
Dynamic Programming

(Lectures on Solution Methods for Economists I)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

May 14, 2022

1University of Pennsylvania

2Boston College

Theoretical Background

Introduction

• Introduce numerical methods to solve dynamic programming (DP) models.

• DP models with sequential decision making:

• Arrow, Harris, and Marschak (1951) → optimal inventory model.

• Lucas and Prescott (1971) → optimal investment model.

• Brock and Mirman (1972) → optimal growth model under uncertainty.

• Lucas (1978) and Brock (1980) → asset pricing models.

• Kydland and Prescott (1982) → business cycle model.

1

The basic framework

• Almost any DP can be formulated as Markov decision process (MDP).

• An agent, given state st ∈ S takes an optimal action at ∈ A (s) that determines current utility

u (st , at) and affects the distribution of next period’s state st+1 via a Markov chain p (st+1|st , at).

• The problem is to choose α = {α1, . . . , αT}, where at = αt (st), that solves

V (s) = max
α

Eα

{
T∑
t=0

βtu (st , at) |s0 = s

}

• The difficulty is that we are not looking for a set of numbers a = {a1, . . . , aT} but for a set of

functions α = {α1, . . . , αT}.

2

The DP problem

• DP simplifies the MDP problem, allowing us to find α = {α1, . . . , αT} using a recursive procedure.

• Basically, it uses V as a shadow price to map a stochastic/multiperiod problem into a

deterministic/static optimization problem.

• We are going to focus on infinite horizon problems, where V is the unique solution for the Bellman

equation V = Γ (V).

• Where Γ is called the Bellman operator, that is defined as:

Γ (V) (s) = max
a

[
u (s, a) + β

∫
V (s ′) p (s ′|s, a)

]

• α (s) is equal to the solution to the Bellman equation for each s.

3

The Bellman operator and the Bellman equation

• We will revise the mathematical foundations for the Bellman equation.

• It has a very nice property: Γ is a contraction mapping.

• This will allow us to use some numerical procedures to find the solution to the Bellman equation

recursively.

4

Discrete vs. continuous MDPs

• Difference between Discrete MDPs –whose state and control variables can only take a finite number

of points– and continuous MDPs –whose state and control variables can take a continuum of values.

• Value functions for discrete MDPs belong to a subset of the finite-dimensional Euclidean space R#S .

• Value functions for continuous MDPs belong to a subset of the infinite-dimensional Banach space

B (S) of bounded, measurable real-valued functions on S .

• Therefore, we can solve discrete MDPs exactly (rounding errors) while we can only approximate the

solution to continuous MDPs.

• Discrete MDPs arise naturally in IO/labor type of applications while continuous MDPs arise

naturally in Macro.

5

Computation: speed vs. accuracy

• The approximating error ϵ introduces a trade-off: better accuracy (lower ϵ) versus shorter time to

find the solution (higher ϵ).

• The time needed to find the solution also depends on the dimension of the problem: d .

• We want the fastest method given a pair (ϵ, d).

• Why do we want the fastest method?

• Normally, this algorithms are nested into a bigger optimization algorithm.

• Hence, we will have to solve the Bellman equation for various values of the “structural” parameters

defining β, u, and p.

6

Approximation to continuous DPs

• There are two ways to approximate continuous DPs.

• Discrete.

• Smooth.

• Discrete solves an equivalent discrete problem that approximates the original continuous DPs.

• Smooth treats the value function V and the decision rule α are smooth functions of s and a finite set

of coefficients θ.

7

Smooth approximation to continuous DPs

• Then we will try to find θ̂ such that the approximations the approximated value function Vθ̂ and

decision rule αθ̂ are close to V and α using some metric.

• In general, we will use a sequence of parametrization that is dense on B (S).

• That means that for each V ∈ B (S), ∃ {θk}∞k=1 such that

lim
k→∞

inf
θk

sup
s∈S

|Vθ (s)− V (s)| = 0

• Example:

1. Let S = [−1, 1].

2. Consider Vθ (s) =
∑k

i=1 θipi (s) and let pi (s) = s i .

• Another example is pi (s) = cos
(
i cos−1 (s)

)
. These are called the Chebyshev polynomials of the first

kind.

