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A basic model with aggregate uncertainty, I

• We want to deal with models with aggregate uncertainty.

• Why?

• Issues of interpretation (forecasting vs. policy analysis, etc.).

• Internal vs. external propagation.

• Exogenous vs. endogenous risk.
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A basic model with aggregate uncertainty, I

• Aggregate production function

Yt = stF (Kt , Lt)

where {st} is a sequence of random variables.

• Let

st ∈ {sb, sg} = S

with sb < sg and conditional probabilities π(s ′|s).

• sb is an economic recession and sg is an expansion.

• Easy to extend to richer specifications.
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A basic model with aggregate uncertainty, II

• Idiosyncratic labor productivity yt
yt ∈ Y = {yu, ye}

with yu < ye .

• yu stands for the household being unemployed and ye stands for the household being employed.

• The distribution of yt is correlated with aggregate productivity st .

• Probability of being unemployed is higher during recessions than during expansions.

• Let π be a 4× 4matrix with entry

π(y ′, s ′|y , s) > 0

that gives the conditional probability of individual productivity y ′, aggregate state s ′ tomorrow,

conditional on (y , s) today.

3



Cross-sectional distributions

• Consistency requires that:∑
y ′∈Y

π(y ′, s ′|y , s) = π(s ′|s) all y ∈ Y , all s, s ′ ∈ S

• Law of large numbers: idiosyncratic risk averages out, only aggregate risk determines number of

agents in states y ∈ Y .

• Assume that, cross-sectionally, the fraction of the population in idiosyncratic state y = yu is only a

function of the aggregate state s. Denote the cross-sectional distribution by Πs(y).

• This assumption imposes additional restrictions on π(y ′, s ′|y , s):

Πs′(y
′) =

∑
y∈Y

π(y ′, s ′|y , s)
π(s ′|s)

Πs(y) for all s, s
′ ∈ S
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Recursive formulation

• Individual state variables (a, y).

• Aggregate state variables (s,Φ).

• Recursive formulation of household problem:

v(a, y , s,Φ) = max
c,a′≥0

{U(c) + β
∑
y ′∈Y

∑
s′∈S

π(y ′, s ′|y , s)v(a′, y ′, s ′,Φ′)}

s.t. c + a′ = w(s,Φ)y + (1 + r(s,Φ))a

Φ′ = H(s,Φ, s ′)

5



Recursive competitive equilibrium, I

A RCE is value function v : Z × S ×M → R, household policy functions c , a′ : Z × S ×M → R, firm

policy functions K , L : S ×M → R, pricing functions r ,w : S ×M → R, aggregate law of motion

H : S ×M× S→ M s.t.

1. v , a′, c are measurable wrt B(S), v satisfies the household’s Bellman equation and a′, c are the

associated policy functions, given r() and w()

2. K , L satisfy, given r() and w()

r(s,Φ) = FK (K (s,Φ), L(s,Φ))− δ

w(s,Φ) = FL(K (s,Φ), L(s,Φ))
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Recursive competitive equilibrium, II

3. For all Φ ∈ M and all s ∈ S

K (H(s,Φ)) =

∫
a′(a, y , s,Φ)dΦ

L(s,Φ) =

∫
ydΦ∫

c(a, y , s,Φ)dΦ+

∫
a′(a, y , s,Φ)dΦ =

F (K (s,Φ), L(s,Φ)) + (1− δ)K (s,Φ)

4. Aggregate law of motion H is generated by exogenous Markov chain π and policy function a′.
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Transition functions

• Define QΦ,s,s′ : Z × B(Z ) → [0, 1] by:

QΦ,s,s′((a, y), (A,Y)) =
∑
y ′∈Y

{
π(y ′, s ′|y , s) if a′(a, y , s,Φ) ∈ A

0 else

• Aggregate law of motion:

Φ′(A,Y) = (H(s,Φ, s ′)) (A,Y) =

∫
QΦ,s,s′((a, y), (A,Y))Φ(da× dy)
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Lack of theoretical results

• We do not know about the existence of a recursive equilibrium in which the aggregate state only

contains the current shock and the current wealth distribution (in fact, some counterexamples in

Kubler and Schmedders, 2002).

