sub>π(1)</sub>...c<sub>π(n)</sub>} that minimizes the length of a trip from π (1), visiting all the cities and ending at π (1).
- The natural metric of "size" is *n*, the number of cities.
- comp(n) returns the minimal time required by any algorithm to compute a problem of size n.

- A polynomial-time problem has comp(n) = O(P(n)) for some polynomial.
- For example, a multiplication of two  $n \times n$  matrices has  $comp(n) = O(n^{2376})$ .
- Polynomial-time problems are said to be tractable.
- If a problem is not bounded by any P(n) is said to be an exponential-time problem.
- Exponential-time problems are said to be intractable.
- It will be shown that a n-dimensional DP problem is a polynomial-time problem.

- It deals with continuous mathematical problems.
- This type of problems cannot be solved exactly in a computer.
- We can only compute arbitrarily closed solutions.
- The theory of continuous computational complexity is based on the real number of model instead of the Turing model.

- A real number model is a machine that can compute infinite precision computations and store exact values of real numbers as 2<sup>1/2</sup>.
- It does not consider approximation error and/or round-off error.

- Since continuous time problems depend on an infinite number of parameters.
- Since a computer can only store a finite number of parameters, any algorithm trying to solve a has to deal with partial information.
- For example an integral.
- We have being able to characterize the complexity of some continuous problems as the DP with continuous state variables.

• A continuous mathematical problem can be defined as:

 $\Lambda: F \to B$ 

where F and B are infinite dimensional.

#### Example I: A multivariate integral

• For example:

$$\Lambda\left(f
ight)=\int_{\left[0,1
ight]^{d}}f\left(s
ight)\lambda\left(ds
ight)$$

where F and B are infinite dimensional.

• B = R and  $F = \left\{ f : [0,1]^d \to R | D^r f \text{ is continuos and } \| D^r f \| \le 1 \right\}$ 

where

$$\|D^{r}f\| = \max_{k_{1},\ldots,k_{d}} \sup_{s_{1},\ldots,s_{d}} \left| \frac{\partial^{r}f(s_{1},\ldots,s_{d})}{\partial^{k_{1}}s_{1}\ldots\partial^{k_{d}}s_{d}} \right|$$
  
$$r = k_{1}+\ldots+k_{d}$$

- F consists in all the pairs f = (u, p).
- The operator  $\Lambda: F \to B$  can be written as  $V = \Lambda(u, p)$ .
- Where in the finite case  $V = (V_0, \dots, V_T)$  as described in the recursive algorithm described the other day.
- An in the infinite order case V is the unique solution to the Bellman equation.

# The approximation I

- Since f ∈ F an infinite dimensional space, we can only compute an approximation using a computable mapping U : F → B can be computed only using a finite amount of information about f and can be computed using a finite number of algebraic operations.
- Given a norm in *B*, we can define  $\|\Lambda(f) U(f)\|$ .
- U(f) is an  $\varepsilon$ -approximation of f if  $\|\Lambda(f) U(f)\| \le \varepsilon$ .
- Let us analyze deterministic algorithms.
- $U: F \rightarrow B$  can be represented as the composition of:

 $U(f) = \phi_N(I_N(f))$ 

where  $I_N(f): F \to R^N$  maps information about f into  $R^N$ .

• In general  $I_N(f) = (L_1(f), \ldots, L_N(f))$  where  $L_i(f)$  is a functional of f.

- Consider  $I_N(f): F \to R$  and  $L_i(f) = f(s_i)$  for some  $s_i \in S$ .
- In this case,  $I_N(f)$  is called the standard information

 $I_{N}(f) = (f(s_{1}), \ldots, f(s_{N}))$ 

where  $s_1, \ldots, s_N$  can be thought as the "grid points."

- $\phi_N(I_N(f))$  is a function that maps  $I_N(f)$  into B.
- $I_N$ ,  $\phi_N$ , and N are choice variables to get an accuracy  $\varepsilon$ .

• Call c(U, f) the computational cost of computing and approximation solution U(f).

 $c(U, f) = c_1(I_N, f) + c_2(\phi_N, I_N(f))$ 

where  $c_1(I_N, f)$  is the cost of computing f at  $s_1, \ldots, s_N$  and  $c_2(\phi_N, I_N(f))$  is the cost of using  $f(s_1), \ldots, f(s_N)$  to compute  $U(f) = \phi_N(I_N(f))$ .