8

The Stone-Weierstrass approximation theorem

• Let ε > 0 and V be a continuous function in [−1, 1], then there exists a polynomial Vθ such that

∥V − Vθ∥ < ε

• Therefore, the problem is to find θ such that minimizes(
N∑
i=1

∣∣∣Vθ (si)− Γ̂ (Vθ) (si)
∣∣∣2)1/2

where Γ̂ (Vθ) is an approximation to the Bellman operator. Why is an approximation?

• Faster to solve the previous problem than by brute force discretizations.

9

MDP definitions

• A MDP is defined by the following objects:

• A state space S .

• An action space A.

• A family of constraints A (s) for s ∈ S .

• A transition probability p (ds ′|s, a) = Pr (st+1 = ds ′|st = s, at = a).

• A single period utility u (s, a).

• The agent problem is to choose α = {α1, . . . , αT} such that:

max
α

∫
s0

. . .

∫
sT

[u (st , αt (st))] p (dst |st−1, αt−1 (st−1)) p0 (ds0)

• p0 (ds0) is the probability distribution over the initial state.

• This problem is very complicated: search over a set of functions {α1, . . . , αT} and make a

T + 1-dimension integral.

10

The Bellman equation in the finite horizon problem

• If T <∞ (the problem has a finite horizon), DP is equivalent to backward induction. In the terminal

period αT is:

αT (sT) = arg max
aT∈A(sT)

u (sT , aT)

• And VT (sT) = u (sT , αT (sT)).

• For periods t = 1, . . . ,T − 1, we can find Vt and αt by recursion:

αt (st) = arg max
at∈A(st)

[
u (st , at) + β

∫
Vt+1 (st+1) p (dst+1|st , at)

]

Vt (st) = u (st , αt (st)) + β

∫
Vt+1 (st+1) p (dst+1|st , αt (st))

• It could be the case that at = αt (st , at−1, st−1, . . .) depend on the whole history, but it can be shown

that separability and the Markovian property of p imply that at = αt (st).

11

The Bellman equation in the infinite horizon problem I

• If T = ∞, we do not have a finite state.

• On the other hand, the separability and the Markovian property of p imply that at = α (st), that is,

the problem has a stationary Markovian structure.

• The optimal policy only depend on s, it does not depend on t.

• Thus, the optimal stationary markovian rule is characterized by:

α (s) = arg max
a∈A(s)

[
u (s, a) + β

∫
V (s ′) p (ds ′|s, a)

]

V (s) = u (s, α (s)) + β

∫
V (s) p (ds ′|s, α (s))

• This equation is known as the Bellman equation.

• It is a functional equation (mapping from functions to functions).

• The function V is the fixed point to this functional equation. 12

The Bellman equation in the infinite horizon problem II

• To determine existence and uniqueness, we need to impose:

1. S and A are compact metric spaces.

2. u (s, a) is jointly continuous and bounded.

3. s −→ A (s) is a continuous correspondence.

• Let B (S) the Banach space of bounded, measurable real-valued functions on S .

• Let ∥f ∥ = sups∈S |f (s)| for f ∈ B (S) be the sup norm.

• The Bellman operator is:

Γ (W) (s) = max
a∈A(s)

[
u (s, a) + β

∫
W (s ′) p (ds ′|s, a)

]

• The Bellman equation is then a fixed point to the operator:

V = Γ (V)
13

The Bellman equation in the infinite horizon problem II

• Blackwell (1965) and Denardo (1967) show that the Bellman operator is a contraction mapping: for

W ,V in B (S),

∥Γ (V)− Γ (W)∥ ≤ β ∥V −W ∥

• Contraction mapping theorem: if Γ is a contractor operator mapping on a Banach Space B, then

Γ has an unique fixed point.

• Blackwell’s theorem: the Stationary Markovian α defined by:

α (s) = arg max
a∈A(s)

[
u (s, a) + β

∫
V (s ′) p (ds ′|s, a)

]

V (s) = u (s, α (s)) + β

∫
V (s) p (ds ′|s, α (s))

solves the associated MDP problem.

14

A trivial example

• Consider u (s, a) = 1.

• Given that u is constant, let us assume that V is also constant.

