

Optimization

(Lectures on Numerical Analysis for Economists III)

Jesús Fernández-Villaverde¹ and Pablo Guerrón²

February 24, 2022

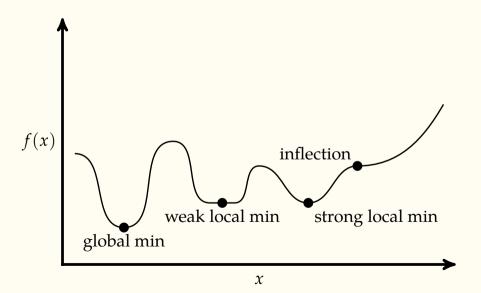
¹University of Pennsylvania

 $^2 \mathsf{Boston}$ College

Optimization

- Optimization of functions is at the core of most economic models: fundamental behavioral assumption of agents (even when we consider cognitive biases).
- Also, key for most methods is classical econometrics.
- ullet Nowadays: machine learning ullet large optimization problems that require efficient computation. Think about OLS with thousands of regressors.
- We rarely have closed-form solutions.
- Minimization vs. maximization.
- Why minimization in this class?

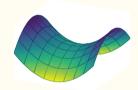
The challenge, I



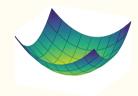
2

The challenge, II

A *local maximum*. The gradient at the center is zero, but the Hessian is negative definite.

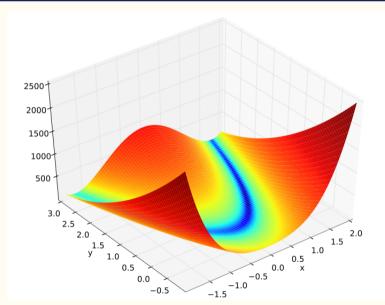


A *saddle*. The gradient at the center is zero, but it is not a local minimum.



A *bowl*. The gradient at the center is zero and the Hessian is positive definite. It is a local minimum.

The Rosenbrock function: $(a - x)^2 + b(y - x^2)^2$



Some preliminaries I

- Particularly important to implement it well.
- Optimization is costly. In fact, we want to avoid it if possible.
- Often, it comes nested inside another loop.
- Always possible to miss the exact solution.
- Errors might accumulate.
- Often, hard to parallelize.

Some preliminaries II

- Transformations of the objective function.
- Including constraints:
 - 1. Design algorithm: interior point, SQP, trust-region reflective.
 - 2. Penalty functions and Lagrangian methods.
- When possible, use state-of-the-art software:
 - 1. NLopt: https://nlopt.readthedocs.io.
 - 2. IPOPT: https://coin-or.github.io/Ipopt/.
 - 3. GNU Linear Programming Kit (GLPK): https://www.gnu.org/software/glpk/.
 - 4. Matlab toolboxes.
- Test, test, and test.

The landscape I

- Algorithms for optimization go back at least to Euclid (325-265 BCE).
- Easy to fill a year-long sequence *just* talking about optimization algorithms.
- We will focus on four classes of methods:
 - 1. Basic search methods.
 - 2. Descent direction methods.
 - 3. Alternative non-derivative-based methods.
 - 4. Simulation methods.

The landscape II

- We will skip:
 - 1. Linear programming (including simplex, interior point, and active-set).
 - 2. Linear-quadratic programming.
 - 3. Integer programming.
 - 4. Multiobjective optimization (including minmax-type problems).
 - 5. Global optimization: including multistart solvers, generalized pattern search (GPS), generating set search (GSS), and mesh adaptive search (MADS).

A warning

- No free lunch theorem by Wolpert and Macready (1997).
- Loosely speaking: there is no reason to prefer one algorithm over another, unless we make we know something regarding the probability distribution over the space of possible objective functions.
- In particular, if one algorithm performs better than another on one class of problems, it will perform worse on another class of problems.

Some references

- Algorithms for Optimization by Mykel J. Kochenderfer and Tim A. Wheeler.
- Numerical Optimization, 2nd edition by Jorge Nocedal and Stephen Wright.
- Linear and Nonlinear Programming (3rd ed.), by David G. Luenberger and Yinyu Ye.
- Derivative-Free and Blackbox Optimization by Charles Audet and Warren Hare.

