Dynamic Programming

(Lectures on Solution Methods for Economists I)

Jesús Fernández-Villaverde ${ }^{1}$ and Pablo Guerrón ${ }^{2}$
May 14, 2022
${ }^{1}$ University of Pennsylvania
${ }^{2}$ Boston College

Theoretical Background

Introduction

- Introduce numerical methods to solve dynamic programming (DP) models.
- DP models with sequential decision making:
- Arrow, Harris, and Marschak (1951) \rightarrow optimal inventory model.
- Lucas and Prescott (1971) \rightarrow optimal investment model.
- Brock and Mirman (1972) \rightarrow optimal growth model under uncertainty.
- Lucas (1978) and Brock (1980) \rightarrow asset pricing models.
- Kydland and Prescott (1982) \rightarrow business cycle model.

The basic framework

- Almost any DP can be formulated as Markov decision process (MDP).
- An agent, given state $s_{t} \in S$ takes an optimal action $a_{t} \in A(s)$ that determines current utility $u\left(s_{t}, a_{t}\right)$ and affects the distribution of next period's state s_{t+1} via a Markov chain $p\left(s_{t+1} \mid s_{t}, a_{t}\right)$.
- The problem is to choose $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{T}\right\}$, where $a_{t}=\alpha_{t}\left(s_{t}\right)$, that solves

$$
V(s)=\max _{\alpha} \mathbb{E}_{\alpha}\left\{\sum_{t=0}^{T} \beta^{t} u\left(s_{t}, a_{t}\right) \mid s_{0}=s\right\}
$$

- The difficulty is that we are not looking for a set of numbers $a=\left\{a_{1}, \ldots, a_{T}\right\}$ but for a set of functions $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{T}\right\}$.

The DP problem

- DP simplifies the MDP problem, allowing us to find $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{T}\right\}$ using a recursive procedure.
- Basically, it uses V as a shadow price to map a stochastic/multiperiod problem into a deterministic/static optimization problem.
- We are going to focus on infinite horizon problems, where V is the unique solution for the Bellman equation $V=\Gamma(V)$.
- Where Γ is called the Bellman operator, that is defined as:

$$
\Gamma(V)(s)=\max _{a}\left[u(s, a)+\beta \int V\left(s^{\prime}\right) p\left(s^{\prime} \mid s, a\right)\right]
$$

- $\alpha(s)$ is equal to the solution to the Bellman equation for each s.

The Bellman operator and the Bellman equation

- We will revise the mathematical foundations for the Bellman equation.
- It has a very nice property: Г is a contraction mapping.
- This will allow us to use some numerical procedures to find the solution to the Bellman equation recursively.

Discrete vs. continuous MDPs

- Difference between Discrete MDPs -whose state and control variables can only take a finite number of points- and continuous MDPs -whose state and control variables can take a continuum of values.
- Value functions for discrete MDPs belong to a subset of the finite-dimensional Euclidean space $R^{\# S}$.
- Value functions for continuous MDPs belong to a subset of the infinite-dimensional Banach space $B(S)$ of bounded, measurable real-valued functions on S.
- Therefore, we can solve discrete MDPs exactly (rounding errors) while we can only approximate the solution to continuous MDPs.
- Discrete MDPs arise naturally in IO/labor type of applications while continuous MDPs arise naturally in Macro.

Computation: speed vs. accuracy

- The approximating error ϵ introduces a trade-off: better accuracy (lower ϵ) versus shorter time to find the solution (higher ϵ).
- The time needed to find the solution also depends on the dimension of the problem: d.
- We want the fastest method given a pair (ϵ, d).
- Why do we want the fastest method?
- Normally, this algorithms are nested into a bigger optimization algorithm.
- Hence, we will have to solve the Bellman equation for various values of the "structural" parameters defining β, u, and p.

Approximation to continuous DPs

- There are two ways to approximate continuous DPs.
- Discrete.
- Smooth.
- Discrete solves an equivalent discrete problem that approximates the original continuous DPs.
- Smooth treats the value function V and the decision rule α are smooth functions of s and a finite set of coefficients θ.

Smooth approximation to continuous DPs

- Then we will try to find $\widehat{\theta}$ such that the approximations the approximated value function $V_{\widehat{\theta}}$ and decision rule $\alpha_{\widehat{\theta}}$ are close to V and α using some metric.
- In general, we will use a sequence of parametrization that is dense on $B(S)$.
- That means that for each $V \in B(S), \exists\left\{\theta_{k}\right\}_{k=1}^{\infty}$ such that

$$
\lim _{k \rightarrow \infty} \inf _{\theta_{k}} \sup _{s \in S}\left|V_{\theta}(s)-V(s)\right|=0
$$

- Example:

1. Let $S=[-1,1]$.
2. Consider $V_{\theta}(s)=\sum_{i=1}^{k} \theta_{i} p_{i}(s)$ and let $p_{i}(s)=s^{i}$.

- Another example is $p_{i}(s)=\cos \left(i \cos ^{-1}(s)\right)$. These are called the Chebyshev polynomials of the first kind.