• Miao (2006): existence of recursive equilibrium when we also track the cross-sectional distribution of

expected payoffs.

• Similarly, we do not know about uniqueness.

• We will compute approximate equilibrium with boundedly rational agents (where approximation is not

just due to numerical error).

• No sense as to whether this equilibrium is close to a true recursive equilibrium.

• Recently, idea of self-justified equilibria by Kubler and Scheidegger (2019).
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Keeping track of wealth distribution

• Key challenge: wealth distribution Φ is an infinite-dimensional object.

• Why do agents need to keep track of Φ? In order to forecast future capital stock and, with it, future

prices.

• But for K ′ need entire Φ since:

K ′ =

∫
a′(a, y , s,Φ)dΦ

• If a′ were linear in a, with same slope for all y ∈ Y , exact aggregation obtained and average capital

stock today is sufficient statistic for the average capital stock tomorrow.

• Krusell and Smith’s proposal: approximate distribution Φ with a finite set of moments.
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Computation, I

• Let n-dimensional vector m denote first n moments of asset distribution.

• Agents use an approximate law of motion:

m′ = Hn(s,m)

• Agents are boundedly rational in the sense that moments of higher order than n of the current wealth

distribution may help to more accurately forecast the first n moments tomorrow.

• Choose the number of moments and the functional form of the function Hn.
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Computation, II

• Krusell and Smith pick n = 1 and pose

log(K ′) = as + bs log(K )

for s ∈ {sb, sg}. Here (as , bs) are parameters that need to be determined.

• Household problem

v(a, y , s,K ) = max
c,a′≥0

{U(c) + β
∑
y ′∈Y

∑
s′∈S

π(y ′, s ′|y , s)v(a′, y ′, s ′,K ′)}

s.t. c + a′ = w(s,K )y + (1 + r(s,K ))a

log(K ′) = as + bs log(K )

• Reduction of the state space to a four dimensional space (a, y , s,K ) ∈ R× Y × S × R.
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Algorithm, I

1. Guess (as , bs).

2. Solve households problem to obtain a′(a, y , s,K ).

3. Simulate for large number of T periods, large number N of households:

• Initial conditions for economy (s0,K0), for each household (ai0, y
i
0).

• Draw random sequences {st}Tt=1 and {y i
t}T ,N

t=1,i=1, use decision rule a′(a, y , s,K), perceived law of motion

for K to generate {ait}T ,N
t=1,i=1.

• Aggregate:

Kt =
1

N

N∑
i=1

ait
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Algorithm, II

4. Run the regressions

log(K ′) = αs + βs log(K )

to estimate (αs , βs) for s ∈ S .

5. If the R2 for this regression is high and (αs , βs) ≈ (as , bs) stop. An approximate equilibrium is found.

Otherwise update guess for (as , bs).

6. If guesses for (as , bs) converge, but R
2 remains low, add higher moments to the aggregate law of

motion and/or use different functional form.
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Parallelization

• As with Aiyagari Models, there are gains to parallelization.

• Computation of value function and simulation can be parallelized.

• Update of law of motion for moments of distribution is harder to parallelize.
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A quantitative example

• Model period 1 quarter (business cycle model).

• CRRA utility with σ = 1 (i.e. log-utility).

• The time discount factor β = 0.994 = 0.96, i.e. ρ = 4.1%.

• Capital share α = 0.36.

• Annual depreciation rate δ = (1− 0.025)4 − 1 = 9.6%.

16



Aggregate shocks

• Two state process: expansion and recession: S = {0.99, 1.01}.
• St. dev. of technology shock is σs = 0.01.

• Transition matrix symmetric:

π(sg |sg ) = π(sb|sb)

• Expected time in good state and bad state 8 quarters, hence

8 = [1− π(sg |sg )]
[
1 + 2π(sg |sg ) + 3π(sg |sg )2 + . . .

