Aiyagari Models

Jesús Fernández-Villaverde ${ }^{1}$

April 12, 2022
${ }^{1}$ University of Pennsylvania

A trio of models

- Different GE heterogenous household models with incomplete markets make different assumptions about how to interpret the assets in the household consumption-savings problem, and how they are supplied:

1. Huggett model: private IOUs in zero net supply (Huggett, 1993).
2. Bewley model: money or bonds in positive net supply (Imrohoroğlu, 1989).
3. Aiyagari model: capital in positive net supply (Aiyagari, 1994).

- That is why the model is sometimes called the Bewley-Huggett-Aiyagari model.
- We will mainly focus on the (canonical) Aiyagari model.
- Later, we will say a few things about the other two models.

Model

Building blocks

- Continuum of households (vs. models with finite number/types of agents).
- One firm renting aggregate capital.
- No aggregate uncertainty.
- Individuals are subject to idiosyncratic shocks to their labor income.
- Incomplete markets.

Households

- Continuum of measure 1 of households.
- Preferences for household i :

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

- Budget constraint:

$$
c_{t}+a_{t+1}=w_{t} y_{t}+\left(1+r_{t}\right) a_{t}
$$

- We could consider a hand-to-mouth (i.e., autarky) variation: $c_{t}=w_{t} y_{t}$.
- Initial conditions $y_{0}, a_{0} \geq 0$.
- Borrowing constraint $a_{t+1} \geq 0$.

Labor endowment

- Stochastic labor endowment process $\left\{y_{t}\right\}_{t=0}^{\infty}$:

$$
y_{t} \in Y=\left\{y_{1}, y_{2}, \ldots y_{N}\right\}
$$

- Markov process with transitions $\pi\left(y^{\prime} \mid y\right)>0$.
- Interpretation.
- Common for all households, but realizations are specific for each individual.
- Law of large numbers: $\pi\left(y^{\prime} \mid y\right)$ is also the deterministic fraction of the population that has this particular transition (Uhlig, 1996).
- Unique stationary distribution associated with π, denoted by Π.
- Total labor endowment in the economy at each point of time:

$$
L=\sum_{y} \Pi(y) y
$$

Firm

- Perfectly competitive firm with neoclassical technology:

$$
Y_{t}=F\left(K_{t}, L_{t}\right)
$$

- Depreciation rate: $0<\delta<1$.
- Aggregate resource constraint:

$$
C_{t}+K_{t+1}-(1-\delta) K_{t}=F\left(K_{t}, L_{t}\right)
$$

- The only net asset in economy is physical capital.
- No state-contingent claims (i.e. incomplete markets).
- Remark: ownership of the firm.

Recursive formulation, I

- (a, y) : household state.
- $\Phi(a, y)$: aggregate state variable.
- $A=[0, \infty)$: set of possible asset holdings.
- $B(A)$: Borel σ-algebra of A.
- Y : set of possible labor endowment realizations.
- $P(Y)$: power set of Y.
- $Z=A \times Y$ and $B(Z)=P(Y) \times B(A)$.
- \mathcal{M} the set of all probability measures on the measurable space $(Z, B(Z))$.

Recursive formulation, II

- Household problem in recursive formulation:

$$
\begin{gathered}
v(a, y ; \Phi)=\max _{c \geq 0, a^{\prime} \geq 0} u(c)+\beta \sum_{y^{\prime} \in Y} \pi\left(y^{\prime} \mid y\right) v\left(a^{\prime}, y^{\prime} ; \Phi^{\prime}\right) \\
\text { s.t. } c+a^{\prime}=w(\Phi) y+(1+r(\Phi)) a \\
\Phi^{\prime}=H(\Phi)
\end{gathered}
$$

- Function $H: \mathcal{M} \rightarrow \mathcal{M}$ is called the aggregate "law of motion."
- Note the complexity of the operator.

Recursive competitive equilibrium

A RCE is value function $v: Z \times \mathcal{M} \rightarrow R$, household policy functions $a^{\prime}, c: Z \times \mathcal{M} \rightarrow R$, firm policy functions $K, L: \mathcal{M} \rightarrow R$, pricing functions $r, w: \mathcal{M} \rightarrow R$ and law of motion $H: \mathcal{M} \rightarrow \mathcal{M}$ s.t.