The Stone-Weierstrass approximation theorem

- Let $\varepsilon>0$ and V be a continuous function in $[-1,1]$, then there exists a polynomial V_{θ} such that

$$
\left\|V-V_{\theta}\right\|<\varepsilon
$$

- Therefore, the problem is to find θ such that minimizes

$$
\left(\sum_{i=1}^{N}\left|V_{\theta}\left(s_{i}\right)-\widehat{\Gamma}\left(V_{\theta}\right)\left(s_{i}\right)\right|^{2}\right)^{1 / 2}
$$

where $\widehat{\Gamma}\left(V_{\theta}\right)$ is an approximation to the Bellman operator. Why is an approximation?

- Faster to solve the previous problem than by brute force discretizations.

MDP definitions

- A MDP is defined by the following objects:
- A state space S.
- An action space A.
- A family of constraints $A(s)$ for $s \in S$.
- A transition probability $p\left(d s^{\prime} \mid s, a\right)=\operatorname{Pr}\left(s_{t+1}=d s^{\prime} \mid s_{t}=s, a_{t}=a\right)$.
- A single period utility $u(s, a)$.
- The agent problem is to choose $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{T}\right\}$ such that:

$$
\max _{\alpha} \int_{s_{0}} \ldots \int_{s_{T}}\left[u\left(s_{t}, \alpha_{t}\left(s_{t}\right)\right)\right] p\left(d s_{t} \mid s_{t-1}, \alpha_{t-1}\left(s_{t-1}\right)\right) p_{0}\left(d s_{0}\right)
$$

- $p_{0}\left(d s_{0}\right)$ is the probability distribution over the initial state.
- This problem is very complicated: search over a set of functions $\left\{\alpha_{1}, \ldots, \alpha_{T}\right\}$ and make a $T+1$-dimension integral.

The Bellman equation in the finite horizon problem

- If $T<\infty$ (the problem has a finite horizon), DP is equivalent to backward induction. In the terminal period α_{T} is:

$$
\alpha_{T}\left(s_{T}\right)=\arg \max _{a_{T} \in A\left(s_{T}\right)} u\left(s_{T}, a_{T}\right)
$$

- And $V_{T}\left(s_{T}\right)=u\left(s_{T}, \alpha_{T}\left(s_{T}\right)\right)$.
- For periods $t=1, \ldots, T-1$, we can find V_{t} and α_{t} by recursion:

$$
\begin{gathered}
\alpha_{t}\left(s_{t}\right)=\arg \max _{a_{t} \in A\left(s_{t}\right)}\left[u\left(s_{t}, a_{t}\right)+\beta \int V_{t+1}\left(s_{t+1}\right) p\left(d s_{t+1} \mid s_{t}, a_{t}\right)\right] \\
V_{t}\left(s_{t}\right)=u\left(s_{t}, \alpha_{t}\left(s_{t}\right)\right)+\beta \int V_{t+1}\left(s_{t+1}\right) p\left(d s_{t+1} \mid s_{t}, \alpha_{t}\left(s_{t}\right)\right)
\end{gathered}
$$

- It could be the case that $a_{t}=\alpha_{t}\left(s_{t}, a_{t-1}, s_{t-1}, \ldots\right)$ depend on the whole history, but it can be shown that separability and the Markovian property of p imply that $a_{t}=\alpha_{t}\left(s_{t}\right)$.

The Bellman equation in the infinite horizon problem I

- If $T=\infty$, we do not have a finite state.
- On the other hand, the separability and the Markovian property of p imply that $a_{t}=\alpha\left(s_{t}\right)$, that is, the problem has a stationary Markovian structure.
- The optimal policy only depend on s, it does not depend on t.
- Thus, the optimal stationary markovian rule is characterized by:

$$
\begin{gathered}
\alpha(s)=\arg \max _{a \in A(s)}\left[u(s, a)+\beta \int V\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right] \\
V(s)=u(s, \alpha(s))+\beta \int V(s) p\left(d s^{\prime} \mid s, \alpha(s)\right)
\end{gathered}
$$

- This equation is known as the Bellman equation.
- It is a functional equation (mapping from functions to functions).
- The function V is the fixed point to this functional equation.

The Bellman equation in the infinite horizon problem II

- To determine existence and uniqueness, we need to impose:

1. S and A are compact metric spaces.
2. $u(s, a)$ is jointly continuous and bounded.
3. $s \longrightarrow A(s)$ is a continuous correspondence.