]
π(sg |sg ) =

7

8

• Thus

π(s ′|s) =

(
7
8

1
8

1
8

7
8

)
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Idiosyncratic shocks

• Two state process: employment and unemployment

Y = {0.25, 1}

• Unemployed person makes 25% of the labor income of an employed person.

• Transition probabilities:

π(y ′|s ′, y , s) = π(y ′, s ′|y , s)
π(s ′|s)

or

π(y ′, s ′|y , s) = π(y ′|s ′, y , s) ∗ π(s ′|s)

• Specify the four 2× 2 matrices π(y ′|s ′, y , s) indicating, conditional on an aggregate transition from s

to s ′, what the individual’s probabilities of transition from employment to unemployment are.
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Income process, I

• Expansion: average time of unemployment equal to 1.5 quarters:

1.5 = [1− π(y ′ = yu|s ′ = sg , y = yu, s = sg )] ∗
∞∑
i=1

i ∗ π(y ′ = yu|s ′ = sg , y = yu, s = sg )
i−1

π(y ′ = yu|s ′ = sg , y = yu, s = sg ) =
1

3

Hence π(y ′ = ye |s ′ = sg , y = yu, s = sg ) =
2
3 .

• Recession: average time of unemployment equal to 2.5 quarters:

π(y ′ = yu|s ′ = sb, y = yu, s = sb) = 0.6

π(y ′ = ye |s ′ = sb, y = yu, s = sb) = 0.4
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Income process, II

• Probability of remaining unemployed after switch from expansion to recession is 1.25 times the same

probability when the economy was already in a recession

π(y ′ = yu|s ′ = sb, y = yu, s = sg ) = 0.75

π(y ′ = ye |s ′ = sb, y = yu, s = sg ) = 0.25

• Probability of remaining unemployed after switch from recession to expansion is 0.75 times the same

probability when times were already good.

π(y ′ = yu|s ′ = sg , y = yu, s = sb) = 0.25

π(y ′ = ye |s ′ = sg , y = yu, s = sb) = 0.75
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Income process, III

• Unemployment rate:

1. Recessions: Πsb (yu) = 10%.

2. Expansions: Πsg (yu) = 4%.

• Consistency with aggregate transition probabilities requires:

Πs′(y
′) =

∑
y∈Y

π(y ′, s ′|y , s)
π(s ′|s)

Πs(y) for all s, s
′ ∈ S
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Income process, IV

• Then:

π(y ′ = yu|s ′ = sg , y = ye , s = sg ) = 0.028

π(y ′ = ye |s ′ = sg , y = ye , s = sg ) = 0.972

π(y ′ = yu|s ′ = sb, y = ye , s = sb) = 0.04

π(y ′ = ye |s ′ = sb, y = ye , s = sb) = 0.96

π(y ′ = yu|s ′ = sb, y = ye , s = sg ) = 0.079

π(y ′ = ye |s ′ = sb, y = ye , s = sg ) = 0.921

π(y ′ = yu|s ′ = sg , y = ye , s = sb) = 0.02

π(y ′ = ye |s ′ = sg , y = ye , s = sb) = 0.98

• Best times for finding job when economy moves from recession to boom, worst chances when

economy moves from boom into recession.
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Income process, V

π =


0.525 0.035 0.09375 0.0099

0.35 0.84 0.03125 0.1151

0.03125 0.0025 0.292 0.0245

0.09375 0.1225 0.583 0.8505
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Results, I

• Only thing to forecast is K ′. Hence, we try n = 1.

• Converged law of motion:

log(K ′) = 0.095 + 0.962 log(K ) for s = sg

log(K ′) = 0.085 + 0.965 log(K ) for s = sb

• Use simulated time series for aggregate capital stock with sequence of aggregate shocks {(st ,Kt}Tt=0.