• If we substitute this result into the Bellman equation, we get:

V = max
a∈A(s)

[
1 + β

∫
Vp (ds ′|s, a)

]

• And the unique solution is V = 1
1−β .

• Clearly, the MDP problem implies that V = 1 + β + β2 + . . .

• So, they are equivalent.

15

Phelps’ (1972) example I

• The agent has to decide between consume and save.

• The state variable, w , is the wealth of the agent and the decision variable, c , is how much to

consume.

• The agent cannot borrow, so the choice set A (w) = {c |0 ≤ c ≤ w}.

• The saving are invested in a single risky asset with iid return Rt with distribution F .

• The Bellman Equation is:

V (w) = max
c∈A(w)

log (c) + β

∫ ∞

0

V (R (w − c))F (dR)

16

Phelps’ (1972) example II

• Since it operator Γ is a contraction, we can start V = 0.

• If that is the case, Vt = Γt (0) = ft log (w) + gt for ft and gt constant.

• So, V∞ = Γ∞ (0) = f∞ log (w) + g∞.

• If we substitute V∞ into the Bellman equation and we look for f∞ and g∞, we get:

f∞ =
1

1− β

g∞ =
log (1− β)

1− β
+
β log (β)

(1− β)2
+
βE {log (R)}
(1− β)2

and α (w) = (1− β)w .

• Therefore, permanent income hypothesis still holds in this environment.

17

Numerical Implementation

Motivation

• Before, we reviewed some theoretical background on dynamic programming

• Now, we will discuss its numerical implementation

• Perhaps the most important solution algorithm to learn:

1. Wide applicability

2. Many known results

3. Template for other algorithms

• Importance of keeping the “curse of dimensionality” under control

• Two issues to discuss:

1. Finite versus infinite time

2. Discrete versus continuous state space.

18

Finite time

• Problems where there is a terminal condition.

• Examples:

1. Life cycle.

2. Investment with expiration date.

3. Finite games.

• Why are finite time problems nicer? Backward induction.

• You can think about them as a particular case of multivariate optimization.

19

Infinite time

• Problems where there is no terminal condition.

• Examples:

1. Industry dynamics.

2. Business cycles.

3. Infinite games.

• However, we will need the equivalent of a terminal condition: transversality condition.

20

Discrete state space

• We can solve problems up to floating point accuracy.

• Why is this important?

1. ε-equilibria.

2. Estimation.

• However, how realistic are models with a discrete state space?

21

Infinite state space

• More common cases in economics.

• Problem: we have to rely on a numerical approximation.

• Interaction of different approximation errors (computation, estimation, simulation).

• Bounds?

• Interaction of bounds?

22

Different strategies

• Four main strategies:

1. Value function iteration.

2. Policy function iteration.

3. Projection.

4. Perturbation.

• Many other strategies are actually particular cases of the previous ones.

23

Value function iteration

• Well-known, basic algorithm of dynamic programming. Aka as value improvement.

• We have tight convergence properties and bounds on errors.

• Well suited for parallelization.

• It will always (perhaps quite slowly) work.

• How do we implement the operator?

1. We come back to our two distinctions: finite versus infinite time and discrete versus continuous state

space.

2. Then we need to talk about:

• Initialization.

• Discretization.

24

Value function iteration in finite time

• We begin with the Bellman operator:

Γ
(
V t
)
(s) = max

a∈A(s)

[
u (s, a) + β

∫
V t′ (s ′) p (ds ′|s, a)

]

• Specify V T and apply Bellman operator:

V T−1 (s) = max
a∈A(s)

[
u (s, a) + β

∫
V T (s ′) p (ds ′|s, a)

]

• Iterate until first period:

V 1 (s) = max
a∈A(s)

[
u (s, a) + β

∫
V 2 (s ′) p (ds ′|s, a)

]

25

Value function iteration in infinite time

• We begin with the Bellman operator:

Γ (V) (s) = max
a∈A(s)

[
u (s, a) + β

∫
V (s ′) p (ds ′|s, a)

]

• Specify V 0 and apply Bellman operator:

V 1 (s) = max
a∈A(s)

[
u (s, a) + β

∫
V 0 (s ′) p (ds ′|s, a)

]

• Iterate until convergence:

V T (s) = max
a∈A(s)

[
u (s, a) + β

∫
V T−1 (s ′) p (ds ′|s, a)

]

26

Policy function iteration

• With infinite time, we can also apply policy function iteration (aka as Howard improvement

algorithm):

1. We guess a policy function a0.

2. We compute the V 0 associated to it (by matrix operations or iteration).

3. We compute the new policy function a1 implied by V 0.

4. We iterate until convergence.

• Under some conditions, if can be faster than value function iteration (more on this later).