1. v, a^{\prime}, c are measurable with respect to $\mathcal{B}(Z), v$ satisfies Bellman equation and a^{\prime}, c are the policy functions, given $r()$ and $w()$.
2. K, L satisfy, given $r()$ and $w()$

$$
\begin{aligned}
r(\Phi) & =F_{K}(K(\Phi), L(\Phi))-\delta \\
w(\Phi) & =F_{L}(K(\Phi), L(\Phi))
\end{aligned}
$$

3. For all $\Phi \in \mathcal{M}, L(\Phi)=\int y d \Phi$ and

$$
\begin{aligned}
K^{\prime}\left(\Phi^{\prime}\right)=K(H(\Phi)) & =\int a^{\prime}(a, y ; \Phi) d \Phi \\
\int c(a, y ; \Phi) d \Phi+\int a^{\prime}(a, y ; \Phi) d \Phi & =F(K(\Phi), L(\Phi))+(1-\delta) K(\Phi)
\end{aligned}
$$

4. Aggregate law of motion H is generated by π and a^{\prime}.

Transition functions

- Define transition function $Q_{\Phi}: Z \times \mathcal{B}(Z) \rightarrow[0,1]$ by

$$
Q_{\Phi}((a, y),(\mathcal{A}, \mathcal{Y}))=\sum_{y^{\prime} \in \mathcal{Y}}\left\{\begin{array}{c}
\pi\left(y^{\prime} \mid y\right) \text { if } a^{\prime}(a, y ; \Phi) \in \mathcal{A} \\
0 \text { else }
\end{array}\right.
$$

for all $(a, y) \in Z$ and all $(\mathcal{A}, \mathcal{Y}) \in \mathcal{B}(Z)$.

- $Q_{\Phi}((a, y),(\mathcal{A}, \mathcal{Y}))$ is the probability that an agent with current assets a and current income y ends up with assets a^{\prime} in \mathcal{A} tomorrow and income y^{\prime} in \mathcal{Y} tomorrow.
- Hence

$$
\begin{aligned}
\Phi^{\prime}(\mathcal{A}, \mathcal{Y}) & =(H(\Phi))(\mathcal{A}, \mathcal{Y}) \\
& =\int Q_{\Phi}((a, y),(\mathcal{A}, \mathcal{Y})) \Phi(d a \times d y)
\end{aligned}
$$

A stationary recursive competitive equilibrium

A stationary RCE is value function $v: Z \rightarrow R$, household policy functions $a^{\prime}, c: Z \rightarrow R$, firm policies K, L, prices r, w and a measure $\Phi \in \mathcal{M}$ such that

1. v, a^{\prime}, c are measurable with respect to $B(Z), v$ satisfies the household's Bellman equation and a^{\prime}, c are associated policy functions, given r, w.
2. K, L satisfy, given r, w :

$$
\begin{gathered}
r=F_{k}(K, L)-\delta \\
w=F_{L}(K, L)
\end{gathered}
$$

3. $L=\int y d \Phi$ and $K=\int a^{\prime}(a, y) d \Phi$ and

$$
\int c(a, y) d \Phi+\int a^{\prime}(a, y) d \Phi=F(K, L)+(1-\delta) K
$$

4. Let Q be transition function induced by π and $a^{\prime} . \forall(\mathcal{A}, \mathcal{Y}) \in \mathcal{B}(Z)$

$$
\Phi(\mathcal{A}, \mathcal{Y})=\int Q((a, y),(\mathcal{A}, \mathcal{Y})) d \Phi
$$

Characterizing the stationary RCE

- Recall that L is exogenously given.
- Thus, from

$$
\begin{gathered}
r=F_{k}(K, L)-\delta \\
w=F_{L}(K, L)
\end{gathered}
$$

we can get w as a function of $r\left(\right.$ with $\left.w^{\prime}(r)<0\right)$.

