
Optimization

(Lectures on Numerical Analysis for Economists III)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

February 24, 2022

1University of Pennsylvania

2Boston College

Optimization

• Optimization of functions is at the core of most economic models: fundamental behavioral

assumption of agents (even when we consider cognitive biases).

• Also, key for most methods is classical econometrics.

• Nowadays: machine learning → large optimization problems that require efficient computation.

Think about OLS with thousands of regressors.

• We rarely have closed-form solutions.

• Minimization vs. maximization.

• Why minimization in this class?

1

The challenge, I
8 chapter 1. introduction

global min
weak local min strong local min

inflection
f (x)

x

Figure 1.6. Examples of critical
points of interest to optimization
algorithms (where the derivative
is zero) on a univariate function.

Figure 1.6 shows two types of local minima: strong local minima and weak local
minima. A strong local minimizer, also known as a strict local minimizer, is a point
that uniquely minimizes f within a neighborhood. In other words, x∗ is a strict
local minimizer if there exists a δ > 0 such that f (x∗) < f (x) whenever x∗ 6= x

and |x − x∗| < δ. In the multivariate context, this generalizes to there being a
δ > 0 such that f (x∗) < f (x) whenever x∗ 6= x and ‖x− x∗‖ < δ. A weak local
minimizer is a local minimizer that is not a strong local minimizer.

The derivative is zero at all local and global minima of continuous, unbounded
objective functions. While having a zero derivative is a necessary condition for a
local minimum,17 it is not a sufficient condition. 17 Points with nonzero derivatives

are never minima.Figure 1.6 also has an inflection point where the derivative is zero but the point
does not locally minimize f . An inflection point is where the sign of the second
derivative of f changes, which corresponds to a local minimum or maximum of
f ′. An inflection point does not necessarily have a zero derivative.

1.6 Conditions for Local Minima

Many numerical optimization methods seek local minima. Local minima are
locally optimal, but we do not generally knowwhether a localminimum is a global
minimum. The conditions we discuss in this section assume that the objective
function is differentiable. Derivatives, gradients, and Hessians are reviewed in

2

The challenge, II

1.7. contour plots 11

This is the definition of a positive semidefinite matrix, and we recover the SONC.
Example 1.1 illustrates how these conditions can be applied to the Rosenbrock
banana function.

A local maximum. The gradient
at the center is zero, but the
Hessian is negative definite.

A saddle. The gradient at the
center is zero, but it is not a
local minimum.

A bowl. The gradient at the
center is zero and the Hessian
is positive definite. It is a local
minimum.

Figure 1.8. The three local regions
where the gradient is zero.

While necessary for optimality, the FONC and SONC are not sufficient for
optimality. For unconstrained optimization of a twice-differentiable function, a
point is guaranteed to be at a strong local minimum if the FONC is satisfied
and ∇2 f (x) is positive definite. These conditions are collectively known as the
second-order sufficient condition (SOSC).

1.7 Contour Plots

This book will include problems with a variety of numbers of dimensions, and
will need to display information over one, two, or three dimensions. Functions of
the form f (x1, x2) = y can be rendered in three-dimensional space, but not all
orientations provide a complete view over the domain. A contour plot is a visual
representation of a three-dimensional surface obtained by plotting regions with
constant y values, known as contours, on a two-dimensional plot with axes indexed
by x1 and x2. Example 1.2 illustrates how a contour plot can be interpreted.

1.8 Overview

This section provides a brief overview of the chapters of this book. The conceptual
dependencies between the chapters are outlined in figure 1.9.

3

The Rosenbrock function: (a − x)2 + b(y − x2)2

4

Some preliminaries I

• Particularly important to implement it well.

• Optimization is costly. In fact, we want to avoid it if possible.

• Often, it comes nested inside another loop.

• Always possible to miss the exact solution.

• Errors might accumulate.

• Often, hard to parallelize.

5

Some preliminaries II

• Transformations of the objective function.