• Most of the next slides applies to policy function iteration without any (material) change.

27

Normalization

• Before initializing the algorithm, it is usually a good idea to normalize problem:

V (s) = max
a∈A(s)

[
(1− β) u (s, a) + β

∫
V (s ′) p (ds ′|s, a)

]

• Three advantages:

1. We save one iteration.

2. Stability properties.

3. Convergence bounds are interpretable.

• More general case: reformulation of the problem.

28

Initial value in finite time problems

• Usually, economics of the problem provides natural choices.

• Example: final value of an optimal expenditure problem is zero.

• However, some times there are subtle issues.

• Example: what is the value of dying? And of bequests? OLG.

29

Initial guesses for infinite time problems

• Theorems tell us we will converge from any initial guess.

• That does not mean we should not be smart picking our initial guess.

• Several good ideas:

1. Steady state of the problem (if one exists). Usually saves at least one iteration.

2. Perturbation approximation.

3. Collapsing one or more dimensions of the problem. Which one?

30

Discretization

• In the case where we have a continuous state space, we need to discretize it into a grid.

• How do we do that?

• Dealing with curse of dimensionality.

• Do we let future states lie outside the grid?

31

New approximated problem

• Exact problem:

V (s) = max
a∈A(s)

[
(1− β) u (s, a) + β

∫
V (s ′) p (ds ′|s, a)

]

• Approximated problem:

V̂ (s) = max
a∈Â(s)

[
(1− β) u (s, a) + β

N∑
k=1

V̂ (s ′k) pN (s ′k |s, a)

]

32

Grid generation

• Huge literature on numerical analysis on how to efficiently generate grids.

• Two main issues:

1. How to select points sk .

2. How to approximate p by pN .

• Answer to second issue follows from answer to first problem.

• We can (and we will) combine strategies to generate grids.

33

Uniform grid

• Decide how many points in the grid.

• Distribute them uniformly in the state space.

• What is the state space is not bounded?

• Advantages and disadvantages.

34

Non-uniform grid

• Use economic theory or error analysis to evaluate where to accumulate points.

• Standard argument: close to curvatures of the value function.

• Problem: this an heuristic argument.

• Self-confirming equilibria in computations.

35

Discretizing stochastic process

• Important case: discretizing exogenous stochastic processes.

• Consider a general AR(1) process:

z ′ = (1− ρ)µz + ρz + ε′, ε′
iid∼ N (0, σ2

ε)

• Recall that E[z] = µz and Var [z] = σ2
z =

σ2
ε

(1−ρ2) .

• First step is to choose m (e.g., m = 3) and N, and define:

zN = µz +mσz z1 = µz −mσz

• z2, z3, ..., zN−1 are equispaced over the interval [z1, zN] with zk < zk+1 for any k ∈ {1, 2, ...,N − 1}

36

Example

Tauchen (1986) Method

State Space (Con’t)

 m = 3,N = 3 case

Akihisa Kato (UPenn) Discretizing Stochastic Process Econ714, 2017 5 / 21

37

Transition I

Tauchen (1986) Method

State Space (Con”t)

Figure: Transition example 1

Akihisa Kato (UPenn) Discretizing Stochastic Process Econ714, 2017 6 / 21

38

Transition II

Tauchen (1986) Method

State Space (Con” ’t)

Figure: Transition example 2

Akihisa Kato (UPenn) Discretizing Stochastic Process Econ714, 2017 7 / 21

39

Transition probability

• Let d = zk+1 − zk . Then

πi,j = Pr{z ′ = zj |z = zi}
= Pr{zj − d/2 < z ′ ≤ zj + d/2|z = zi}
= Pr{zj − d/2 < (1− ρ)µz + ρzi + ε ≤ zj + d/2}