Basic search methods

Grid search

- We define a grid $[x_1, x_2, ..., x_N]$ with N points.
- We check the function $f(\cdot)$ at each point of the grid.
- We keep the lowest (highest) value.
- Slow (with strong curse of dimensionality) and it may fail if grid too coarse.
- But, under certain condition, it can be quite useful:
 - 1. Discrete choices.
 - 2. Monotonicities that we can exploit.
 - 3. Bracket initial choices for other algorithms.
 - 4. Easy to parallelize.

Golden section search

- Find minimum x of unimodal continuous $f: X \to R$ in an interval [a, c].
- By Weierstrass theorem, the minimum exists on [a, c].
- Assume $\exists x \in (a, c)$ and f(x) < min[f(a), f(c)].
- Idea:
 - 1. Select triplet (a, b, c).
 - 2. Update triplet to (a', b', c') with narrower value range that includes maximum.
 - 3. Stop when value range is narrow enough.
- Questions:
 - 1. How do we optimally pick triplet (a, b, c)?
 - 2. How do we optimally update triplet (a, b, c)?

Algorithm

- 1. Set $b = a + \frac{3-\sqrt{5}}{2} * (c a)$.
- 2. Set $x = a + \frac{\sqrt{5}-1}{2} * (c a)$.
- 3. If |x-b| < tol, then exit the algorithm with return $\frac{x+b}{2}$. If not, go to step 4.
- 4. If f(b) < f(x), update triplet to (a, b, x) and go to step 1. else, update triplet to (b, x, c) and go to step 1.

Computing the Golden Ratio

- The next x lies either on current (a, x) or on (b, c).
- Minimize the worst by equating the size of the intervals:

$$\frac{b-a}{c-a}=w$$

and

$$\frac{c-b}{c-a}=1-w$$

- Scale similarity: choose w to minimize expected length of next interval \rightarrow golden ratio ≈ 0.38197 .
- Then:

$$b = a + \frac{3 - \sqrt{5}}{2} * (c - a)$$
$$x = a + \frac{\sqrt{5} - 1}{2} * (c - a)$$

Tolerance

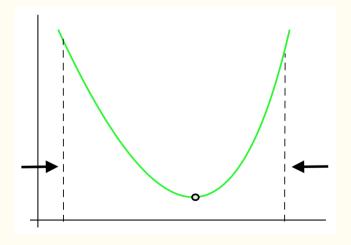
- \bullet ϵ is your computer's floating-point precision.
- Taylor expansion: $f(x) \approx f(b) + \frac{1}{2}f''(b)(x-b)^2$.
- If f(x) and f(b) are indistinguishable for our machine, their difference should be of order ϵ :

$$\frac{1}{2}|f''(b)|(x-b)^2 < \epsilon|f(b)| \iff |x-b| < \sqrt{\frac{2\epsilon|f(b)|}{|f''(b)|}}$$

• $|f(b)|/|f''(b)| \approx 1$ implies $|x-b| < \sqrt{e\epsilon}$ (of order 10^{-4} if single precision and of order 10^{-8} if double precision).

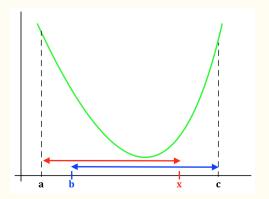
Graphical explanation I

- Consider interval of function where minimum is located.
- Reduce interval until in converges.



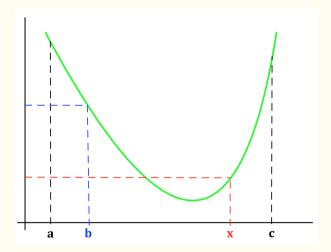
Graphical explanation II

- Set triplet (*a*, *b*, *c*).
- Choose x such that red and blue lines are equal.
- Golden section: Relative size of both lines is a particular number.
- More concretely, $\gamma=\frac{{\rm x}-{\it a}}{\it c-{\it a}}=\frac{\it c-{\it b}}{\it c-{\it a}}=\frac{\sqrt{5}-1}{2}\approx 0.618$



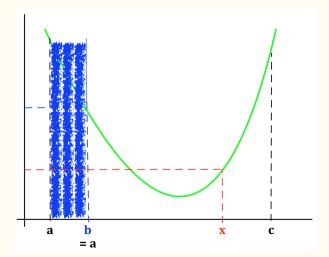
Graphical explanation III

• Check whether f(b) or f(x) is lower:



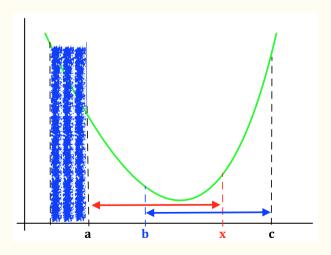
Graphical explanation IV

- Ignore part of interval to the left of **b**.
- Reset interval **b** becomes new **a**.