• Including constraints:

1. Design algorithm: interior point, SQP, trust-region reflective.

2. Penalty functions and Lagrangian methods.

• When possible, use state-of-the-art software:

1. NLopt: https://nlopt.readthedocs.io.

2. IPOPT: https://coin-or.github.io/Ipopt/.

3. GNU Linear Programming Kit (GLPK): https://www.gnu.org/software/glpk/.

4. Matlab toolboxes.

• Test, test, and test.

6

https://nlopt.readthedocs.io
https://coin-or.github.io/Ipopt/
https://www.gnu.org/software/glpk/

The landscape I

• Algorithms for optimization go back at least to Euclid (325-265 BCE).

• Easy to fill a year-long sequence just talking about optimization algorithms.

• We will focus on four classes of methods:

1. Basic search methods.

2. Descent direction methods.

3. Alternative non-derivative-based methods.

4. Simulation methods.

7

The landscape II

• We will skip:

1. Linear programming (including simplex, interior point, and active-set).

2. Linear-quadratic programming.

3. Integer programming.

4. Multiobjective optimization (including minmax-type problems).

5. Global optimization: including multistart solvers, generalized pattern search (GPS), generating set

search (GSS), and mesh adaptive search (MADS).

8

A warning

• No free lunch theorem by Wolpert and Macready (1997).

• Loosely speaking: there is no reason to prefer one algorithm over another, unless we make we know

something regarding the probability distribution over the space of possible objective functions.

• In particular, if one algorithm performs better than another on one class of problems, it will perform

worse on another class of problems.

9

Some references

• Algorithms for Optimization by Mykel J. Kochenderfer and Tim A. Wheeler.

• Numerical Optimization, 2nd edition by Jorge Nocedal and Stephen Wright.

• Linear and Nonlinear Programming (3rd ed.), by David G. Luenberger and Yinyu Ye.

• Derivative-Free and Blackbox Optimization by Charles Audet and Warren Hare.

10

Basic search methods

Grid search

• We define a grid [x1, x2, ..., xN] with N points.

• We check the function f (·) at each point of the grid.

• We keep the lowest (highest) value.

• Slow (with strong curse of dimensionality) and it may fail if grid too coarse.

• But, under certain condition, it can be quite useful:

1. Discrete choices.

2. Monotonicities that we can exploit.

3. Bracket initial choices for other algorithms.

4. Easy to parallelize.

11

Golden section search

• Find minimum x of unimodal continuous f : X → R in an interval [a, c].

• By Weierstrass theorem, the minimum exists on [a, c].

• Assume ∃ x ∈ (a, c) and f (x) < min[f (a), f (c)].

• Idea:

1. Select triplet (a, b, c).

2. Update triplet to (a′, b′, c ′) with narrower value range that includes maximum.

3. Stop when value range is narrow enough.

• Questions:

1. How do we optimally pick triplet (a, b, c)?

2. How do we optimally update triplet (a, b, c)?

12

Algorithm

1. Set b = a+ 3−
√
5

2 ∗ (c − a).

2. Set x = a+
√
5−1
2 ∗ (c − a).

3. If |x − b| < tol , then exit the algorithm with return x+b
2 . If not, go to step 4.

4. If f (b) < f (x), update triplet to (a, b, x) and go to step 1.

else, update triplet to (b, x , c) and go to step 1.

13

Computing the Golden Ratio

• The next x lies either on current (a, x) or on (b, c).

• Minimize the worst by equating the size of the intervals:

b − a

c − a
= w

and
c − b

c − a
= 1− w

• Scale similarity: choose w to minimize expected length of next interval → golden ratio ≈ 0.38197.

• Then:

b = a+
3−
√
5

2
∗ (c − a)

x = a+

√
5− 1

2
∗ (c − a)

•

14

Tolerance

• ϵ is your computer’s floating-point precision.

• Taylor expansion: f (x) ≈ f (b) + 1
2 f

′′(b)(x − b)2.

• If f (x) and f (b) are indistinguishable for our machine, their difference should be of order ϵ:

1

2
|f ′′(b)|(x − b)2 < ϵ|f (b)| ⇐⇒ |x − b| <

√
2ϵ|f (b)|
|f ′′(b)|

• |f (b)|/|f ′′(b)| ≈ 1 implies |x − b| <
√
eϵ (of order 10−4 if single precision and of order 10−8 if double

precision).