Divide sample into periods with st = sb and st = sg and run:

log(Kt+1) = αj + βj log(Kt) + εjt+1

• Define

ε̂jt+1 = log(Kt+1)− α̂j − β̂j log(Kt) for j = g , b
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Results, II

• Define

σj =

 1

Tj

∑
t∈τj

(
ε̂jt

)20.5

R2
j = 1−

∑
t∈τj

(
ε̂jt

)2
∑

t∈τj

(
logKt+1 − log K̄

)2
• If σj = 0 for j = g , b (if R2

j = 1 for j = g , b) then agents do not make forecasting errors.

• Estimates:
R2
j = 0.999998 for j = b, g

σg = 0.0028

σb = 0.0036

• Maximal forecasting errors for interest rates 25 years into the future is 0.1%. Corresponding utility

losses? 25



Caution about accuracy

• Den Haan (2010) shows that one must be careful interpreting accuracy measures.

• R2 measures comovement.

• Alternative measures (Euler equation errors,...).

• Interaction among errors.
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4.2. Experiment 2: missing non-linearity

4.2.1. Experiment 2: specification

In the second Monte Carlo experiment, the true law of motion is given by

mtþ1 ¼ a0 þ a1;tmt þ a2at , (21)

a1;t ¼ a1 þ
a3

a4 expð�a5mtÞ

� �
. (22)

The approximating law of motion is again equal to a linear process and, thus, misses that the true process has a time-
varying autoregressive coefficient. The values of the coefficients are chosen to be all positive so that shocks are more
persistent when mt takes on higher values. Two different sets of parameter values are considered. In the first set, the
exogenous driving process, at , is serially correlated and r1 ¼ 0:95. In the second parameter set, at is not serially correlated.
All other parameter values are identical, except that the value of s� is adjusted to ensure that the standard deviation of mt is
the same in both cases and—as in the first experiment—equal to 0.025. With the first parameter set, the autoregressive
coefficient, a1;t , varies between 0.90 and 0.95 (in a sample of 50,000 observations), whereas with the second parameter set
it varies between 0.85 and 0.95. Although the variation is less in the first parameter set, the time-varying aspect of the
autoregressive coefficient turns out to be more important for the first parameter set. The reason is that the persistence in at

creates more persistence in a1;t as well. The parameter values are reported in Table 2.

4.2.2. Experiment 2: traditional accuracy test outcomes

Results for the traditional accuracy tests are reported in Table 3. The R2 for the level equations is very high for both sets
of parameter values. For T ¼ 3;000, the minimum R2 across Monte Carlo replications is above 0.9997 for both parameter
sets. The R2 for the first-difference regression gives different results. For Experiment 2.2, the R2’s are still high, with a
minimum of 0.9975. For Experiment 2.1, however, the minimum is equal to 0.9385 and the average is equal to 0.977. Recall
that the level and the first-difference regression are identical in all things that matter, including its predictions for mtþ1. The
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Fig. 2. True and predicted mtþ1 (updated values for mtþ1 not used in approximating law). Panel A: Experiment 1.1. Panel B: Experiment 1.2. Notes: This is

the fundamental accuracy plot. The graph plots the first 250 observations of the first Monte Carlo replication. The R2 refers to the fit when the

approximating law of motion is updated using the true observations of mt as explanatory variables as in Fig. 1.

W.J. Den Haan / Journal of Economic Dynamics & Control 34 (2010) 79–9990
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average standard error of the regression equation is equal to 0.021% and 0.03% for Experiments 2.1 and 2.2, respectively.
Low values that are consistent with the high R2 values.

4.2.3. Experiment 2: new accuracy procedure

New accuracy procedure for Experiment 2: I—test outcomes. For T ¼ 3;000, the average (median) value across Monte Carlo
replications of bbumax is equal to 1.86% (1.72%) and 1.83% (1.73%) for Experiments 2.1 and 2.2, respectively. These numbers are
clearly not small and relative to the standard deviation of mt , which is equal to 2.5%, they are huge.