- Example:

$$
Y=K^{\alpha} L^{1-\alpha}
$$

with:

$$
r=\alpha K^{\alpha-1} L^{1-\alpha}-\delta \Rightarrow K=\left(\frac{r+\delta}{\alpha}\right)^{\frac{1}{\alpha-1}} L
$$

and

$$
w=(1-\alpha) K^{\alpha} L^{1-\alpha}=(1-\alpha) \alpha^{\frac{\alpha}{1-\alpha}}(r+\delta)^{\frac{\alpha}{\alpha-1}} L
$$

Existence and uniqueness

- By Walras' law, we can forget about goods market and we only need to check input market clearing.
- Define asset market clearing condition:

$$
K=K(r)=\int a^{\prime}(a, y) d \Phi \equiv E a(r)
$$

- Then:

$$
r=F_{k}(K(r), L)-\delta
$$

- Existence and uniqueness of stationary RCE boils down to one equation in one unknown.
- From assumptions on production function, $K(r)$ is continuous, strictly decreasing function on $r \in(-\delta, \infty)$ with

$$
\begin{aligned}
\lim _{r \rightarrow-\delta} K(r) & =\infty \\
\lim _{r \rightarrow \infty} K(r) & =0
\end{aligned}
$$

A useful result

Theorem (Huggett, 1993)

For $\beta<1, r>-1, y_{1}>0$, and CRRA utility with $\sigma>1$, the functional equation has a unique solution v which is strictly increasing, strictly concave, and continuously differentiable in its first argument. The optimal policies are continuous functions that are strictly increasing (for $c(a, y)$) or increasing or constant at zero (for $\left.a^{\prime}(a, y)\right)$.

Similar results can be proved for the iid case and arbitrary bounded U with $\rho>r$ and $\rho>0$, see Aiyagari (1994).

Boundedness of the state space: requires $\frac{1}{\beta}>1+r$ and additional assumptions (iid and limiting exponent of u_{c} or Huggett's assumptions). Let \bar{a} denote upper bound.

A fixed point problem, I

- From now on assume $\exists \bar{a}$ s.t. $a^{\prime}\left(\bar{a}, y_{N}\right)=\bar{a}$ and $a^{\prime}(a, y) \leq \bar{a}$ for all $y \in Y$ and all $a \in[0, \bar{a}]$. State space $Z=[0, \bar{a}] \times Y$ and optimal policy $a_{r}^{\prime}(a, y)$ defined on Z, indexed by r.
- Asset demand

$$
E a(r)=\int a_{r}^{\prime}(a, y) d \Phi_{r}
$$

- Need Φ_{r} that satisfies

$$
\Phi_{r}(\mathcal{A}, \mathcal{Y})=\int Q_{r}((a, y),(\mathcal{A}, \mathcal{Y})) d \Phi_{r}
$$

where Q_{r} is the Markov transition function defined by a_{r} as

$$
Q_{r}((a, y),(\mathcal{A}, \mathcal{Y}))=\sum_{y^{\prime} \in \mathcal{Y}}\left\{\begin{array}{c}
\pi\left(y^{\prime} \mid y\right) \text { if } a_{r}^{\prime}(a, y) \in \mathcal{A} \\
0 \text { else }
\end{array}\right.
$$

A fixed point problem, II

- Need to establish that operator $T_{r}^{*}: \mathcal{M} \rightarrow \mathcal{M}$ defined by

$$
\left(T_{r}^{*}(\Phi)\right)(\mathcal{A}, \mathcal{Y})=\int Q_{r}((a, y),(\mathcal{A}, \mathcal{Y})) d \Phi
$$

has a unique fixed point.

Stationary distributions

Theorem (Hopenhayn and Prescott, 1992)

If the state space Z is compact and

1. Q_{r} is a transition function,
2. Q_{r} is increasing,
3. there exists $z^{*} \in Z, \varepsilon>0$ and N such that

$$
P^{N}\left(d,\left\{z: z \leq z^{*}\right\}\right)>\varepsilon \text { and } P^{N}\left(c,\left\{z: z \geq z^{*}\right\}\right)>\varepsilon
$$

where d is maximal element of Z and c is minimal element of Z,
then, the operator T_{r}^{*} has a unique fixed point Φ_{r} and for all $\Phi_{0} \in M$ the sequence of measures defined by

$$
\Phi_{n}=\left(T^{*}\right)^{n} \Phi_{0}
$$

converges weakly to Φ_{r}.

Existence of stationary distributions, I

- Assumption 1 requires that Q_{r} is transition function, i.e., $Q_{r}(z,$.$) is probability measure on (Z, B(Z))$ for all $z \in Z$ and $Q_{r}(., Z)$ is $B(Z)$-measurable $\forall Z \in B(Z)$. Use that $a^{\prime}(a, y)$ is continuous.
- The assumption that Q_{r} is increasing requires that for any nondecreasing function $f: Z \rightarrow R$ we have that

$$
(T f)(z)=\int f\left(z^{\prime}\right) Q_{r}\left(z, d z^{\prime}\right)
$$

is also nondecreasing. Note that $a^{\prime}(a, y)$ is increasing in (a, y).