- Let $B(S)$ the Banach space of bounded, measurable real-valued functions on S.
- Let $\|f\|=\sup _{s \in S}|f(s)|$ for $f \in B(S)$ be the sup norm.
- The Bellman operator is:

$$
\Gamma(W)(s)=\max _{a \in A(s)}\left[u(s, a)+\beta \int W\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

- The Bellman equation is then a fixed point to the operator:

$$
V=\Gamma(V)
$$

The Bellman equation in the infinite horizon problem II

- Blackwell (1965) and Denardo (1967) show that the Bellman operator is a contraction mapping: for W, V in $B(S)$,

$$
\|\Gamma(V)-\Gamma(W)\| \leq \beta\|V-W\|
$$

- Contraction mapping theorem: if Γ is a contractor operator mapping on a Banach Space B, then Γ has an unique fixed point.
- Blackwell's theorem: the Stationary Markovian α defined by:

$$
\begin{gathered}
\alpha(s)=\arg \max _{a \in A(s)}\left[u(s, a)+\beta \int V\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right] \\
V(s)=u(s, \alpha(s))+\beta \int V(s) p\left(d s^{\prime} \mid s, \alpha(s)\right)
\end{gathered}
$$

solves the associated MDP problem.

A trivial example

- Consider $u(s, a)=1$.
- Given that u is constant, let us assume that V is also constant.
- If we substitute this result into the Bellman equation, we get:

$$
V=\max _{a \in A(s)}\left[1+\beta \int V_{p}\left(d s^{\prime} \mid s, a\right)\right]
$$

- And the unique solution is $V=\frac{1}{1-\beta}$.
- Clearly, the MDP problem implies that $V=1+\beta+\beta^{2}+\ldots$
- So, they are equivalent.

Phelps' (1972) example I

- The agent has to decide between consume and save.
- The state variable, w, is the wealth of the agent and the decision variable, c, is how much to consume.
- The agent cannot borrow, so the choice set $A(w)=\{c \mid 0 \leq c \leq w\}$.
- The saving are invested in a single risky asset with iid return R_{t} with distribution F.
- The Bellman Equation is:

$$
V(w)=\max _{c \in A(w)} \log (c)+\beta \int_{0}^{\infty} V(R(w-c)) F(d R)
$$

Phelps' (1972) example II

- Since it operator Γ is a contraction, we can start $V=0$.
- If that is the case, $V_{t}=\Gamma^{t}(0)=f_{t} \log (w)+g_{t}$ for f_{t} and g_{t} constant.
- So, $V_{\infty}=\Gamma^{\infty}(0)=f_{\infty} \log (w)+g_{\infty}$.
- If we substitute V_{∞} into the Bellman equation and we look for f_{∞} and g_{∞}, we get:

$$
\begin{gathered}
f_{\infty}=\frac{1}{1-\beta} \\
g_{\infty}=\frac{\log (1-\beta)}{1-\beta}+\frac{\beta \log (\beta)}{(1-\beta)^{2}}+\frac{\beta E\{\log (R)\}}{(1-\beta)^{2}}
\end{gathered}
$$

and $\alpha(w)=(1-\beta) w$.

- Therefore, permanent income hypothesis still holds in this environment.

Numerical Implementation

Motivation

- Before, we reviewed some theoretical background on dynamic programming
- Now, we will discuss its numerical implementation
- Perhaps the most important solution algorithm to learn:

1. Wide applicability
2. Many known results
3. Template for other algorithms

- Importance of keeping the "curse of dimensionality" under control
- Two issues to discuss:

1. Finite versus infinite time
2. Discrete versus continuous state space.

Finite time

- Problems where there is a terminal condition.
- Examples:

1. Life cycle.
2. Investment with expiration date.
3. Finite games.

- Why are finite time problems nicer? Backward induction.
- You can think about them as a particular case of multivariate optimization.

Infinite time

- Problems where there is no terminal condition.
- Examples:

1. Industry dynamics.
2. Business cycles.
3. Infinite games.

- However, we will need the equivalent of a terminal condition: transversality condition.

Discrete state space

- We can solve problems up to floating point accuracy.
- Why is this important?

1. ε-equilibria.
2. Estimation.

- However, how realistic are models with a discrete state space?

Infinite state space

- More common cases in economics.
- Problem: we have to rely on a numerical approximation.
- Interaction of different approximation errors (computation, estimation, simulation).
- Bounds?
- Interaction of bounds?

Different strategies

- Four main strategies:

1. Value function iteration.
2. Policy function iteration.
3. Projection.
4. Perturbation.

- Many other strategies are actually particular cases of the previous ones.

Value function iteration

- Well-known, basic algorithm of dynamic programming. Aka as value improvement.
- We have tight convergence properties and bounds on errors.
- Well suited for parallelization.
- It will always (perhaps quite slowly) work.
- How do we implement the operator?

1. We come back to our two distinctions: finite versus infinite time and discrete versus continuous state space.
2. Then we need to talk about:

- Initialization.
- Discretization.