= Pr

{
zj + d/2− (1− ρ)µz − ρzi

σε
<

ε

σε
≤ zj − d/2− (1− ρ)µz − ρzi

σε

}
= Φ

(
zj + d/2− (1− ρ)µz − ρzi

σε

)
− Φ

(
zj − d/2− (1− ρ)µz − ρzi

σε

)

• Adjust for tails:

πi,j =

1− Φ

(
zN−d/2−(1−ρ)µz−ρzi

σε

)
if j = N

Φ
(

zj+d/2−(1−ρ)µz−ρzi
σε

)
− Φ

(
zj−d/2−(1−ρ)µz−ρzi

σε

)
otherwise

Φ
(

z1+d/2−(1−ρ)µz−ρzi
σε

)
if j = 1

40

VAR(1) case: state space

• We can apply Tauchen’s method to VAR(1) case with z ∈ RK .

z ′ = Az + ε′ where ε′
iid∼ N (0,Σε)

• Pick Nk ’s for k = 1, ...,K . We now have N = N1 × N2 × · · ·NK possible states.

• For each k = 1, ...,K , we can define

zkNk
= mσzk zk1 = −zkNk

and remaining points are equally spaced.

• σ2
zk can be obtained from vec(Σz) = (I − A⊗ A)−1vec(Σε).

41

VAR(1) case: transition probability

• Consider a transition from zi = (z1i1 , z
2
i2
, ..., zKiK) to zj = (z1j1 , z

2
j2
, ..., zKjK).

• Associated probability for each state variable k given state ik to jk is now:

πk
ik ,jk =

1− Φ

(
zkNk

−dk/2−Akkz
k
ik

σεk

)
Φ

(
zkjk

+dk/2−Akkz
k
ik

σεk

)
− Φ

(
zkjk

−d/2−Akkz
k
ik

σεk

)
j ̸= 1,Nk

Φ

(
zk1+dk/2−Akkz

k
ik

σεk

)

• Therefore, πi,j =
∏K

k=1 π
k
ik ,jk

.

• We can use this method for discretizing higher order AR processes.

42

Example

• For simplicity,Σε = I , and(
z1t+1

z2t+1

)
=

(
0.72 0

0 0.5

)(
z1t
z2t

)
+

(
ε1t+1

ε2t+1

)

• Let m = 3, N1 = 3, N2 = 5. Thus, N = 3× 5 states in total.

• In this case, d1 = 4.3229, d2 = 1.7321.

• Transition from (z12 , z
2
3) to (z13 , z

2
4) is given by π1

2,3 × π2
3,4 where

π1
2,3 = 1− Φ

(
z13 − d1/2− 0.72z12

)
= 0.0153

π2
3,4 = Φ

(
z24 + d2/2− 0.5z23

)
− Φ

(
z24 − d2/2− 0.5z23

)
= 0.1886

43

Quadrature grid

• Tauchen and Hussey (1991).

• Motivation: quadrature points in integrals∫
f (s) p (s) ds ≃

N∑
k=1

f (sk)wk

• Gaussian quadrature: we require previous equation to be exact for all polynomials of degree less than

or equal to 2N − 1.

44

Rouwenhorst (1995) Method

• Consider again z ′ = ρz + ε′ with ε′
iid∼ N (0, σ2

ε).

• Again, we want to approximate it by N-state Markov chain process with

• {z1, ..., zN} state space.

• Transition probability ΘN .

• Set endpoints as zN = σz
√
N − 1 ≡ ψ, and z1 = −ψ.

• z2, z3, ..., zN−1 are equispaced.

• We will derive transition matrix with size n recursively until n = N:

1. For n = 2, define Θ2.

2. For 2 < n ≤ N, derive Θn from Θn−1.

45

State and transition probability

• Define p = q = 1+ρ
2 (under the assumption of symmetric distribution) and

Θ2 =

[
p 1− p

1− q q

]

• Compute Θn by:

Θn = p

[
Θn−1 0

0′ 0

]
+ (1− p)

[
0 Θn−1

0 0′

]

+(1− q)

[
0′ 0

Θn−1 0

]
+ q

[
0 0′

0 Θn−1

]

where 0 is a (n − 1) column vector.