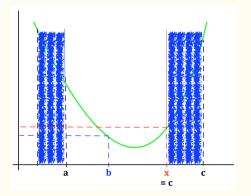
Graphical explanation V

- Find new b.
- Must satisfy same rule as before so: $b = a + \frac{3-\sqrt{5}}{2}*(c-a)$.



Graphical explanation VI

- Check again whether f(b) or f(x) is lower.
- Ignore part of interval to the right of x.
- Reset interval x becomes new c.
- Find new $x = a + \gamma(c a)$.
- Repeat process until $f(b) \approx f(x)$.



Parabolic interpolation

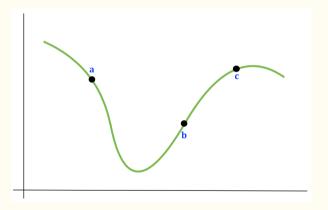
- If the function is parabolic near to the minimum, a parabola fitted through three points will take us to an ϵ -neighborhood of the minimum in a single step.
- Find an abscissa through inverse parabolic interpolation:

$$x = b - \frac{1}{2} \frac{(b-a)^2 [f(b) - f(c)] - (b-c)^2 [f(b) - f(a)]}{(b-a)[f(b) - f(c)] - (b-c)[f(b) - f(a)]}$$

ullet This formula fails if the three points are collinear \Rightarrow denominator equals zero

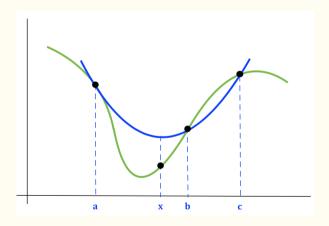
Graphical explanation I

• Choose three points of the function and draw a parabola through them.



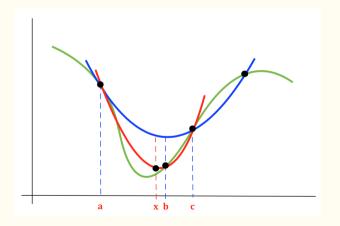
Graphical explanation II

• Find the minimum of such parabola, evaluate the function at that point, and update points $(c \to b)$ and $(c \to b)$ and $(c \to b)$.



Graphical explanation III

- Draw a second parabola and find its minimum, evaluate, and update points.
- Repeat until convergence.



Brent's Method

- Problem: Formula for x simply finds an extremum, could be a minimum or maximum.
- In practice, no minimization scheme that depends solely on it is likely to succeed.
- Solution: Find scheme that relies on a sure-but-slow technique ⇒ Combination of golden section search and inverse parabolic interpolation.
- **Brent's method** (a.k.a. Brent-Dekker method): switch between Golden ratio and parabolic interpolation.
- Advantages:
 - 1. Avoids unnecessary function evaluations in switching between the two methods.
 - 2. Adequate ending configuration.
 - 3. Robust scheme to decide when to use either parabolic step or golden sections.

Brent's method with first derivatives

- Same goal as w/o derivative: Isolate minimum bracketed, but now use information from derivative.
- Not enough to simply search for a zero of the derivative → Maximum or minimum?
- Derivatives only useful in choosing new trial points within bracket.
 - If $f'(b) > 0 \rightarrow$ next test point from interval (a, b).
 - If $f'(b) < 0 \rightarrow$ next test point from interval (b, c).