Comparing the results for Experiment 2 with those of Experiment 1, two differences emerge. First, Experiment 2 makes
much more clear than Experiment 1 that bbumax is a much more powerful statistic than bbuave. Second, Experiment 2 makes
clear the importance of using a long enough sample and/or do the accuracy test several times. That is, the minimum values
of bbumax make clear that the outcome of the accuracy test is reasonable in some Monte Carlo replications. In Experiment 2.1,
the minimum value of bbumax across Monte Carlo replications is equal to 0.46% when T ¼ 3;000. This is considerably below
the median value of 1.72%. The minimum value is equal to 2.01% when T ¼ 50;000.

Table 5 reports the results for the statistics related to the 100-quarter ahead forecasts. Despite the differences in
constructing the accuracy test, the results are again very similar to the results using bbumax as long as one considers maximum
forecast errors. The correlation coefficient for the 100-period ahead forecast and its realization is on average above 0.995
and, thus, clearly misses the inaccuracies of the approximating law of motion.
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Quasi-aggregation

• Suppose all agents have linear savings functions with same marginal propensity to save

a′(a, y , s,K ) = as + bsa+ csy

• Then

K ′ =

∫
a′(a, y , s,K )dΦ = as + bs

∫
adΦ+ cs L̄ = ãs + bsK

• Exact aggregation obtains: first moment of the current wealth distribution is a sufficient statistic for

Φ for forecasting aggregate capital stock tomorrow.

• In this economy: savings functions almost linear with same slope for y = yu and y = ye .

• Only exceptions: unlucky (y = yu) liquidity constrained agents. But these agents hold negligible

fraction of aggregate wealth and do not matter for aggregate capital dynamics.

• Hence quasi-aggregation!
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Policy functionsThe economics of “approximate aggregation”
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0
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a

a’

employed

unemployed

◮ The decision rule of the individual is very close to a linear
function.

◮ It is non-linear when a is very small, but these people’s
behavior does not have much effect on the aggregate.
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Why is marginal propensity to consume close to 1?

• Consumption under certainty equivalence and r = 1
β − 1

ct =
r

1 + r

(
Et

T−t∑
s=0

yt+s

(1 + r)s
+ at

)

• Agents save out of current assets for tomorrow

at+1

1 + r
=

(
1− r

1 + r

)
at + G (y)

• Thus, under certainty equivalence: at+1 = at + H(y).

• Here agents are prudent, face liquidity constraints, but almost act as if they are certainty equivalence

consumers. Why?

1. With σ = 1 agents are prudent, but not all that much

2. Unconditional standard deviation of individual income is roughly 0.2, at the lower end of the estimates

used by Aiyagari.

3. Negative income shocks infrequent, not very persistent.
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Endogenous wealth distribution

• Income distribution is input into the model

• Does realistic income process lead to realistic wealth distributions?

• No: it fails to generate the high concentration of wealth at the upper end of the distribution:

1% 5% 10% 20% 30% Gini

Data 30 51 64 79 88 0.79

Model 3 11 19 35 46 0.25

• Solutions.
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A simpler approach

• Recent proposal by Boppart, Krusell, and Mitman (2018) of exploiting “MIT” shocks.

• It builds on the idea of combining projection and perturbation: Reiter (2008).

• Variation, as well, of the standard transitional dynamics algorithm we already saw for Aiyagari models.

• One can use the path for prices generated by a RA model as an initial guess.

• No theoretical convergence properties, but it works quite well in practice.
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Algorithm

1. Assume a path for the exogenous shock.

2. Compute the steady state equilibrium using the techniques we learned from Aiyagari’s models,

including vSS . This will be the initial and final position of the economy.

3. Chose a time T at which we assume the economy is back into the stationary equilibrium after the

exogenous shock.

4. Guess a path of prices for t = 0, ...,T (or, equivalently, of aggregate variables such as capital-labor

ratio).