Value function iteration in finite time

- We begin with the Bellman operator:

$$
\Gamma\left(V^{t}\right)(s)=\max _{a \in A(s)}\left[u(s, a)+\beta \int V^{t^{\prime}}\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

- Specify V^{T} and apply Bellman operator:

$$
V^{T-1}(s)=\max _{a \in A(s)}\left[u(s, a)+\beta \int V^{T}\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

- Iterate until first period:

$$
V^{1}(s)=\max _{a \in A(s)}\left[u(s, a)+\beta \int V^{2}\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

Value function iteration in infinite time

- We begin with the Bellman operator:

$$
\Gamma(V)(s)=\max _{a \in A(s)}\left[u(s, a)+\beta \int V\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

- Specify V^{0} and apply Bellman operator:

$$
V^{1}(s)=\max _{a \in A(s)}\left[u(s, a)+\beta \int V^{0}\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

- Iterate until convergence:

$$
V^{T}(s)=\max _{a \in A(s)}\left[u(s, a)+\beta \int V^{T-1}\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

Policy function iteration

- With infinite time, we can also apply policy function iteration (aka as Howard improvement algorithm):

1. We guess a policy function a^{0}.
2. We compute the V^{0} associated to it (by matrix operations or iteration).
3. We compute the new policy function a^{1} implied by V^{0}.
4. We iterate until convergence.

- Under some conditions, if can be faster than value function iteration (more on this later).
- Most of the next slides applies to policy function iteration without any (material) change.

Normalization

- Before initializing the algorithm, it is usually a good idea to normalize problem:

$$
V(s)=\max _{a \in A(s)}\left[(1-\beta) u(s, a)+\beta \int V\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

- Three advantages:

1. We save one iteration.
2. Stability properties.
3. Convergence bounds are interpretable.

- More general case: reformulation of the problem.

Initial value in finite time problems

- Usually, economics of the problem provides natural choices.
- Example: final value of an optimal expenditure problem is zero.
- However, some times there are subtle issues.
- Example: what is the value of dying? And of bequests? OLG.

Initial guesses for infinite time problems

- Theorems tell us we will converge from any initial guess.
- That does not mean we should not be smart picking our initial guess.
- Several good ideas:

1. Steady state of the problem (if one exists). Usually saves at least one iteration.
2. Perturbation approximation.
3. Collapsing one or more dimensions of the problem. Which one?

Discretization

- In the case where we have a continuous state space, we need to discretize it into a grid.
- How do we do that?
- Dealing with curse of dimensionality.
- Do we let future states lie outside the grid?

New approximated problem

- Exact problem:

$$
V(s)=\max _{a \in A(s)}\left[(1-\beta) u(s, a)+\beta \int V\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

- Approximated problem:

$$
\widehat{V}(s)=\max _{a \in \widehat{A}(s)}\left[(1-\beta) u(s, a)+\beta \sum_{k=1}^{N} \widehat{V}\left(s_{k}^{\prime}\right) p_{N}\left(s_{k}^{\prime} \mid s, a\right)\right]
$$

Grid generation

- Huge literature on numerical analysis on how to efficiently generate grids.
- Two main issues:

1. How to select points s_{k}.
2. How to approximate p by p_{N}.

- Answer to second issue follows from answer to first problem.
- We can (and we will) combine strategies to generate grids.

Uniform grid

- Decide how many points in the grid.
- Distribute them uniformly in the state space.
- What is the state space is not bounded?
- Advantages and disadvantages.

Non-uniform grid

- Use economic theory or error analysis to evaluate where to accumulate points.
- Standard argument: close to curvatures of the value function.
- Problem: this an heuristic argument.
- Self-confirming equilibria in computations.

Discretizing stochastic process

- Important case: discretizing exogenous stochastic processes.
- Consider a general $\operatorname{AR}(1)$ process:

$$
z^{\prime}=(1-\rho) \mu_{z}+\rho z+\varepsilon^{\prime}, \varepsilon^{\prime} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
$$

- Recall that $\mathbb{E}[z]=\mu_{z}$ and $\operatorname{Var}[z]=\sigma_{z}^{2}=\frac{\sigma_{\varepsilon}^{2}}{\left(1-\rho^{2}\right)}$.
- First step is to choose m (e.g., $m=3$) and N, and define:

$$
z_{N}=\mu_{z}+m \sigma_{z} z_{1}=\mu_{z}-m \sigma_{z}
$$

- $z_{2}, z_{3}, \ldots, z_{N-1}$ are equispaced over the interval $\left[z_{1}, z_{N}\right]$ with $z_{k}<z_{k+1}$ for any $k \in\{1,2, \ldots, N-1\}$

