Computational Complexity

(Lectures on Solution Methods for Economists I1)

&

Penn

UNIVERSITY of PENNSYLVANIA

Jestis Fernandez-Villaverde! and Pablo Guerrén?
March 9, 2022
LUniversity of Pennsylvania

2Boston College

Computational complexity

We now visit the main concepts of computational complexity.

Discrete computational complexity deals with problems that:

1. Can be described by a finite number of parameters.

2. Can be solved in a finite number of step.

It is based on the Turing model of computation.

Assumes that a computer can compute a finite number of operations on a finite number of symbols
(with unbounded memory and/or storage space).

A Turing machine

A Turing Machine is a generic model of a computer that can compute functions defined over domains
of finitely representative objects.

A function is computable if exists a computer program that can compute f (x) for any input x in a
finite number of time using a finite amount of memory.

Problem: it can take very long and a lot of memory.

The theory of computational complexity classifies the problems in terms of time and memory needed.

A metric to measure complexity.

e Let us give a look to the traveling salesman problem.

1. x is a finite list {c1...cn} and a list of distance {d (ci, ¢;)}.

2. f is an ordering {C7r(1) . cw(,,)} that minimizes the length of a trip from 7 (1), visiting all the cities and
ending at 7 (1).

e The natural metric of “size” is n, the number of cities.

e comp (n) returns the minimal time required by any algorithm to compute a problem of size n.

Polynomial-time versus exponential-time problems

A polynomial-time problem has comp (n) = O (P (n)) for some polynomial.

For example, a multiplication of two n x n matrices has comp (n) = O (n2376).

Polynomial-time problems are said to be tractable.

If a problem is not bounded by any P (n) is said to be an exponential-time problem.

Exponential-time problems are said to be intractable.

It will be shown that a n—dimensional DP problem is a polynomial-time problem.

Continuous computational complexity

It deals with continuous mathematical problems.

This type of problems cannot be solved exactly in a computer.
e We can only compute arbitrarily closed solutions.

The theory of continuous computational complexity is based on the real number of model instead of

the Turing model.

A real number of m

e A real number model is a machine that can compute infinite precision computations and store exact
values of real numbers as 21/2,

e It does not consider approximation error and/or round-off error.

Information-based complexity

Since continuous time problems depend on an infinite number of parameters.

e Since a computer can only store a finite number of parameters, any algorithm trying to solve a has to
deal with partial information.

For example an integral.

We have being able to characterize the complexity of some continuous problems as the DP with
continuous state variables.

Theory of continuous computational complexity

e A continuous mathematical problem can be defined as:
AN F—B

where F and B are infinite dimensional.

Example I: A multivariate integral

e For example:

where F and B are infinite dimensional.

e B=R and
= {f - [0, 1]d — R|D'f is continuos and ||D"f|| < 1}
where
O'f (s1,...,54)
D'f|| = =8
1D =, S0P | Bmsy . opsg
r = ki+...+ kg

Example II: A MPD problem

F consists in all the pairs f = (u, p).

The operator A : F — B can be written as V = A(u, p).

e Where in the finite case V = (V,..., V1) as described in the recursive algorithm described the other
day.

An in the infinite order case V is the unique solution to the Bellman equation.

10

The approximation |

e Since f € F an infinite dimensional space, we can only compute an approximation using a
computable mapping U : F — B can be computed only using a finite amount of information about f
and can be computed using a finite number of algebraic operations.

e Given a norm in B, we can define ||A(f) — U (f)]].
e U(f) is an e—approximation of f if |A(f) — U(f)|| <e.
e Let us analyze deterministic algorithms.
e U: F — B can be represented as the composition of:
U(f) = on (In())
where Iy (f) : F — RN maps information about f into RV.

e In general Iy (f) = (L1 (f),..., Ly (f)) where L; () is a functional of f.

11

The approximation Il

Consider Iy (f): F = R and L; (f) = f (s;) for some s; € S.

In this case, Iy (f) is called the standard information

where sy, ..., sy can be thought as the “grid points.”

on (Iy (f)) is a function that maps Iy (f) into B.

In, ¢n, and N are choice variables to get an accuracy .

12

The computational cost

e Call ¢ (U, f) the computational cost of computing and approximation solution U (f).

C(U7 f) = (IN, f) + o ((/5/\/, Iy (f))

where ¢ (Iy, f) is the cost of computing f at s;,...,sy and ¢ (o, Iy (f)) is the cost of using
f(s1),...,f(sn) to compute U(f) = on (In (F)).

13

The computational cost of example

e The multivariate integration problem.
e Step 0: Chose sp,...,sy in [0, 1]d.
e Step 1: Calculate f(s1),...,f (sn).
e Step 2: \
on (In (F)) = 7Zi:1/\/f =)
e It can be shown that in this case ¢; (Iy, f) and ¢ (¢n, In (f)) are proportional to N.

14

-complexity

e = — Complexity is the minimal cost of computing an e—approximation to A (f).
e The worst case deterministic complexity of a problem A is:
comp*e 9t (¢) = i?jf {c(U)]e(U) <&}
where ¢ (U) = supscp c (U, f) and e(U) = supscp A (F) — U (F)].

e For the multivariate integration problem, it can be shown that:
wor —det 1
comp (e)=0 arr

e Given ©, ¢, and r, exponential function on d — curse of dimensionality.

e Chow and Tsitsiklis (1989,1991) show that the MPD problem is also subject to the course of
dimensionality.

15

Random algorithms

e Random algorithms break the course of dimensionality.

e U:F — Bcanbe represented as the composition of:
0(f) = on (in ()
where Iy (f) is a random information operator nd ¢y (TN (f)) is a random algorithm.

e The multivariate integration problem:
1. /ID draws 31, .., 3y from [0, 1]°.
2. Calculate f(s1),...,f (sn).
3. We compute:

on (I (£)) = 2= f ()

16

-complexity of random algorithms |

e U is a random variable.

e Let us define the underlying probability space (2, Borel (), 11).
o Iv:Q— RN

o on:Qx RV B

e So that U is a well-defined random variable for each f € F.

e The worst case randomized complexity of a problem A is:

comp™ " (g) = i%f {c (U) le (U) < 5}

where
e (D) :igg/HA(f)— 0 (w,)| 1 (dw)
c(U) zigg/c(g(w,f),f)u(dw).

17

-complexity of random algorithms ||

e For the multivariate integration problem, it can be shown that

g2

1
Compworfran (E) — O <) .

e There is not course of dimensionality.

e However: are random variables really random?

e We know that this is not the case: we only have pseudo-random numbers.
e Therefore, random algorithms are deterministic algorithms.

e A problem?

18

Random algorithms not always a solution

e Sometimes even random algorithms cannot solve the course of dimensionality when we evaluate
algorithms using the worse case.

e Examples nonlinear optimization and the solution to PDE.
e An option is to evaluate the algorithm on basis of the average rather than the worst case.
e The average case deterministic complexity of a problem A is:

comp® ¢ (g) = ir&f {c(U)]e(U) <e}

where

e(U):/nA(f)— U (F) 1 ()
C(U):/C(U(f),f)/t(df).

e Why deterministic? They are equivalent.

o |t is difficult to define priors: . 10

