
Computational Complexity

(Lectures on Solution Methods for Economists II)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

March 9, 2022

1University of Pennsylvania

2Boston College



Computational complexity

• We now visit the main concepts of computational complexity.

• Discrete computational complexity deals with problems that:

1. Can be described by a finite number of parameters.

2. Can be solved in a finite number of step.

• It is based on the Turing model of computation.

• Assumes that a computer can compute a finite number of operations on a finite number of symbols

(with unbounded memory and/or storage space).

1



A Turing machine

• A Turing Machine is a generic model of a computer that can compute functions defined over domains

of finitely representative objects.

• A function is computable if exists a computer program that can compute f (x) for any input x in a

finite number of time using a finite amount of memory.

• Problem: it can take very long and a lot of memory.

• The theory of computational complexity classifies the problems in terms of time and memory needed.

2



A metric to measure complexity.

• Let us give a look to the traveling salesman problem.

1. x is a finite list {c1 . . . cn} and a list of distance {d (ci , cj)}.

2. f is an ordering
{
cπ(1) . . . cπ(n)

}
that minimizes the length of a trip from π (1), visiting all the cities and

ending at π (1).

• The natural metric of “size” is n, the number of cities.

• comp (n) returns the minimal time required by any algorithm to compute a problem of size n.

3



Polynomial-time versus exponential-time problems

• A polynomial-time problem has comp (n) = O (P (n)) for some polynomial.

• For example, a multiplication of two n × n matrices has comp (n) = O
(
n2376

)
.

• Polynomial-time problems are said to be tractable.

• If a problem is not bounded by any P (n) is said to be an exponential-time problem.

• Exponential-time problems are said to be intractable.

• It will be shown that a n−dimensional DP problem is a polynomial-time problem.

4



Continuous computational complexity

• It deals with continuous mathematical problems.

• This type of problems cannot be solved exactly in a computer.

• We can only compute arbitrarily closed solutions.

• The theory of continuous computational complexity is based on the real number of model instead of

the Turing model.

5



A real number of model

• A real number model is a machine that can compute infinite precision computations and store exact

values of real numbers as 21/2.

• It does not consider approximation error and/or round-off error.

6



Information-based complexity

• Since continuous time problems depend on an infinite number of parameters.

• Since a computer can only store a finite number of parameters, any algorithm trying to solve a has to

deal with partial information.

• For example an integral.

• We have being able to characterize the complexity of some continuous problems as the DP with

continuous state variables.

7



Theory of continuous computational complexity

• A continuous mathematical problem can be defined as:

Λ : F → B

where F and B are infinite dimensional.

8



Example I: A multivariate integral

• For example:

Λ (f ) =

∫
[0,1]d

f (s)λ (ds)

where F and B are infinite dimensional.

• B = R and

F =
{
f : [0, 1]d → R|Dr f is continuos and ∥Dr f ∥ ≤ 1

}
where

∥Dr f ∥ = max
k1,...,kd

sup
s1,...,sd

∣∣∣∣∂r f (s1, . . . , sd)

∂k1s1 . . . ∂kd sd

∣∣∣∣
r = k1 + . . .+ kd

9



Example II: A MPD problem

• F consists in all the pairs f = (u, p).

• The operator Λ : F → B can be written as V = Λ (u, p).

• Where in the finite case V = (V0, . . . ,VT ) as described in the recursive algorithm described the other

day.

• An in the infinite order case V is the unique solution to the Bellman equation.

10



The approximation I

• Since f ∈ F an infinite dimensional space, we can only compute an approximation using a

computable mapping U : F → B can be computed only using a finite amount of information about f

and can be computed using a finite number of algebraic operations.

• Given a norm in B, we can define ∥Λ (f )− U (f )∥.

• U (f ) is an ε−approximation of f if ∥Λ (f )− U (f )∥ ≤ ε.

• Let us analyze deterministic algorithms.

• U : F → B can be represented as the composition of:

U (f ) = ϕN (IN (f ))

where IN (f ) : F → RN maps information about f into RN .

• In general IN (f ) = (L1 (f ) , . . . , LN (f )) where Li (f ) is a functional of f .