- Monotone mixing condition 3 . satisfied? Pick $z^{*}=\left(\frac{1}{2}\left(a^{\prime}\left(0, y_{N}\right)+\bar{a}\right), y_{1}\right)$. Start at d with a sequence of bad shocks y_{1} and from c with a sequence of good shocks y_{N}.

Existence of stationary distributions, II

- Conclusion of the theorem assures existence of a unique invariant measure Φ_{r} which can be found by iterating on the operator T^{*}.
- Convergence is in the weak sense: for every continuous and bounded real-valued function f on Z, we have

$$
\lim _{n \rightarrow \infty} \int f(z) d \Phi_{n}=\int f(z) d \Phi_{r}
$$

Existence of equilibrium

- From previous results, function $\mathrm{Ea}(r)$ is well-defined on $r \in\left[-\delta, \frac{1}{\beta}-1\right)$.
- Since $a_{r}^{\prime}(a, y)$ is continuous jointly in (r, a) and Φ_{r} is continuous in r (weak convergence), the function $E a(r)$ is a continuous function of r on $\left[-\delta, \frac{1}{\beta}-1\right)$.
- $\lim _{r \rightarrow-\delta} E a(r)<\infty$ is fine, but what about

$$
\lim _{r \rightarrow \frac{1}{\beta}-1} E a(r)>K\left(\frac{1}{\beta}-1\right)
$$

- If both satisfied, then there exists r^{*} such that

$$
K\left(r^{*}\right)=E a\left(r^{*}\right)
$$

and a stationary RCE.

- We cannot ensure uniqueness.
- We lack results about stability.

Interest rate in equilibrium

- Complete markets model: $r^{C M}=\frac{1}{\beta}-1$.
- With incomplete markets: $r^{*}<r^{C M}$.
- Why? Overaccumulation of capital and oversaving (because of precautionary reasons: liquidity constraints, prudence, or both).
- Policy implications.

Computation

Computation of the canonical Aiyagari model

Involves three steps:

1. Fix an $r \in\left(-\delta, \frac{1}{\beta}-1\right)$. For a fixed r, solve household's recursive problem. This yields a value function v_{r} and decision rules a_{r}^{\prime}, c_{r}.
2. The policy function a_{r}^{\prime} and π induce Markov transition function Q_{r}. Compute the unique stationary measure Φ_{r} associated with this transition function.
3. Compute excess demand for capital

$$
d(r)=K(r)-E a(r)
$$

If zero, stop, if not, adjust r.

Solving the household's recursive problem

- Any acceptable solution method for recursive problems is valid: value function iteration, projection, etc.
- However, speed is at a premium.
- Thus, value function iteration (at least, without further refinements) might not be fast enough.
- Standard "tricks": monotonicity and concavity.
- Be smart about initial guesses in the updates.
- Fix variable values in steady state, not parameters!
- Also, explore multigrid schemes.

How to compute the unique stationary measure, I

- Grid. Suppose $A=\left\{a_{1}, \ldots, a_{M}\right\}$.
- Then Φ is $M * N \times 1$ column vector and $Q=\left(q_{i j, k l}\right)$ is $M * N \times M * N$ matrix with

$$
q_{i j, k l}=\operatorname{Pr}\left(\left(a^{\prime}, y^{\prime}\right)=\left(a_{k}, y_{l}\right) \mid(a, y)=\left(a_{i}, y_{l}\right)\right)
$$

- Stationary measure Φ satisfies matrix equation

$$
\Phi=Q^{T} \phi
$$

- Φ is (rescaled) eigenvector associated with eigenvalue $\lambda=1$ of Q^{T}.
- Q^{T} is a stochastic matrix and thus has at least one unit eigenvalue. If it has more than one unit eigenvalue, continuum of stationary measures.

How to compute the unique stationary measure, II

- Variation of grid method I: allocate mass between two grid points according to relative distance.
- Variation of grid method II: uniform mass between two grid points.
- Both cases: sufficiently small grid. Otherwise, no convergence.
- Simulation.
- Parameterized cross-sectional distribution: Algan, Allais, and Den Haan (2006).