15

Graphical explanation I

• Consider interval of function where minimum is located.

• Reduce interval until in converges.

16

Graphical explanation II

• Set triplet (a, b, c).

• Choose x such that red and blue lines are equal.

• Golden section: Relative size of both lines is a particular number.

• More concretely, γ = x−a
c−a = c−b

c−a =
√
5−1
2 ≈ 0.618

17

Graphical explanation III

• Check whether f (b) or f (x) is lower:

18

Graphical explanation IV

• Ignore part of interval to the left of b.

• Reset interval b becomes new a.

19

Graphical explanation V

• Find new b.

• Must satisfy same rule as before so: b = a+ 3−
√
5

2 ∗ (c − a).

20

Graphical explanation VI

• Check again whether f (b) or f (x) is lower.

• Ignore part of interval to the right of x .

• Reset interval x becomes new c .

• Find new x = a+ γ(c − a).

• Repeat process until f (b) ≈ f (x).

21

Parabolic interpolation

• If the function is parabolic near to the minimum, a parabola fitted through three points will take us

to an ϵ−neighborhood of the minimum in a single step.

• Find an abscissa through inverse parabolic interpolation:

x = b − 1

2

(b − a)2[f (b)− f (c)]− (b − c)2[f (b)− f (a)]

(b − a)[f (b)− f (c)]− (b − c)[f (b)− f (a)]

• This formula fails if the three points are collinear ⇒ denominator equals zero

22

Graphical explanation I

• Choose three points of the function and draw a parabola through them.

23

Graphical explanation II

• Find the minimum of such parabola, evaluate the function at that point, and update points (c → b

and b → x).

24

Graphical explanation III

• Draw a second parabola and find its minimum, evaluate, and update points.

• Repeat until convergence.

25

Brent’s Method

• Problem: Formula for x simply finds an extremum, could be a minimum or maximum.

• In practice, no minimization scheme that depends solely on it is likely to succeed.

• Solution: Find scheme that relies on a sure-but-slow technique ⇒ Combination of golden section

search and inverse parabolic interpolation.

• Brent’s method (a.k.a. Brent-Dekker method): switch between Golden ratio and parabolic

interpolation.

• Advantages:

1. Avoids unnecessary function evaluations in switching between the two methods.

2. Adequate ending configuration.

3. Robust scheme to decide when to use either parabolic step or golden sections.

26

Brent’s method with first derivatives

• Same goal as w/o derivative: Isolate minimum bracketed, but now use information from derivative.

• Not enough to simply search for a zero of the derivative → Maximum or minimum?

• Derivatives only useful in choosing new trial points within bracket.

• If f ′(b) > 0 → next test point from interval (a, b).

• If f ′(b) < 0 → next test point from interval (b, c).

27

Descent direction methods

Descent direction iteration

• Most popular optimization method, in practice, is some version of a descent direction iteration

method.

• Starting at point x (1) (determined by domain knowledge), a descent direction algorithm generates

sequence of steps (called iterates) that converge to a local minimum.

• The descent direction iteration algorithm:

1. At iteration k, check whether x (k) satisfies termination condition. If so stop; otherwise go to step 2.

2. Determine the descent direction d(k) using local information such as gradient or Hessian.

3. Compute step size α(k).

4. Compute the next candidate point: x (k+1) ← x (k) + α(k)d(k).

• Choice of α and d determines the flavor of the algorithm.

28

Gradient descent method, I

• A natural choice for d is the direction of steepest descent (first proposed by Cauchy in 1847).

• The direction of steepest descent is given by the direction opposite the gradient ∇f (x). Thus, a.k.a.
steepest descent.

• If function is smooth and the step size small, the method leads to improvement (as long as the

gradient is not zero).

• The normalized direction of steepest descent is:

d(k) = − ∇f (x
(k))

||∇f (x (k))||

29

Gradient descent method, II

30

Gradient descent method, III

• One way to set the step size is to solve a line search:

αk = argmin
α

f (x (k) + αd(k))

for example with the Brent’s method.

• Under this step size choice, it can be shown d(k+1) and d(k) are orthogonal.