• Divide all but the top and bottom rows in Θn by 2 after each iteration.

46

Why divide by two?

• For n = 3 case, we have

Θ3 = p

 p 1− p 0

1− q q 0

0 0 0

+ (1− p)

 0 p 1− p

0 1− q q

0 0 0

+(1− q)

 0 0 0

p 1− p 0

1− q q 0

+ q

 0 0 0

0 p 1− p

0 1− q q

• We can see that the 2nd row sums up to 2!

47

Invariant distribution

• Distribution generated by ΘN converges to the invariant distribution λ(N) = (λ
(N)
1 , ..., λ

(N)
N) with

λ
(N)
i =

(
N − 1

i − 1

)
s i−1(1− s)N−1

where

s =
1− p

2− (p + q)

• From this invariant distribution, we can compute moments associate with ΘN analytically.

48

Which method is better?

• Kopecky and Suen (2010) argue that Rouwenhorst method is the best approx., especially for high

persistence (ρ→ 1).

• Test bed:

V (k , a) = max
c,k′≥0

{
log(c) + β

∫
V (k ′, a′)dF (a′|a)

}
s.t. c + k ′ = exp(a)kα + (1− δ)k

a′ = ρa+ ε′

ε′
iid∼ N (0, σ2

ε)

• Compare statistics under approximated stationary distribution to quasi-exact solution using

Chebyshev parameterized expectation algorithm.

• Comparison also with Adda and Cooper (2003).

49

Results

Comparison

Performance

Table: Performance of each method

Ratio of statistics under invariant distribution to quasi-exact solution.

Akihisa Kato (UPenn) Discretizing Stochastic Process Econ714, 2017 21 / 21

50

Stochastic grid

• Randomly chosen grids.

• Rust (1995): it breaks the curse of dimensionality.

• Why?

• How do we generate random numbers in the best way?

51

Interpolation

• Discretization also generates the need for interpolation.

• Simpler approach: linear interpolation.

• Problem: in one than more dimension, linear interpolation may not preserve concavity.

• Shape-preserving splines: Schumaker scheme.

• Trade-off between speed and accuracy interpolation.

52

Figure 1: Insert Title Here

V(kt)

kt

1

53

Multigrid algorithms

• Old tradition in numerical analysis.

• Basic idea: solve first a problem in a coarser grid and use it as a guess for more refined solution.

• Examples:

1. Differential equations.

2. Projection methods.

3. Dynamic programming (Chow and Tsitsiklis, 1991).

• Great advantage: extremely easy to code.

54

Applying the algorithm

• After deciding initialization and discretization, we still need to implement each step:

V T (s) = max
a∈A(s)

[
u (s, a) + β

∫
V T−1 (s ′) p (ds ′|s, a)

]

• Two numerical operations:

1. Maximization.

2. Integral.

55

Maximization

• We need to apply the max operator.

• Most costly step of value function iteration.

• Brute force (always works): check all the possible choices in the grid.

• Sensibility: using a Newton or quasi-Newton algorithm.

• Fancier alternatives: simulated annealing, genetic algorithms,...

56

Brute force

• Some times we do not have any other alternative. Examples: problems with discrete choices,

non-differentiabilities, non-convex constraints, etc.

• Even if brute force is expensive, we can speed things up quite a bit:

1. Previous solution.

2. Monotonicity of choices.

3. Concavity (or quasi-concavity) of value and policy functions.

57

Newton or Quasi-Newton

• Much quicker.

• However:

1. Problem of global convergence.

2. We need to compute derivatives.

• We can mix brute force and Newton-type algorithms.

58

Generalized policy iteration

• Maximization is the most expensive part of value function iteration.

• Often, while we update the value function, optimal choices are not.

• This suggests a simple strategy: apply the max operator only from time to time.

• This should remind you of an incomplete policy function iteration.

• Often known as generalized policy iteration.

• How do we choose the optimal timing of the max operator (i.e., the relative sweeps of value and

policy)?

• Related: asynchronous implementations of value and policy function iterations.

59

How do we integrate?

• Exact integration.

• Approximations: Laplace’s method.

• Quadrature.

• Monte Carlo.