Parallelization

- We can parallelize the value function for a given interest rate.
- We can also parallelize the computation of the stationary distribution.
- You cannot (easily) parallelize the iteration over prices.

Transitional dynamics

Transitional dynamics

- Often, we are interested in the effects of the change in a parameter of the model (transitory or permanent).
- We want to compute both the new steady state and the transitional dynamics.
- Example: permanent introduction of a capital income tax at rate τ. Receipts are rebated lump-sum to households as government transfers T.

Model with a capital income tax

- State space: $Z=Y \times \mathbf{R}_{+}$, the set of all possible (y, a).
- Let $\mathcal{B}(Z)=\mathcal{P}(Y) \times \mathcal{B}\left(\mathbf{R}_{+}\right)$and \mathbf{M} be the set of all finite measures on the measurable space $(Z, \mathcal{B}(Z))$.
- Household problem:

$$
\begin{gathered}
v_{t}(a, y)=\max _{c \geq 0, a^{\prime} \geq 0} u(c)+\beta \sum_{y^{\prime} \in Y} \pi\left(y^{\prime} \mid y\right) v_{t+1}\left(a^{\prime}, y^{\prime}\right) \\
\text { s.t. } c+a^{\prime}=w_{t} y+\left(1+\left(1-\tau_{t}\right) r_{t}\right) a+T_{t}
\end{gathered}
$$

A competitive equilibrium with taxes, I

Given initial distribution Φ_{0} and fiscal legislation $\left\{\tau_{t}\right\}_{t=0}^{\infty}$, a competitive equilibrium is sequence of functions for the household $\left\{v_{t}, c_{t}, a_{t+1}: Z \rightarrow \mathbf{R}\right\}_{t=0}^{\infty}$, sequence of firm production plans $\left\{L_{t}, K_{t}\right\}_{t=0}^{\infty}$, factor prices $\left\{w_{t}, r_{t}\right\}_{t=0}^{\infty}$, government transfers $\left\{T_{t}\right\}_{t=0}^{\infty}$, and sequence of measures $\{\Phi\}_{t=1}^{\infty}$ s.t. $\forall t$,

- Given $\left\{w_{t}, r_{t}\right\}$ and $\left\{T_{t}, \tau_{t}\right\}$ the functions $\left\{v_{t}\right\}$ solve Bellman equation in t and $\left\{c_{t}, a_{t+1}\right\}$ are associated policy functions.
- Prices w_{t} and r_{t} satisfy

$$
\begin{gathered}
w_{t}=F_{L}\left(K_{t}, L_{t}\right) \\
r_{t}=F_{K}\left(K_{t}, L_{t}\right)-\delta
\end{gathered}
$$

- Government Budget Constraint: for all $t \geq 0$.

$$
T_{t}=\tau_{t} r_{t} K_{t}
$$

A competitive equilibrium with taxes, II

- Market Clearing:

$$
\begin{aligned}
\int c_{t}\left(a_{t}, y_{t}\right) d \Phi_{t}+K_{t+1} & =F\left(K_{t}, L_{t}\right)+(1-\delta) K_{t} \\
L_{t} & =\int y_{t} d \Phi_{t} \\
K_{t+1} & =\int a_{t+1}\left(a_{t}, y_{t}\right) d \Phi_{t}
\end{aligned}
$$

- Aggregate Law of Motion: Define Markov transition functions $Q_{t}: Z \times \mathcal{B}(Z) \rightarrow[0,1]$ induced by the transition probabilities π and optimal policy $a_{t+1}(y, a)$ as

$$
Q_{t}((a, y),(\mathcal{A}, \mathcal{Y}))=\sum_{y^{\prime} \in \mathcal{Y}}\left\{\begin{array}{c}
\pi\left(y^{\prime} \mid y\right) \text { if } a_{t+1}(a, y) \in \mathcal{A} \\
0 \text { else }
\end{array}\right.
$$

for all $(a, y) \in Z$ and all $(\mathcal{A}, \mathcal{Y}) \in \mathcal{B}(Z)$. Then for all $(\mathcal{A}, \mathcal{Y}) \in \mathcal{B}(Z)$

$$
\Phi_{t+1}(\mathcal{A}, \mathcal{Y})=\left[\Gamma_{t}\left(\Phi_{t}\right)\right](\mathcal{A}, \mathcal{Y})=\int Q_{t}((a, y),(\mathcal{A}, \mathcal{Y})) d \Phi_{t}
$$

Stationary equilibrium and transitions

- A stationary equilibrium is an equilibrium such that all elements of the equilibrium that are indexed by t are constant over time.
- Transitions are likely to be asymptotic.
- However, assume that after T periods the transition from old to new stationary equilibrium is completed.
- Under the assumption $v_{T}=v_{\infty}$, for a given sequence of prices $\left\{r_{t}, w_{t}\right\}_{t=1}^{T}$ household problem can be solved backwards.