• In practice, line search can be costly and we settle for a fix α, a αk that geometrically decays, or an

approximated line search.

• Trade off between speed of convergence and robustness.

Heard in Minnesota Econ grad student lab

If you do not know where you are going, at least go slowly.

31

Gradient descent method, IV

32

Stochastic gradient descent

• Even with back propagation, evaluating the gradient when you have many data points can be costly:

thousands of points to evaluate!

• Stochastic gradient descent (SDG): We use only one data point to evaluate (an approximation to)

the gradient.

• We trade off slower convergence rate for faster computation.

• Intuition from other random algorithms.

• An additional advantage.

• SGD converges almost surely to a global minimum when the objective function is convex (and to a

local minimum otherwise).

33

Figure 2-6. Batch gradient descent is sensitive to saddle points, which can lead to prema‐
ture convergence

We only have a single weight, and we use random initialization and batch gradient
descent to find its optimal setting. The error surface, however, has a flat region (also
known as saddle point in high-dimensional spaces), and if we get unlucky, we might
find ourselves getting stuck while performing gradient descent.

Another potential approach is stochastic gradient descent (SGD), where at each itera‐
tion, our error surface is estimated only with respect to a single example. This
approach is illustrated by Figure 2-7, where instead of a single static error surface, our
error surface is dynamic. As a result, descending on this stochastic surface signifi‐
cantly improves our ability to navigate flat regions.

Figure 2-7. The stochastic error surface fluctuates with respect to the batch error surface,
enabling saddle point avoidance

26 | Chapter 2: Training Feed-Forward Neural Networks

34

Figure 2-6. Batch gradient descent is sensitive to saddle points, which can lead to prema‐
ture convergence

We only have a single weight, and we use random initialization and batch gradient
descent to find its optimal setting. The error surface, however, has a flat region (also
known as saddle point in high-dimensional spaces), and if we get unlucky, we might
find ourselves getting stuck while performing gradient descent.

Another potential approach is stochastic gradient descent (SGD), where at each itera‐
tion, our error surface is estimated only with respect to a single example. This
approach is illustrated by Figure 2-7, where instead of a single static error surface, our
error surface is dynamic. As a result, descending on this stochastic surface signifi‐
cantly improves our ability to navigate flat regions.

Figure 2-7. The stochastic error surface fluctuates with respect to the batch error surface,
enabling saddle point avoidance

26 | Chapter 2: Training Feed-Forward Neural Networks

35

Minibatch

• A compromise between using the whole training set and pure stochastic gradient descent: minibatch

gradient descent.

• This is the most popular algorithm to train neural networks.

• Intuition: the standard error of the mean converges slowly (
√
n).

• Notice also resilience to scaling.

• You can flush the algorithm to a graphics processing unit (GPU) or a tensor processing unit (TPU)

instead of a standard CPU.

36

Improving gradient descent

• Gradient descent can perform poorly in narrow valleys (it may require many steps to make progress).

• Famous example: Rosenbrock function → (a− x)2 + b(y − x2)2.

• The conjugate gradient method overcomes this problem by constructing a direction conjugate to the

old gradient, and to all previous directions traversed.

• Define g(x) = ∇f (x).

• In first iteration, set: d (1) = −g(x (1)) and x (2) = x (1) + α(1)d(1). Here, α(1) is arbitrary.

• Subsequent iterations set d(k+1) = −g (k+1) + β(k)d(k).

37

Conjugate descent method

38

Approaches in traditional optimization

• There are two approaches to set β:

1. Fletcher-Reeves:

β(k) =
g (k)Tg (k)

g (k−1)Tg (k−1)

2. Olak-Ribiere:

β(k) =
g (k)T (g (k) − g (k−1))

g (k−1)Tg (k−1)

• The Olak-Ribiere requires an automatic reset at every iteration: β ← max(β, 0).

• If the function to minimize has flat areas, one can introduce a momentum update equation:

v (k+1) = βv (k) − αg (k)

x (k+1) = x (k) + v (k+1)

• The modification reverts to the gradient descent version if β = 0.

• Intuitively, the momentum update is like a ball rolling down an almost horizontal surface.