Example

Transition I

Transition II

Transition probability

- Let $d=z_{k+1}-z_{k}$. Then

$$
\begin{aligned}
\pi_{i, j} & =\operatorname{Pr}\left\{z^{\prime}=z_{j} \mid z=z_{i}\right\} \\
& =\operatorname{Pr}\left\{z_{j}-d / 2<z^{\prime} \leq z_{j}+d / 2 \mid z=z_{i}\right\} \\
& =\operatorname{Pr}\left\{z_{j}-d / 2<(1-\rho) \mu_{z}+\rho z_{i}+\varepsilon \leq z_{j}+d / 2\right\} \\
& =\operatorname{Pr}\left\{\frac{z_{j}+d / 2-(1-\rho) \mu_{z}-\rho z_{i}}{\sigma_{\varepsilon}}<\frac{\varepsilon}{\sigma_{\varepsilon}} \leq \frac{z_{j}-d / 2-(1-\rho) \mu_{z}-\rho z_{i}}{\sigma_{\varepsilon}}\right\} \\
& =\Phi\left(\frac{z_{j}+d / 2-(1-\rho) \mu_{z}-\rho z_{i}}{\sigma_{\varepsilon}}\right)-\Phi\left(\frac{z_{j}-d / 2-(1-\rho) \mu_{z}-\rho z_{i}}{\sigma_{\varepsilon}}\right)
\end{aligned}
$$

- Adjust for tails:

$$
\pi_{i, j}= \begin{cases}1-\Phi\left(\frac{z_{N}-d / 2-(1-\rho) \mu_{z}-\rho z_{i}}{\sigma_{\varepsilon}}\right) & \text { if } j=N \\ \Phi\left(\frac{z_{j}+d / 2-(1-\rho) \mu_{z}-\rho z_{i}}{\sigma_{\varepsilon}}\right)-\Phi\left(\frac{z_{j}-d / 2-(1-\rho) \mu_{z}-\rho z_{i}}{\sigma_{\varepsilon}}\right) & \text { otherwise } \\ \Phi\left(\frac{z_{1}+d / 2-(1-\rho) \mu_{z}-\rho z_{i}}{\sigma_{\varepsilon}}\right) & \text { if } j=1\end{cases}
$$

VAR(1) case: state space

- We can apply Tauchen's method to $\operatorname{VAR}(1)$ case with $z \in \mathbb{R}^{K}$.

$$
z^{\prime}=A z+\varepsilon^{\prime} \text { where } \varepsilon^{\prime} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \Sigma_{\varepsilon}\right)
$$

- Pick N_{k} 's for $k=1, \ldots, K$. We now have $N=N_{1} \times N_{2} \times \cdots N_{K}$ possible states.
- For each $k=1, \ldots, K$, we can define

$$
z_{N_{k}}^{k}=m \sigma_{z_{k}} \quad z_{1}^{k}=-z_{N_{k}}^{k}
$$

and remaining points are equally spaced.

- $\sigma_{z_{k}}^{2}$ can be obtained from $\operatorname{vec}\left(\Sigma_{z}\right)=(I-A \otimes A)^{-1} \operatorname{vec}\left(\Sigma_{\varepsilon}\right)$.

VAR(1) case: transition probability

- Consider a transition from $z_{i}=\left(z_{i_{1}}^{1}, z_{i_{2}}^{2}, \ldots, z_{i_{k}}^{K}\right)$ to $z_{j}=\left(z_{j_{1}}^{1}, z_{j_{2}}^{2}, \ldots, z_{j_{k}}^{K}\right)$.
- Associated probability for each state variable k given state i_{k} to j_{k} is now:

$$
\pi_{i_{k}, j_{k}}^{k}=\left\{\begin{array}{l}
1-\Phi\left(\frac{z_{N_{k}}^{k}-d_{k} / 2-A_{k k} z_{i_{k}}^{k}}{\sigma_{\varepsilon_{k}}}\right) \\
\Phi\left(\frac{z_{z_{k}}^{k}+d_{k} / 2-A_{k k} z_{i_{k}}^{k}}{\sigma_{\varepsilon_{k}}}\right)-\Phi\left(\frac{z_{j_{k}}^{k}-d / 2-A_{k k} z_{i_{k}}^{k}}{\sigma_{\varepsilon_{k}}}\right) j \neq 1, N_{k} \\
\Phi\left(\frac{z_{1}^{k}+d_{k} / 2-A_{k k} z_{i_{k}}^{k}}{\sigma_{\varepsilon_{k}}}\right)
\end{array}\right.
$$

- Therefore, $\pi_{i, j}=\prod_{k=1}^{K} \pi_{i_{k}, j_{k}}^{k}$.
- We can use this method for discretizing higher order AR processes.