Descent direction methods

Descent direction iteration

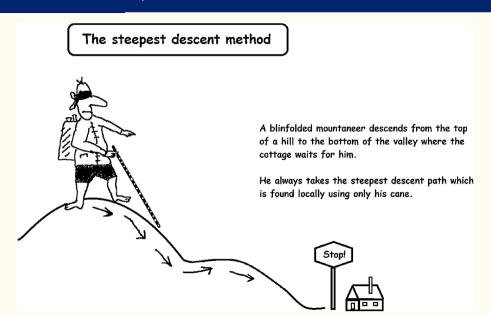
- Most popular optimization method, in practice, is some version of a descent direction iteration method.
- Starting at point $x^{(1)}$ (determined by domain knowledge), a descent direction algorithm generates sequence of steps (called iterates) that converge to a local minimum.
- The descent direction iteration algorithm:
 - 1. At iteration k, check whether $x^{(k)}$ satisfies termination condition. If so stop; otherwise go to step 2.
 - 2. Determine the descent direction $\mathbf{d}^{(k)}$ using local information such as gradient or Hessian.
 - 3. Compute step size $\alpha^{(k)}$.
 - 4. Compute the next candidate point: $x^{(k+1)} \leftarrow x^{(k)} + \alpha^{(k)} \mathbf{d}^{(k)}$.
- ullet Choice of lpha and d determines the flavor of the algorithm.

Gradient descent method, I

- A natural choice for **d** is the direction of steepest descent (first proposed by Cauchy in 1847).
- The direction of steepest descent is given by the direction opposite the gradient $\nabla f(x)$. Thus, a.k.a. steepest descent.
- If function is smooth and the step size small, the method leads to improvement (as long as the gradient is not zero).
- The normalized direction of steepest descent is:

$$\mathbf{d}^{(k)} = -\frac{\nabla f(x^{(k)})}{||\nabla f(x^{(k)})||}$$

Gradient descent method, II



Gradient descent method, III

• One way to set the step size is to solve a line search:

$$\alpha^k = \arg\min_{\alpha} f(x^{(k)} + \alpha \mathbf{d}^{(k)})$$

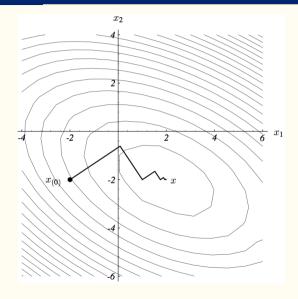
for example with the Brent's method.

- Under this step size choice, it can be shown $\mathbf{d}^{(k+1)}$ and $\mathbf{d}^{(k)}$ are orthogonal.
- In practice, line search can be costly and we settle for a fix α , a α^k that geometrically decays, or an approximated line search.
- Trade off between speed of convergence and robustness.

Heard in Minnesota Econ grad student lab

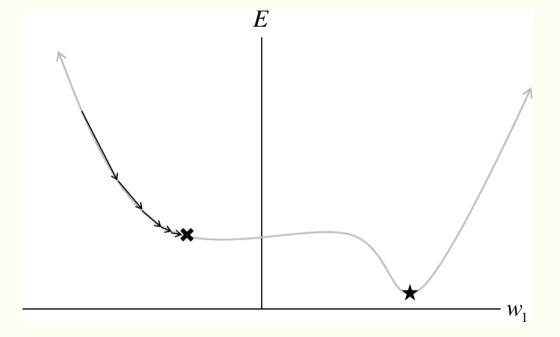
If you do not know where you are going, at least go slowly.

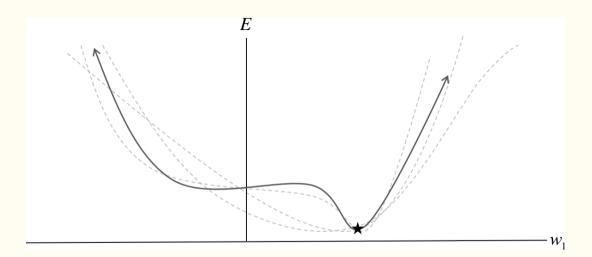
Gradient descent method, IV



Stochastic gradient descent

- Even with back propagation, evaluating the gradient when you have many data points can be costly: thousands of points to evaluate!
- Stochastic gradient descent (SDG): We use only one data point to evaluate (an approximation to) the gradient.
- We trade off slower convergence rate for faster computation.
- Intuition from other random algorithms.
- An additional advantage.
- SGD converges almost surely to a global minimum when the objective function is convex (and to a local minimum otherwise).