5. Solve the value function (and policy functions) backwards from t = T − 1, ..., 1 setting vT = vSS .

6. Compute the associated distributions and market clearing.

7. Update prices (or aggregate variables) until convergence.
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T. Boppart et al. / Journal of Economic Dynamics & Control 89 (2018) 68–92 83 

Fig. 2. Impulse response to neutral technology shock for the HA and RA economies. 

Table 3 

Correlations between variables — HA economy. 

z q y c i h r w HtM Gini 

HA model 

1.0 0 0 −0.021 0.807 0.537 0.370 0.263 0.229 0.772 −0.289 −0.337 

−0.021 1.0 0 0 −0.512 0.310 −0.908 −0.838 0.171 −0.131 0.426 0.500 

0.807 −0.512 1.0 0 0 0.526 0.671 0.467 −0.212 0.881 −0.709 −0.772 

0.537 0.310 0.526 1.0 0 0 −0.269 −0.506 −0.567 0.865 −0.669 −0.643 

0.370 −0.908 0.671 −0.269 1.0 0 0 0.958 0.145 0.247 −0.294 −0.386 

0.263 −0.838 0.467 −0.506 0.958 1.0 0 0 0.379 −0.006 −0.019 −0.111 

0.229 0.171 −0.212 −0.567 0.145 0.379 1.0 0 0 −0.443 0.805 0.771 

0.772 −0.131 0.881 0.865 0.247 −0.006 −0.443 1.0 0 0 −0.792 −0.814 

−0.289 0.426 −0.709 −0.669 −0.294 −0.019 0.805 −0.792 1.0 0 0 0.985 

−0.337 0.500 −0.772 −0.643 −0.386 −0.111 0.771 −0.814 0.985 1.0 0 0 

policy functions—1,0 0 0 points (also non-linearly spaced). We compute the transition matrix between individual states using 

the policy functions of households and the Markov transition matrix for labor productivity. We recover the invariant distri- 

bution by finding the eigenvector associated with the largest eigenvalue (1) of the transition matrix. Aggregate savings and 

labor supply is then straightforwardly computed as the sum of savings over the invariant distribution. 

Heterogeneous-agent model, transitional equilibrium. To solve for a transitional equilibrium we also use a home-made 

MATLAB code. The solution algorithm here is outlined as follows: 

Transitional equilibrium algorithm 

1. Choose a time T at which point we assume the economy has reached steady state. 

2. Guess a path for the capital-labor ratio, ({ K t H t } T t=0 
) 0 . 

3. Solve the value function (and policy functions) backwards from t = T − 1 , . . . 1 setting V T = V SS . 

35



84 T. Boppart et al. / Journal of Economic Dynamics & Control 89 (2018) 68–92 

Fig. 3. Impulse response to investment-specific technology shock for the HA and RA economies. 

Fig. 4. Distributional impulse responses to the neutral shock (left) and investment-specific shock (right) for the HA economy. 

4. Starting from the steady state distribution, simulate the distribution forward from t = 1 , . . . , T using the policy func- 

tions and idiosyncratic productivity Markov transition matrix. 

5. At each t , compute aggregate capital and labor supplied K 

S 
t , H 

S 
t using the distribution and policy functions. 

6. Compute the maximum difference between supply and demand ζ = max | K t H t − K 

S 
t H 

S 
t | . 

7. If ζ < 10 −5 min { εx, 0 , 1 } , STOP. 
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New developments

1. Xpa algorithm: Algan, Allais, Den Haan, and Rendahl (2010).

2. Perturbation: Roca and Preston (2007).

3. Function-Valued States: Childers (2016).

4. Low-dimensional smooth approximation of cross-sectional distributions: Winberry (2018).

5. Linearization with the assumption of a cross-sectional distribution with constant copula across

household variables: Bayer and Luetticke (2018).

6. Aggregation of households not by capital, but by shock history: aggregation of households not by

capital, but by shock history: Grand and Ragot (2019).

7. Continuous time: Achdou, Lasry, Lions, and Moll (2013).
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