Example

- For simplicity, $\Sigma_{\varepsilon}=I$, and

$$
\binom{z_{t+1}^{1}}{z_{t+1}^{2}}=\left(\begin{array}{cc}
0.72 & 0 \\
0 & 0.5
\end{array}\right)\binom{z_{t}^{1}}{z_{t}^{2}}+\binom{\varepsilon_{t+1}^{1}}{\varepsilon_{t+1}^{2}}
$$

- Let $m=3, N_{1}=3, N_{2}=5$. Thus, $N=3 \times 5$ states in total.
- In this case, $d_{1}=4.3229, d_{2}=1.7321$.
- Transition from $\left(z_{2}^{1}, z_{3}^{2}\right)$ to $\left(z_{3}^{1}, z_{4}^{2}\right)$ is given by $\pi_{2,3}^{1} \times \pi_{3,4}^{2}$ where

$$
\begin{aligned}
\pi_{2,3}^{1} & =1-\Phi\left(z_{3}^{1}-d_{1} / 2-0.72 z_{2}^{1}\right) \\
& =0.0153 \\
\pi_{3,4}^{2} & =\Phi\left(z_{4}^{2}+d_{2} / 2-0.5 z_{3}^{2}\right)-\Phi\left(z_{4}^{2}-d_{2} / 2-0.5 z_{3}^{2}\right) \\
& =0.1886
\end{aligned}
$$

Quadrature grid

- Tauchen and Hussey (1991).
- Motivation: quadrature points in integrals

$$
\int f(s) p(s) d s \simeq \sum_{k=1}^{N} f\left(s_{k}\right) w_{k}
$$

- Gaussian quadrature: we require previous equation to be exact for all polynomials of degree less than or equal to $2 N-1$.

Rouwenhorst (1995) Method

- Consider again $z^{\prime}=\rho z+\varepsilon^{\prime}$ with $\varepsilon^{\prime} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)$.
- Again, we want to approximate it by N-state Markov chain process with
- $\left\{z_{1}, \ldots, z_{N}\right\}$ state space.
- Transition probability Θ_{N}.
- Set endpoints as $z_{N}=\sigma_{z} \sqrt{N-1} \equiv \psi$, and $z_{1}=-\psi$.
- $z_{2}, z_{3}, \ldots, z_{N-1}$ are equispaced.
- We will derive transition matrix with size n recursively until $n=N$:

1. For $n=2$, define Θ_{2}.
2. For $2<n \leq N$, derive Θ_{n} from Θ_{n-1}.

State and transition probability

- Define $p=q=\frac{1+\rho}{2}$ (under the assumption of symmetric distribution) and

$$
\Theta_{2}=\left[\begin{array}{cc}
p & 1-p \\
1-q & q
\end{array}\right]
$$

- Compute Θ_{n} by:

$$
\begin{aligned}
\Theta_{n}= & p\left[\begin{array}{cc}
\Theta_{n-1} & \mathbf{0} \\
\mathbf{0}^{\prime} & 0
\end{array}\right]+(1-p)\left[\begin{array}{cc}
\mathbf{0} & \Theta_{n-1} \\
0 & \mathbf{0}^{\prime}
\end{array}\right] \\
& +(1-q)\left[\begin{array}{cc}
\mathbf{0}^{\prime} & 0 \\
\Theta_{n-1} & \mathbf{0}
\end{array}\right]+q\left[\begin{array}{cc}
0 & \mathbf{0}^{\prime} \\
\mathbf{0} & \Theta_{n-1}
\end{array}\right]
\end{aligned}
$$

where $\mathbf{0}$ is a $(n-1)$ column vector.

- Divide all but the top and bottom rows in Θ_{n} by 2 after each iteration.

Why divide by two?

- For $n=3$ case, we have

$$
\begin{aligned}
\Theta_{3}= & p\left[\begin{array}{ccc}
p & 1-p & 0 \\
1-q & q & 0 \\
0 & 0 & 0
\end{array}\right]+(1-p)\left[\begin{array}{ccc}
0 & p & 1-p \\
0 & 1-q & q \\
0 & 0 & 0
\end{array}\right] \\
& +(1-q)\left[\begin{array}{ccc}
0 & 0 & 0 \\
p & 1-p & 0 \\
1-q & q & 0
\end{array}\right]+q\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & p & 1-p \\
0 & 1-q & q
\end{array}\right]
\end{aligned}
$$

- We can see that the 2 nd row sums up to 2 !

Invariant distribution

- Distribution generated by Θ_{N} converges to the invariant distribution $\lambda^{(N)}=\left(\lambda_{1}^{(N)}, \ldots, \lambda_{N}^{(N)}\right)$ with

$$
\lambda_{i}^{(N)}=\binom{N-1}{i-1} s^{i-1}(1-s)^{N-1}
$$

where

$$
s=\frac{1-p}{2-(p+q)}
$$

- From this invariant distribution, we can compute moments associate with Θ_{N} analytically.

Which method is better?

- Kopecky and Suen (2010) argue that Rouwenhorst method is the best approx., especially for high persistence ($\rho \rightarrow 1$).
- Test bed:

$$
\begin{aligned}
& V(k, a)=\max _{c, k^{\prime} \geq 0}\left\{\log (c)+\beta \int V\left(k^{\prime}, a^{\prime}\right) d F\left(a^{\prime} \mid a\right)\right\} \\
& \text { s.t. } c+k^{\prime}=\exp (a) k^{\alpha}+(1-\delta) k \\
& a^{\prime}=\rho a+\varepsilon^{\prime} \\
& \varepsilon^{\prime} \stackrel{\stackrel{i i d}{\sim}}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

- Compare statistics under approximated stationary distribution to quasi-exact solution using Chebyshev parameterized expectation algorithm.
- Comparison also with Adda and Cooper (2003).