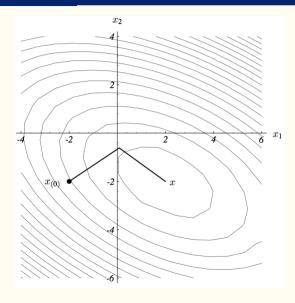
Minibatch

- A compromise between using the whole training set and pure stochastic gradient descent: minibatch gradient descent.
- This is the most popular algorithm to train neural networks.
- Intuition: the standard error of the mean converges slowly (\sqrt{n}) .
- Notice also resilience to scaling.
- You can flush the algorithm to a graphics processing unit (GPU) or a tensor processing unit (TPU) instead of a standard CPU.

Improving gradient descent

- Gradient descent can perform poorly in narrow valleys (it may require many steps to make progress).
- Famous example: Rosenbrock function $\rightarrow (a-x)^2 + b(y-x^2)^2$.
- The *conjugate gradient* method overcomes this problem by constructing a direction conjugate to the old gradient, and to all previous directions traversed.
- Define $g(x) = \nabla f(x)$.
- In first iteration, set: $d^{(1)} = -g(x^{(1)})$ and $x^{(2)} = x^{(1)} + \alpha^{(1)}\mathbf{d}^{(1)}$. Here, $\alpha^{(1)}$ is arbitrary.
- Subsequent iterations set $\mathbf{d}^{(\mathbf{k}+\mathbf{1})} = -\mathbf{g}^{(k+1)} + \beta^{(k)}\mathbf{d}^{(\mathbf{k})}$.

Conjugate descent method



Approaches in traditional optimization

- There are two approaches to set β :
 - 1. Fletcher-Reeves:

$$\beta^{(k)} = \frac{g^{(k)T}g^{(k)}}{g^{(k-1)T}g^{(k-1)}}$$

2. Olak-Ribiere:

$$\beta^{(k)} = \frac{g^{(k)T}(g^{(k)} - g^{(k-1)})}{g^{(k-1)T}g^{(k-1)}}$$

- The Olak-Ribiere requires an automatic reset at every iteration: $\beta \leftarrow \max(\beta, 0)$.
- If the function to minimize has flat areas, one can introduce a momentum update equation:

$$v^{(k+1)} = \beta v^{(k)} - \alpha g^{(k)}$$
$$x^{(k+1)} = x^{(k)} + v^{(k+1)}$$

- The modification reverts to the gradient descent version if $\beta = 0$.
- Intuitively, the momentum update is like a ball rolling down an almost horizontal surface.

Adam

- Application to neural network training: Adam (Adaptive Moment Estimation), Kingma and Ba (2014).
- It uses running averages of both the gradients and the second moments of the gradients.
- Equations

$$\begin{split} m^{(k+1)} &= \gamma_1 m^{(k)} + (1 - \gamma_1) \nabla f(x^{(k)}) \\ v^{(k+1)} &= \gamma_2 v^{(k)} + (1 - \gamma_2) \left(\nabla f(x^{(k)}) \right)^2 \\ \widehat{m} &= \frac{m^{(k+1)}}{1 - \gamma_1} \\ \widehat{v} &= \sqrt{\frac{v^{(k+1)}}{1 - \gamma_2}} \\ x^{(k+1)} &= x^{(k)} - \eta \frac{\widehat{m}}{\widehat{v} + \epsilon} \end{split}$$

Newton-Raphson method

- Most common optimization method in economics (either basic implementation or, more likely, with modifications).
- Works with univariate and multivariate optimization problems, but requires twice-differentiability of function.
- Named after Isaac Newton and Joseph Raphson.
- Intimately related with the Newton method designed to solve for root to equation f(x) = 0.
- Optimizes f(x) by using successive quadratic approximations to it.
- Thus, you can think about the method as a second-order descent method where Hessian gives us size of the step.

Idea: univariate case

• Given an initial guess x_0 , compute the second-order Taylor approximation of f(x) around x_0 :

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$$

 \bullet The minimization of this approximation with respect to x has first-order conditions

$$f'(x_0) + f''(x_0)(x^* - x_0) = 0$$

which gives:

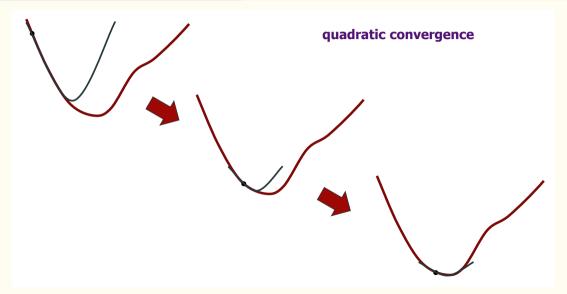
$$x^* = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

This suggests the iteration

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

that ensures quadratic convergence.