60

Convergence assessment

• How do we assess convergence?

• By the contraction mapping property:∥∥V − V k
∥∥
∞ ≤ 1

1− β

∥∥V k+1 − V k
∥∥
∞

• Relation of value function iteration error with Euler equation error.

61

Non-local accuracy test

• Proposed by Judd (1992) and Judd and Guu (1997).

• Example: Euler equation from a stochastic neoclassical growth model

1

c i (kt , zt)
= Et

(
αezt+1k i (kt , zt)

α−1

c i (k i (kt , zt), zt+1)

)
we can define:

EE i (kt , zt) ≡ 1− c i (kt , zt)Et

(
αezt+1k i (kt , zt)

α−1

c i (k i (kt , zt), zt+1)

)

• Units of reporting.

• Interpretation.

62

Error analysis

• We can use errors in Euler equation to refine grid.

• How?

• Advantages of procedure.

• Problems.

63

The endogenous grid method

• Proposed by Carroll (2005) and Barillas and Fernández-Villaverde (2006).

• Links with operations research: pre-action and post-action states.

• It is actually easier to understand with a concrete example: a basic stochastic neoclassical growth

model.

• The problem has a Bellman equation representation:

V (kt , zt) = max
kt+1

{
(eztkα

t + (1− δ) kt − kt+1)
1−τ

1− τ
+ βEtV (kt+1, zt+1)

}
s.t. zt+1 = ρzt + εt+1

where V (·, ·) is the value function of the problem.

64

Changing state variables

• We will use a state variable called “market resources” or “cash-on-hand,” instead of kt :

Yt = ct + kt+1 = yt + (1− δ) kt = eztkα
t + (1− δ) kt

• We use a capital Yt to denote the total market resources and a lower yt for the production function.

• More general point: changes of variables are often key in solving our problems.

• As a result, we write the problem recursively with the Bellman equation:

V (Yt , zt) = max
kt+1

{
(Yt − kt+1)

1−τ

1− τ
+ βEtV (Yt+1, zt+1)

}
s.t. zt+1 = ρzt + εt+1

• Note difference between V (kt , zt) and V (Yt , zt).

65

Optimilaty condition

• Since Yt+1 is only a function of kt+1 and zt+1, we can write:

Ṽ (kt+1,zt) = βEtV (Yt+1, zt+1)

to get:

V (Yt , zt) = max
kt+1

{
(Yt − kt+1)

1−τ

1− τ
+ Ṽ (kt+1,zt)

}

• The first-order condition for consumption:

(c∗t)
−τ = Ṽkt+1(k

∗
t+1, zt)

where c∗t = Yt − k∗
t+1.

66

Backing up consumption

• So, if we know Ṽ (kt+1,zt), consumption:

c∗t =
(
Ṽkt+1(kt+1, zt)

)− 1
τ

for each point in a grid for kt+1 and zt .

• It should remind you of Hotz-Miller type estimators.

• Then, given c∗t and kt+1, we can find Y ∗
t = c∗t + kt+1 and obtain

V (Y ∗
t , zt) =

{
(c∗t)

1−τ

1− τ
+ Ṽ (kt+1,zt)

}
where we can drop the max operator, since we have already computed the optimal level of

consumption.

• Since Y ∗
t = ezt (k∗

t)
α + (1− δ) k∗

t , an alternative interpretation of the algorithm is that, during the

iterations, the grid on kt+1 is fixed, but the values of kt change endogenously. Hence, the name of

Endogenous Grid.

67

Comparison with standard approach

• In the standard VFI, the optimality condition is:

(c∗t)
−τ = βEtVk

(
k∗
t+1, zt+1

)

• Since ct = eztkα
t + (1− δ) kt − kt+1, we have to solve(

eztkα
t + (1− δ) kt − k∗

t+1

)−τ
= βEtVk

(
k∗
t+1, zt+1

)
a nonlinear equation on k∗

t+1 for each point in a grid for kt .

• The key difference is, thus, that the endogenous grid method defines a fixed grid over the values of

kt+1 instead of over the values of kt .

• This implies that we already know what values the policy function for next period’s capital take and,

thus, we can skip the root-finding.

68

	Theoretical Background
	Numerical Implementation