Results

Table 2

Business cycle moments for the stochastic growth model.

$N=5$					
	Generated values relative to true values Tau *				
	$\mathrm{~T}-\mathrm{H}$	F	$\mathrm{A}-\mathrm{C}$	R	
ρ	1.0097	0.9453	1.0096	0.9993	1.0000
σ_{ε}	0.8167	0.8905	0.5019	1.5599	1.0000
σ_{a}	1.0000	0.4006	0.7742	0.9471	1.0000
σ_{k}	1.0060	0.3332	0.7485	0.8880	0.9980
$\sigma_{k a}$	1.0733	0.0810	0.6528	0.6629	0.9981
σ_{y}	1.0150	0.3515	0.7847	0.8904	0.9995
σ_{c}	1.0523	0.2905	0.8423	0.7949	1.0055
σ_{i}	0.9321	0.6555	0.6549	1.2853	1.0253
ρ_{y}	1.0037	0.9412	1.0061	0.9779	1.0000

Stochastic grid

- Randomly chosen grids.
- Rust (1995): it breaks the curse of dimensionality.
- Why?
- How do we generate random numbers in the best way?

Interpolation

- Discretization also generates the need for interpolation.
- Simpler approach: linear interpolation.
- Problem: in one than more dimension, linear interpolation may not preserve concavity.
- Shape-preserving splines: Schumaker scheme.
- Trade-off between speed and accuracy interpolation.

Multigrid algorithms

- Old tradition in numerical analysis.
- Basic idea: solve first a problem in a coarser grid and use it as a guess for more refined solution.
- Examples:

1. Differential equations.
2. Projection methods.
3. Dynamic programming (Chow and Tsitsiklis, 1991).

- Great advantage: extremely easy to code.

Applying the algorithm

- After deciding initialization and discretization, we still need to implement each step:

$$
V^{T}(s)=\max _{a \in A(s)}\left[u(s, a)+\beta \int V^{T-1}\left(s^{\prime}\right) p\left(d s^{\prime} \mid s, a\right)\right]
$$

- Two numerical operations:

1. Maximization.
2. Integral.

Maximization

- We need to apply the max operator.
- Most costly step of value function iteration.
- Brute force (always works): check all the possible choices in the grid.
- Sensibility: using a Newton or quasi-Newton algorithm.
- Fancier alternatives: simulated annealing, genetic algorithms,...

Brute force

- Some times we do not have any other alternative. Examples: problems with discrete choices, non-differentiabilities, non-convex constraints, etc.
- Even if brute force is expensive, we can speed things up quite a bit:

1. Previous solution.
2. Monotonicity of choices.
3. Concavity (or quasi-concavity) of value and policy functions.

Newton or Quasi-Newton

- Much quicker.
- However:

1. Problem of global convergence.
2. We need to compute derivatives.

- We can mix brute force and Newton-type algorithms.

Generalized policy iteration

- Maximization is the most expensive part of value function iteration.
- Often, while we update the value function, optimal choices are not.
- This suggests a simple strategy: apply the max operator only from time to time.
- This should remind you of an incomplete policy function iteration.
- Often known as generalized policy iteration.
- How do we choose the optimal timing of the max operator (i.e., the relative sweeps of value and policy)?
- Related: asynchronous implementations of value and policy function iterations.

How do we integrate?

- Exact integration.
- Approximations: Laplace's method.
- Quadrature.
- Monte Carlo.

Convergence assessment

- How do we assess convergence?
- By the contraction mapping property:

$$
\left\|V-V^{k}\right\|_{\infty} \leq \frac{1}{1-\beta}\left\|V^{k+1}-V^{k}\right\|_{\infty}
$$

- Relation of value function iteration error with Euler equation error.

Non-local accuracy test

- Proposed by Judd (1992) and Judd and Guu (1997).
- Example: Euler equation from a stochastic neoclassical growth model

$$
\frac{1}{c^{i}\left(k_{t}, z_{t}\right)}=\mathbb{E}_{t}\left(\frac{\alpha e^{z_{t+1}} k^{i}\left(k_{t}, z_{t}\right)^{\alpha-1}}{c^{i}\left(k^{i}\left(k_{t}, z_{t}\right), z_{t+1}\right)}\right)
$$

we can define:

$$
E E^{i}\left(k_{t}, z_{t}\right) \equiv 1-c^{i}\left(k_{t}, z_{t}\right) \mathbb{E}_{t}\left(\frac{\alpha e^{z_{t+1}} k^{i}\left(k_{t}, z_{t}\right)^{\alpha-1}}{c^{i}\left(k^{i}\left(k_{t}, z_{t}\right), z_{t+1}\right)}\right)
$$

- Units of reporting.
- Interpretation.