- The multivariate integration problem.
- Step 0: Chose  $s_1, ..., s_N$  in  $[0, 1]^d$ .
- Step 1: Calculate  $f(s_1), \ldots, f(s_N)$ .
- Step 2:

$$\phi_{N}\left(I_{N}\left(f\right)\right) = \frac{\sum_{i=1}^{N} f\left(s_{i}\right)}{N}$$

• It can be shown that in this case  $c_1(I_N, f)$  and  $c_2(\phi_N, I_N(f))$  are proportional to N.

## -complexity

- $\varepsilon$  *Complexity* is the minimal cost of computing an  $\varepsilon$ -approximation to  $\Lambda(f)$ .
- The worst case deterministic complexity of a problem  $\Lambda$  is:

$$comp^{wor-det}\left(arepsilon
ight)=\inf_{U}\left\{c\left(U
ight)|e\left(U
ight)\leqarepsilon
ight\}$$

where  $c(U) = \sup_{f \in F} c(U, f)$  and  $e(U) = \sup_{f \in F} ||\Lambda(f) - U(f)||$ .

• For the multivariate integration problem, it can be shown that:

$$comp^{wor-det}\left(arepsilon
ight)=O\left(rac{1}{arepsilon^{d/r}}
ight)$$

- Given  $\Theta$ ,  $\varepsilon$ , and r, exponential function on  $d \rightarrow$  curse of dimensionality.
- Chow and Tsitsiklis (1989,1991) show that the MPD problem is also subject to the course of dimensionality.

### **Random algorithms**

- Random algorithms break the course of dimensionality.
- $\widetilde{U}: F \to B$  can be represented as the composition of:

$$\widetilde{U}(f) = \widetilde{\phi}_{N}\left(\widetilde{I}_{N}(f)\right)$$

where  $\tilde{I}_{N}(f)$  is a random information operator nd  $\tilde{\phi}_{N}(\tilde{I}_{N}(f))$  is a random algorithm.

- The multivariate integration problem:
  - 1. *IID* draws  $\tilde{s}_1, \ldots, \tilde{s}_N$  from  $[0, 1]^d$ .
  - 2. Calculate  $f(\tilde{s}_1), \ldots, f(\tilde{s}_N)$ .
  - 3. We compute:

$$\phi_{N}\left(I_{N}\left(f\right)\right) = \frac{\sum_{i=1}^{N} f\left(\widetilde{s}_{i}\right)}{N}$$

# -complexity of random algorithms I

- $\widetilde{U}$  is a random variable.
- Let us define the underlying probability space  $(\Omega, Borel(\Omega), \mu)$ .
- $\widetilde{I}_N : \Omega \to R^N$ .
- $\widetilde{\phi}_N : \Omega \times \mathbb{R}^N \to \mathbb{B}.$
- So that  $\widetilde{U}$  is a well-defined random variable for each  $f \in F$ .
- The worst case randomized complexity of a problem  $\Lambda$  is:

$$comp^{wor-ran}\left(\varepsilon\right) = \inf_{\widetilde{U}}\left\{c\left(\widetilde{U}
ight)|e\left(\widetilde{U}
ight) \leq \varepsilon
ight\}$$

where

$$e\left(\widetilde{U}\right) = \sup_{f \in F} \int \left\| \Lambda(f) - \widetilde{U}(\omega, f) \right\| \mu(d\omega)$$
$$c\left(\widetilde{U}\right) = \sup_{f \in F} \int c\left(\widetilde{U}(\omega, f), f\right) \mu(d\omega).$$

# -complexity of random algorithms II

• For the multivariate integration problem, it can be shown that

$$comp^{\textit{wor}-ran}\left(arepsilon
ight)=O\left(rac{1}{arepsilon^{2}}
ight).$$

- There is not course of dimensionality.
- However: are random variables really random?
- We know that this is not the case: we only have pseudo-random numbers.
- Therefore, random algorithms are deterministic algorithms.
- A problem?

## Random algorithms not always a solution

- Sometimes even random algorithms cannot solve the course of dimensionality when we evaluate algorithms using the worse case.
- Examples nonlinear optimization and the solution to PDE.
- An option is to evaluate the algorithm on basis of the average rather than the worst case.
- The average case deterministic complexity of a problem  $\Lambda$  is:

 $comp^{ave-ran}(\varepsilon) = \inf_{U} \{ c(U) | e(U) \le \varepsilon \}$ 

where

$$e(U) = \int \|\Lambda(f) - U(f)\| \mu(df)$$
$$c(U) = \int c(U(f), f) \mu(df).$$

- Why deterministic? They are equivalent.
- It is difficult to define priors:  $\mu$ .