Graphical view



Idea: multivariate case

- For a N-dimensional vector function f(x), $x \in \mathbb{R}^N$, we can follow the same steps.
- We get:

$$x_{n+1} = x_n - H_n^{-1} \nabla f(x_n)$$

where $\nabla f(x_n)$ is the gradient of f(x) = 0 and $H(\cdot)$ its Hessian.

- Problems:
 - 1. Numerical evaluation of Hessian: curse of dimensionality.
 - 2. Local vs. global optima.
 - Very sensitive with respect to initial guess. You can "cool down" the update (manually or with algorithms).

Quasi-Newton methods

- Evaluating the Hessian is numerically costly: scale $O(n^3)$.
- The Hessian captures the local variation in $\nabla f(x)$.
- First-order Taylor approximation of gradient, from x_n yields:

$$\nabla f(x) \approx \nabla f(x_n) + H_n(n-x_n)$$

- We want to find a H_n such that:
 - 1. H_n is symmetric. (Strict concavity can guarantee positive-definiteness).
 - 2. $\nabla f(x_n)$ evaluated through the approximation should equal to the actual one (secant condition).
 - 3. H_{n+1} should be as "close" to H_n as possible.
- Different proposals to approximate H_n generate different quasi-Newtons.
- For example, we can make $H_n = I$.

BFGS

 Broyden-Fletcher-Goldfarb-Shanno (BFGS) developed an efficient algorithm to approximate the Hessian:

$$H_{n+1} = H_n + \frac{yy^T}{y^Ts} - \frac{H_n ss^T H_n^T}{s^T H_n s}$$
$$s = x_{n+1} - x_n$$
$$y = \nabla f(x_{n+1}) - \nabla f(x_n)$$

- If we take into consideration taking inverse of the Hessian, the scale for computation now is $O(n^2)$.
- Furthermore:

$$H_{n+1}^{-1} = \left(I - \frac{sy^T}{y^Ts}\right) H_n^{-1} \left(I - \frac{ys^T}{y^Ts}\right) + \frac{ss^T}{y^Ts}$$

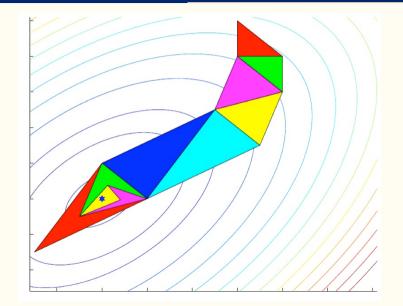
• This is computationally efficient since taking inverse of matrices is very slow.

Alternative non-derivative-based methods

Downhill simplex method

- In one-dimensional minimization, possible to bracket a minimum.
- No analogous procedure in multidimensional space.
- Downhill Simplex Method by Nelder and Mead (1965):
 - Pros: Requires only function evaluations, not derivatives.
 - Cons: Not very efficient.
- Simplex: Geometrical figure consisting, in N dimensions, of N+1 points (or vertices) and all their interconnecting line segments, polygonal faces, etc. ($N=2 \rightarrow \text{triangle}$, $N=3 \rightarrow \text{tetrahedron}$)

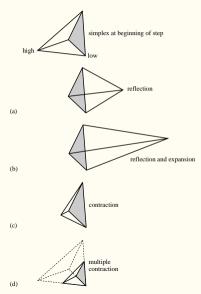
Graphical explanation



Algorithm

- 1. Start with N + 1 points \rightarrow Initial simplex.
- 2. Take one of those points to be initial starting point P_0 .
- 3. Take other **N** points to be $\mathbf{P}_i = \mathbf{P}_0 + \Delta \mathbf{e}_i$:
 - Δ : Guess of problem's characteristic length scale (possibly $\Delta'_i s$ for each vector direction).
 - **e**'_is: **N** unit vectors, give direction of where to move.
- 4. *Reflection* step: Move point of simplex where function is largest through opposite face of simplex to a lower point.
- 5. Terminate when decrease in value function (or vector distance moved) in last step is fractionally smaller in magnitude than some tolerance.
- 6. Restart algorithm: Reinitialize N of the N+1 vertices of the simplex again w/ previous equation, w/ P_0 being one of the vertices of the claimed minimum.