11



The approximation II

• Consider IN (f ) : F → R and Li (f ) = f (si ) for some si ∈ S .

• In this case, IN (f ) is called the standard information

IN (f ) = (f (s1) , . . . , f (sN))

where s1, . . . , sN can be thought as the “grid points.”

• ϕN (IN (f )) is a function that maps IN (f ) into B.

• IN , ϕN , and N are choice variables to get an accuracy ε.

12



The computational cost

• Call c (U, f ) the computational cost of computing and approximation solution U (f ).

c (U, f ) = c1 (IN , f ) + c2 (ϕN , IN (f ))

where c1 (IN , f ) is the cost of computing f at s1, . . . , sN and c2 (ϕN , IN (f )) is the cost of using

f (s1) , . . . , f (sN) to compute U (f ) = ϕN (IN (f )).

13



The computational cost of example

• The multivariate integration problem.

• Step 0: Chose s1, . . . , sN in [0, 1]d .

• Step 1: Calculate f (s1) , . . . , f (sN).

• Step 2:

ϕN (IN (f )) =

∑N
i=1 f (si )

N

• It can be shown that in this case c1 (IN , f ) and c2 (ϕN , IN (f )) are proportional to N.

14



ε-complexity

• ε− Complexity is the minimal cost of computing an ε−approximation to Λ (f ).

• The worst case deterministic complexity of a problem Λ is:

compwor−det (ε) = inf
U

{c (U) |e (U) ≤ ε}

where c (U) = supf∈F c (U, f ) and e (U) = supf∈F ∥Λ (f )− U (f )∥.

• For the multivariate integration problem, it can be shown that:

compwor−det (ε) = O

(
1

εd/r

)

• Given Θ, ε, and r , exponential function on d → curse of dimensionality.

• Chow and Tsitsiklis (1989,1991) show that the MPD problem is also subject to the course of

dimensionality.

15



Random algorithms

• Random algorithms break the course of dimensionality.

• Ũ : F → B can be represented as the composition of:

Ũ (f ) = ϕ̃N

(
ĨN (f )

)
where ĨN (f ) is a random information operator nd ϕ̃N

(
ĨN (f )

)
is a random algorithm.

• The multivariate integration problem:

1. IID draws s̃1, . . . , s̃N from [0, 1]d .

2. Calculate f (s̃1) , . . . , f (s̃N).

3. We compute:

ϕN (IN (f )) =

∑N
i=1 f (s̃i )

N

16



ε-complexity of random algorithms I

• Ũ is a random variable.

• Let us define the underlying probability space (Ω,Borel (Ω) , µ).

• ĨN : Ω → RN .

• ϕ̃N : Ω× RN → B.

• So that Ũ is a well-defined random variable for each f ∈ F .

• The worst case randomized complexity of a problem Λ is:

compwor−ran (ε) = inf
Ũ

{
c
(
Ũ
)
|e
(
Ũ
)
≤ ε

}
where

e
(
Ũ
)
= sup

f∈F

∫ ∥∥∥Λ (f )− Ũ (ω, f )
∥∥∥µ (dω)

c
(
Ũ
)
= sup

f∈F

∫
c
(
Ũ (ω, f ) , f

)
µ (dω) .

17



ε-complexity of random algorithms II

• For the multivariate integration problem, it can be shown that

compwor−ran (ε) = O

(
1

ε2

)
.

• There is not course of dimensionality.

• However: are random variables really random?

• We know that this is not the case: we only have pseudo-random numbers.

• Therefore, random algorithms are deterministic algorithms.

• A problem?

18



Random algorithms not always a solution

• Sometimes even random algorithms cannot solve the course of dimensionality when we evaluate

algorithms using the worse case.

• Examples nonlinear optimization and the solution to PDE.

• An option is to evaluate the algorithm on basis of the average rather than the worst case.

• The average case deterministic complexity of a problem Λ is:

compave−ran (ε) = inf
U

{c (U) |e (U) ≤ ε}

where

e (U) =

∫
∥Λ (f )− U (f )∥µ (df )

c (U) =

∫
c (U (f ) , f )µ (df ) .

• Why deterministic? They are equivalent.

• It is difficult to define priors: µ.
19