Computation, I

- Fix T.
- Compute stationary equilibrium $\Phi_{0}, v_{0}, r_{0}, w_{0}, K_{0}$ associated with $\tau=\tau_{0}=0$.
- Compute stationary equilibrium $\Phi_{\infty}, v_{\infty}, r_{\infty}, w_{\infty}, K_{\infty}$ associated with $\tau_{\infty}=\tau$. Assume that

$$
\Phi_{T}, v_{T}, r_{T}, w_{T}, K_{T}=\Phi_{\infty}, v_{\infty}, r_{\infty}, w_{\infty}, K_{\infty}
$$

- Guess sequence of capital stocks $\left\{\hat{K}_{t}\right\}_{t=1}^{T-1}$ The capital stock at time $t=1$ is determined by decisions at time $0, \hat{K}_{1}=K_{0}$. Note that $L_{t}=L_{0}=L$ is fixed. We also obtain

$$
\begin{aligned}
\hat{w}_{t} & =F_{L}\left(\hat{K}_{t}, L\right) \\
\hat{r}_{t} & =F_{K}\left(\hat{K}_{t}, L\right)-\delta \\
\hat{T}_{t} & =\tau_{t} \hat{r}_{t} \hat{K}_{t}
\end{aligned}
$$

Computation, II

- Since we know $v_{T}(a, y)$ and $\left\{\hat{r}_{t}, \hat{w}_{t}, \hat{T}_{t}\right\}_{t=1}^{T-1}$ we can solve for $\left\{\hat{v}_{t}, \hat{c}_{t}, \hat{a}_{t+1}\right\}_{t=1}^{T-1}$ backwards.
- With policy functions $\left\{\hat{a}_{t+1}\right\}$ define transition laws $\left\{\hat{\Gamma}_{t}\right\}_{t=1}^{T-1}$. We know $\Phi_{0}=\Phi_{1}$ from the initial stationary equilibrium. Iterate the distributions forward

$$
\hat{\Phi}_{t+1}=\hat{\Gamma}_{t}\left(\hat{\Phi}_{t}\right)
$$

for $t=1, \ldots, T-1$.

- With $\left\{\hat{\Phi}_{t}\right\}_{t=1}^{T}$ we can compute, for $t=1, \ldots, T$.

$$
\hat{A}_{t}=\int a d \hat{\Phi}_{t}
$$

Computation, III

- Test

$$
\max _{1 \leq t<T}\left|\hat{A}_{t}-\hat{K}_{t}\right|<\varepsilon
$$

If yes, go to next step. If not, adjust your guesses for $\left\{\hat{K}_{t}\right\}_{t=1}^{T-1}$.

- Test

$$
\left\|\hat{\Phi}_{T}-\Phi_{T}\right\|<\varepsilon
$$

If yes, the transition converges smoothly into the new steady state and we are done and should save $\left\{\hat{v}_{t}, \hat{a}_{t+1}, \hat{c}_{t}, \hat{\Phi}_{t}, \hat{r}_{t}, \hat{w}_{t}, \hat{K}_{t}\right\}$. If not, increase T.

- We can be smart with the initial guess: compute associated RA transition.

Welfare analysis

Welfare analysis

- This procedure determines aggregate variables such as $r_{t}, w_{t}, \Phi_{t}, K_{t}$ and individual decision rules c_{r}, a_{t+1}.
- The value functions enable us to make statements about the welfare consequences of the tax reform.
- We have value functions $\left\{v_{t}\right\}_{t=0}^{T}$.
- Interpretation of the value functions: $v_{0}(a, y), v_{1}(a, y)$ and $v_{T}(a, y)=v_{\infty}(a, y)$.
- We can use v_{0}, v_{1} and v_{T} to determine the welfare consequences from the reform.