Error analysis

- We can use errors in Euler equation to refine grid.
- How?
- Advantages of procedure.
- Problems.

The endogenous grid method

- Proposed by Carroll (2005) and Barillas and Fernández-Villaverde (2006).
- Links with operations research: pre-action and post-action states.
- It is actually easier to understand with a concrete example: a basic stochastic neoclassical growth model.
- The problem has a Bellman equation representation:

$$
\mathbb{V}\left(k_{t}, z_{t}\right)=\max _{k_{t+1}}\left\{\frac{\left(e^{z_{t}} k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}\right)^{1-\tau}}{1-\tau}+\beta \mathbb{E}_{t} \mathbb{V}\left(k_{t+1}, z_{t+1}\right)\right\}
$$

where $\mathbb{V}(\cdot, \cdot)$ is the value function of the problem.

Changing state variables

- We will use a state variable called "market resources" or "cash-on-hand," instead of k_{t} :

$$
Y_{t}=c_{t}+k_{t+1}=y_{t}+(1-\delta) k_{t}=e^{z_{t}} k_{t}^{\alpha}+(1-\delta) k_{t}
$$

- We use a capital Y_{t} to denote the total market resources and a lower y_{t} for the production function.
- More general point: changes of variables are often key in solving our problems.
- As a result, we write the problem recursively with the Bellman equation:

$$
\begin{gathered}
V\left(Y_{t}, z_{t}\right)=\max _{k_{t+1}}\left\{\frac{\left(Y_{t}-k_{t+1}\right)^{1-\tau}}{1-\tau}+\beta \mathbb{E}_{t} V\left(Y_{t+1}, z_{t+1}\right)\right\} \\
\text { s.t. } z_{t+1}=\rho z_{t}+\varepsilon_{t+1}
\end{gathered}
$$

- Note difference between $\mathbb{V}\left(k_{t}, z_{t}\right)$ and $V\left(Y_{t}, z_{t}\right)$.

Optimilaty condition

- Since Y_{t+1} is only a function of k_{t+1} and z_{t+1}, we can write:

$$
\tilde{V}\left(k_{t+1}, z_{t}\right)=\beta \mathbb{E}_{t} V\left(Y_{t+1}, z_{t+1}\right)
$$

to get:

$$
V\left(Y_{t}, z_{t}\right)=\max _{k_{t+1}}\left\{\frac{\left(Y_{t}-k_{t+1}\right)^{1-\tau}}{1-\tau}+\tilde{V}\left(k_{t+1}, z_{t}\right)\right\}
$$

- The first-order condition for consumption:

$$
\left(c_{t}^{*}\right)^{-\tau}=\tilde{V}_{k_{t+1}}\left(k_{t+1}^{*}, z_{t}\right)
$$

where $c_{t}^{*}=Y_{t}-k_{t+1}^{*}$.

Backing up consumption

- So, if we know $\tilde{V}\left(k_{t+1,}, z_{t}\right)$, consumption:

$$
c_{t}^{*}=\left(\tilde{V}_{k_{t+1}}\left(k_{t+1}, z_{t}\right)\right)^{-\frac{1}{\tau}}
$$

for each point in a grid for k_{t+1} and z_{t}.

- It should remind you of Hotz-Miller type estimators.
- Then, given c_{t}^{*} and k_{t+1}, we can find $Y_{t}^{*}=c_{t}^{*}+k_{t+1}$ and obtain

$$
V\left(Y_{t}^{*}, z_{t}\right)=\left\{\frac{\left(c_{t}^{*}\right)^{1-\tau}}{1-\tau}+\tilde{V}\left(k_{t+1, z_{t}}\right)\right\}
$$

where we can drop the max operator, since we have already computed the optimal level of consumption.

- Since $Y_{t}^{*}=e^{z_{t}}\left(k_{t}^{*}\right)^{\alpha}+(1-\delta) k_{t}^{*}$, an alternative interpretation of the algorithm is that, during the iterations, the grid on k_{t+1} is fixed, but the values of k_{t} change endogenously. Hence, the name of Endogenous Grid.

Comparison with standard approach

- In the standard VFI, the optimality condition is:

$$
\left(c_{t}^{*}\right)^{-\tau}=\beta \mathbb{E}_{t} \mathbb{V}_{k}\left(k_{t+1}^{*}, z_{t+1}\right)
$$

- Since $c_{t}=e^{z_{t}} k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}$, we have to solve

$$
\left(e^{z_{t}} k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}^{*}\right)^{-\tau}=\beta \mathbb{E}_{t} \mathbb{V}_{k}\left(k_{t+1}^{*}, z_{t+1}\right)
$$

a nonlinear equation on k_{t+1}^{*} for each point in a grid for k_{t}.

- The key difference is, thus, that the endogenous grid method defines a fixed grid over the values of k_{t+1} instead of over the values of k_{t}.
- This implies that we already know what values the policy function for next period's capital take and, thus, we can skip the root-finding.