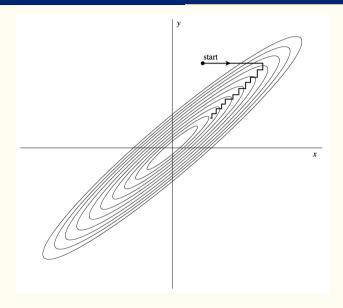
Different transformations



Powell's method

- If start at point P in N-dimensional space, and proceed in vector direction \mathbf{n} , then any function of N variables f(P) can be minimized along the line \mathbf{n} by one-dimensional methods.
- Simplest case: cyclic coordinate search.
- \bullet But efficiency depends on how the next direction \mathbf{n} is chosen.
- Powell's Method provides set of N mutually conjugate directions.
- Two vectors \mathbf{u} and \mathbf{v} are *conjugate* with respect to Q (or Q-orthogonal) if $\mathbf{u}^T \mathbf{Q} \mathbf{v} = 0$.
- Use this set to efficiently perform line minimization (reach minimum after N line minimizations if f quadratic).

Graphical explanation



Original algorithm

Initialize the set of directions \mathbf{u}_i to the basis vectors: $\mathbf{u}_i = \mathbf{e}_i$, i = 0, ..., N - 1.

Repeat following sequence of steps until function stops decreasing:

- 1. Save your starting position as P_0 .
- 2. For i = 0, ..., N 1, move P_i to the minimum along direction \mathbf{u}_i and call this point P_{i+1} .
- 3. For i = 0, ..., N 2, set $\mathbf{u}_i \leftarrow \mathbf{u}_{i+1}$.
- 4. Set $\mathbf{u}_{N-1} \leftarrow \mathbf{P}_N \mathbf{P}_0$.
- 5. Move P_N to the minimum along direction \mathbf{u}_{N-1} and call this point P_0 .

Corrected algorithm

Problem: throwing away, at each stage, \mathbf{u}_0 in favor of $\mathbf{P}_N - \mathbf{P}_0$ tends to produce sets of directions that "fold up on each other" and become linearly dependent.

Solutions:

- 1. Reinitialize the set of directions \mathbf{u}_i to the basis vectors \mathbf{e}_i after every N or N+1 iterations of the basic procedure.
- 2. Reset the set of directions to the columns of any orthogonal matrix.
- 3. Still take $P_N P_0$ as new direction discarding the old direction along which the function $f(\cdot)$ made its *largest decrease*.

Simulation methods

Random walk Metropolis-Hastings I

- We explore a function $f(\cdot)$ by randomly drawing from it.
- Algorithm:
 - 1. Given a state of the chain x_{n-1} , we generate a proposal:

$$x^* = x_{n-1} + \lambda \varepsilon, \ \varepsilon \sim \mathcal{N}(0, 1)$$

2. We compute:

$$\alpha = \min \left\{ 1, \frac{f(x^*)}{f(x_{n-1})} \right\}$$

3. We set:

$$x_n = x^* w.p. \alpha$$

 $x_n = x_{n-1} w.p. 1 - \alpha$

4. Keep x_n which yields the highest $f(\cdot)$.

Random walk Metropolis-Hastings II

- Why does it work? Harris recurrence.
- Particularly easy to implement.
- Transformations of $f(\cdot)$.
- More sophisticated proposals.
- Also, it is straightforward to incorporate complex constraints.
- Equivalent to simulated annealing: iteration-varying λ ("cooling down").

Genetic algorithms

- Large class of methods.
- Fraser and Burnell (1970) and Holland (1975).
- Build on two basic ideas of evolution:
 - 1. Random mutation (sexual or asexual reproduction).
 - 2. Survival-of-the-fittest.
- Not very efficient set of methods...
- ...but it can handle even the most challenging problems.
- They can be mixed with traditional methods.

Genetic algorithm basic structure