Consumption equivalent variation, I

- Suppose that

$$
U(c)=\frac{c^{1-\sigma}}{1-\sigma}
$$

- Optimal consumption allocation in initial stationary equilibrium, in sequential formulation, $\left\{c_{s}\right\}_{s=0}^{\infty}$:

$$
v_{0}(a, y)=\mathbb{E}_{0} \sum_{s=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\sigma}}{1-\sigma}
$$

- If increase consumption in each date, in each state, in the old stationary equilibrium, by a fraction g. Then $\left\{(1+g) c_{s}\right\}_{s=0}^{\infty}$ and:

$$
\begin{aligned}
v_{0}(a, y ; g) & =\mathbb{E}_{0} \sum_{s=0}^{\infty} \beta^{t} \frac{\left[(1+g) c_{t}\right]^{1-\sigma}}{1-\sigma}=(1+g)^{1-\sigma} \mathbb{E}_{0} \sum_{s=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\sigma}}{1-\sigma} \\
& =(1+g)^{1-\sigma} v_{0}(a, y)
\end{aligned}
$$

Consumption equivalent variation, II

- By what percent g do we have to increase consumption in the old stationary equilibrium for agent to be indifferent between old stationary equilibrium and transition induced by policy reform?
- This percent g solves

$$
\begin{aligned}
v_{0}(a, y ; g) & =v_{1}(a, y) \\
g(a, y) & =\left[\frac{v_{1}(a, y)}{v_{0}(a, y)}\right]^{\frac{1}{1-\sigma}}-1
\end{aligned}
$$

- $g(a, y)>0$ iff $v_{1}(a, y)>v_{0}(a, y) . g(a, y)$ varies by (a, y).

Steady state welfare comparisons

- Steady state welfare gain (of agent being born with (a, y) into new as opposed to old stationary equilibrium.):

$$
g_{s s}(a, y)=\left[\frac{v_{T}(a, y)}{v_{0}(a, y)}\right]^{\frac{1}{1-\sigma}}-1
$$

- Define as expected steady state welfare gain

$$
g_{s s}=\left[\frac{\int v_{T}(a, y) d \Phi_{T}}{\int v_{0}(a, y) d \Phi_{0}}\right]^{\frac{1}{1-\sigma}}-1
$$

- For these measures need not compute transition path. But: welfare measures based on steady state comparisons may be misleading.

An application

Motivation

- Owner-occupied housing takes account of a substantial portion in most households' portfolios and is also associated with policy goals.
- What factors affect housing decisions is an important question.
- Over the past decades, we have seen big changes in how likely people are getting married and divorced.
- Chang (2019) argues the evolving likelihood of marriage and divorce is an essential factor in accounting for some changes in housing demand.

Specific questions

- What effect does the change in likelihood of marriage and divorce have on housing decisions?
- To what extent does this channel help account for the change in housing decisions?

Key Mechanism

- What effect does the change in likelihood of marriage and divorce have on housing decisions?
- Marriage more likely \rightarrow Singles do not buy a house due to i) transaction cost to sell/resize and ii) less savings from expecting free rider problem.
- Divorce more likely \rightarrow The married invest less in housing due to cost to split.

Periods for Quantitative Analysis

- To what extent does this channel help account for the change in housing decisions?
- Compare 1970 vs. 1995: $\left\{\begin{array}{l}\text { Similar real house prices } \\ \text { Different probabilities of marital transitions }\end{array}\right.$
- Include the periods after 1995 with changing house prices.

Motivation

- Comparing 1995 to 1970 ,

Fact (1) Single households' homeownership rate increased significantly.
Fact (2) Young married households held a lower fraction of total asset in housing.

Fact (1) on singles

Likelihood of Marriage

Homeownership

Single households' homeownership rate increased significantly.

Fact (2) on married households

Likelihood of Divorce

Housing Asset Share Appendix

Young married households held a lower fraction of total asset in housing.

Motivation

- Comparing 1995 to 1970 ,

Fact 1) Single households' homeownership rate increased significantly.
Fact 2) Young married households held a lower fraction of total asset in housing.

- Hypothesis: Change in housing decisions is affected by change in likelihood of marital transitions.
- Assumption: marriage and divorce as exogenous shocks.

What does the paper do?