• As the ball gains momentum, the method accelerates to the valley of the function where the local

minimum is.

39

Adam

• Application to neural network training: Adam (Adaptive Moment Estimation), Kingma and Ba

(2014).

• It uses running averages of both the gradients and the second moments of the gradients.

• Equations

m(k+1) = γ1m
(k) + (1− γ1)∇f (x (k))

v (k+1) = γ2v
(k) + (1− γ2)

(
∇f (x (k))

)2

m̂ =
m(k+1)

1− γ1

v̂ =

√
v (k+1)

1− γ2

x (k+1) = x (k) − η
m̂

v̂ + ϵ
40

Newton-Raphson method

• Most common optimization method in economics (either basic implementation or, more likely, with

modifications).

• Works with univariate and multivariate optimization problems, but requires twice-differentiability of

function.

• Named after Isaac Newton and Joseph Raphson.

• Intimately related with the Newton method designed to solve for root to equation f (x) = 0.

• Optimizes f (x) by using successive quadratic approximations to it.

• Thus, you can think about the method as a second-order descent method where Hessian gives us size

of the step.

41

Idea: univariate case

• Given an initial guess x0, compute the second-order Taylor approximation of f (x) around x0:

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2

• The minimization of this approximation with respect to x has first-order conditions

f ′(x0) + f ′′(x0)(x
∗ − x0) = 0

which gives:

x∗ = x0 −
f ′(x0)

f ′′(x0)

• This suggests the iteration

xn+1 = xn −
f ′(xn)

f ′′(xn)

that ensures quadratic convergence.

42

Graphical view

21

 Move to minimum of quadratic fit at each point

quadratic convergence

Newton Raphson

43

Idea: multivariate case

• For a N-dimensional vector function f (x), x ∈ RN , we can follow the same steps.

• We get:

xn+1 = xn − H−1
n ∇f (xn)

where ∇f (xn) is the gradient of f (x) = 0 and H(·) its Hessian.

• Problems:

1. Numerical evaluation of Hessian: curse of dimensionality.

2. Local vs. global optima.

3. Very sensitive with respect to initial guess. You can “cool down” the update (manually or with

algorithms).

44

Quasi-Newton methods

• Evaluating the Hessian is numerically costly: scale O(n3).

• The Hessian captures the local variation in ∇f (x).

• First-order Taylor approximation of gradient, from xn yields:

∇f (x) ≈ ∇f (xn) + Hn(n − xn)

• We want to find a Hn such that:

1. Hn is symmetric. (Strict concavity can guarantee positive-definiteness).

2. ∇f (xn) evaluated through the approximation should equal to the actual one (secant condition).

3. Hn+1 should be as “close” to Hn as possible.

• Different proposals to approximate Hn generate different quasi-Newtons.

• For example, we can make Hn = I .
45

BFGS

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) developed an efficient algorithm to approximate the

Hessian:

Hn+1 = Hn +
yyT

yT s
− Hnss

THT
n

sTHns

s = xn+1 − xn

y = ∇f (xn+1)−∇f (xn)

• If we take into consideration taking inverse of the Hessian, the scale for computation now is O(n2).

• Furthermore:

H−1
n+1 =

(
I − syT

yT s

)
H−1

n

(
I − ysT

yT s

)
+

ssT

yT s

• This is computationally efficient since taking inverse of matrices is very slow.

46

Alternative non-derivative-based

methods

Downhill simplex method

• In one-dimensional minimization, possible to bracket a minimum.

• No analogous procedure in multidimensional space.

• Downhill Simplex Method by Nelder and Mead (1965):

• Pros: Requires only function evaluations, not derivatives.

• Cons: Not very efficient.

• Simplex: Geometrical figure consisting, in N dimensions, of N + 1 points (or vertices) and all their

interconnecting line segments, polygonal faces, etc. (N = 2 → triangle, N = 3 → tetrahedron)

47

Graphical explanation

48

Algorithm

1. Start with N + 1 points → Initial simplex.

2. Take one of those points to be initial starting point P0.

3. Take other N points to be Pi = P0 +∆ei :

• ∆: Guess of problem’s characteristic length scale (possibly ∆′
i s for each vector direction).

• e′i s: N unit vectors, give direction of where to move.

4. Reflection step: Move point of simplex where function is largest through opposite face of simplex to a

lower point.

5. Terminate when decrease in value function (or vector distance moved) in last step is fractionally

smaller in magnitude than some tolerance.

6. Restart algorithm: Reinitialize N of the N + 1 vertices of the simplex again w/ previous equation, w/

P0 being one of the vertices of the claimed minimum.

49

Different transformations
10.4 Downhill Simplex Method in Multidimensions 403

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

simplex at beginning of step

reflection

reflection and expansion

contraction

multiple

contraction

(a)

(b)

(c)

(d)

high
low

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the
beginning of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one
of (a) a reflection away from the high point, (b) a reflection and expansion away from the high point, (c) a
contraction along one dimension from the high point, or (d) a contraction along all dimensions towards
the low point. An appropriate sequence of such steps will always converge to a minimum of the function.

reflections, and they are constructed to conserve the volume of the simplex (hence
maintain its nondegeneracy). When it can do so, the method expands the simplex
in one or another direction to take larger steps. When it reaches a “valley floor,”
the method contracts itself in the transverse direction and tries to ooze down the
valley. If there is a situation where the simplex is trying to “pass through the eye
of a needle,” it contracts itself in all directions, pulling itself in around its lowest
(best) point. The routine name amoeba is intended to be descriptive of this kind of
behavior; the basic moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent

50

Powell’s method

• If start at point P in N-dimensional space, and proceed in vector direction n, then any function of N

variables f (P) can be minimized along the line n by one-dimensional methods.

• Simplest case: cyclic coordinate search.

• But efficiency depends on how the next direction n is chosen.

• Powell’s Method provides set of N mutually conjugate directions.

• Two vectors u and v are conjugate with respect to Q (or Q-orthogonal) if uTQv = 0.

• Use this set to efficiently perform line minimization (reach minimum after N line minimizations if f

quadratic).

51

Graphical explanation

52

Original algorithm

Initialize the set of directions ui to the basis vectors: ui = ei , i = 0, ...,N − 1.

Repeat following sequence of steps until function stops decreasing:

1. Save your starting position as P0.

2. For i = 0, ...,N − 1, move Pi to the minimum along direction ui and call this point Pi+1.

3. For i = 0, ...,N − 2, set ui ← ui+1.

4. Set uN−1 ← PN − P0.

5. Move PN to the minimum along direction uN−1 and call this point P0.

53

Corrected algorithm

Problem: throwing away, at each stage, u0 in favor of PN − P0 tends to produce

sets of directions that “fold up on each other” and become linearly dependent.

Solutions:

1. Reinitialize the set of directions ui to the basis vectors ei after every N or N + 1 iterations of the

basic procedure.

2. Reset the set of directions to the columns of any orthogonal matrix.

3. Still take PN − P0 as new direction discarding the old direction along which the function f (·) made

its largest decrease.

54

Simulation methods

Random walk Metropolis-Hastings I

• We explore a function f (·) by randomly drawing from it.

• Algorithm:

1. Given a state of the chain xn−1, we generate a proposal:

x∗ = xn−1 + λε, ε ∼ N (0, 1)

2. We compute:

α = min

{
1,

f (x∗)

f (xn−1)

}
3. We set:

xn = x∗ w .p. α

xn = xn−1 w .p. 1− α

4. Keep xn which yields the highest f (·).
55

Random walk Metropolis-Hastings II

• Why does it work? Harris recurrence.

• Particularly easy to implement.

• Transformations of f (·).

• More sophisticated proposals.

• Also, it is straightforward to incorporate complex constraints.

• Equivalent to simulated annealing: iteration-varying λ (“cooling down”).

56

Genetic algorithms

• Large class of methods.

• Fraser and Burnell (1970) and Holland (1975).

• Build on two basic ideas of evolution:

1. Random mutation (sexual or asexual reproduction).

2. Survival-of-the-fittest.

• Not very efficient set of methods...

• ...but it can handle even the most challenging problems.

• They can be mixed with traditional methods.

57

Genetic algorithm basic structure

58