- Build a life-cycle model of single and married households that face exogenous marital transition shocks.
- Estimate the parameters by matching the data moments in 1995 .
- Quantify how much of the change in likelihood of marriage/divorce can account for the change in housing variables (1970 vs. 1995).
- Assess how the model accounts for housing choices in recent years with changing housing prices (1995 vs. boom in the mid 2000s).

Preview of results

- Main channel: Change in marriage and divorce probabilities
- 1970 vs. 1995
- The main channel accounts for 29% of the change in the single's homeownership rate.
- Other changes: Downpayment, earnings risk, spousal labor productivity
- Without this channel, the married's housing asset share is generated to increase, which is opposite to the data's pattern falling by 11%.
- 1995 vs. Boom in the mid 2000s
- The decreasing likelihood of marriage increases the single's homeownership rate by 6.8%.
- Other changes: house prices, beliefs, credit constraints, wage
- This demographic force contributes to replicate partly the increase in homeownership when the house price was expensive.

Model - Overview

- Life-cycle model of singles and married households.
- Households decide how much to consume, rent, save in non-housing and housing assets, and work (head/spouse).
- Households face $\left\{\begin{array}{c}\text { age-dependent marital transition shock } \\ \text { idiosyncratic labor productivity, house price shock }\end{array}\right.$
- A finite number of housing sizes are available to own.
(Pros) higher service flow than renting; collateral for borrowing
(Cons) substantial transaction cost whenever adjusted
- A status change makes the house owned prior to the change not suited.

Model - Overview

Model - Overview

- Marriage:

1) Gain economies of scale
2) Sell any house owned as single
3) Pool the asset with a spouse
4) Take on roles (different labor productivity between spouses)

Model - Overview

- Divorce:

1) Lose economies of scale
2) Sell any house owned as married
3) Split the asset equally
4) Go back to single's labor productivity

Preferences

- Single Agent:

$$
u(c, s, I)=\frac{\left(c^{\alpha} s^{1-\alpha}\right)^{(1-\sigma)}}{1-\sigma}-B_{s} \frac{I^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\phi \cdot I(I>0)+u h p(I)
$$

Preferences

- Single Agent:

$$
u(c, s, I)=\frac{\left(c^{\alpha} s^{1-\alpha}\right)^{(1-\sigma)}}{1-\sigma}-B_{s} \frac{I^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\phi \cdot I(I>0)+u h p(I)
$$

where $s=m+\zeta(h) \cdot h(m$: renting, h : owned housing) and

$$
\zeta(h)=\left(\zeta_{1}+\zeta_{2} \cdot \frac{h-h_{\min }}{h_{\max }-h_{\min }}\right)
$$

Preferences

- Single Agent:

$$
u(c, s, I)=\frac{\left(c^{\alpha} s^{1-\alpha}\right)^{(1-\sigma)}}{1-\sigma}-B_{s} \frac{I^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\phi \cdot I(I>0)+u h p(I)
$$

where $s=m+\zeta(h) \cdot h(m$: renting, h : owned housing) and

$$
\zeta(h)=\left(\zeta_{1}+\zeta_{2} \cdot \frac{h-h_{\min }}{h_{\max }-h_{\min }}\right)
$$

Preferences

- Single Agent:

$$
u(c, s, I)=\frac{\left(c^{\alpha} s^{1-\alpha}\right)^{(1-\sigma)}}{1-\sigma}-B_{s} \frac{I^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\phi \cdot I(I>0)+u h p(I)
$$

where $s=m+\zeta(h) \cdot h(m$: renting, h : owned housing) and

$$
\zeta(h)=\left(\zeta_{1}+\zeta_{2} \cdot \frac{h-h_{\min }}{h_{\max }-h_{\min }}\right)
$$

$u h p(I)$ reflects utility from home production

$$
u h p(I)= \begin{cases}0 & \text { if working, } I>0 \\ \omega_{\text {uhp }} & \text { if not working, } I=0\end{cases}
$$

Preferences

- Married Agent:

$$
\begin{aligned}
& u^{\text {head }}(c, s, l, \tilde{I})=\varphi_{j} \frac{\left(\left(\gamma_{e} c\right)^{\alpha}\left(\gamma_{e} s\right)^{1-\alpha}\right)^{1-\sigma}}{1-\sigma}-B_{m} \frac{l^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\phi \cdot l(I>0)+u h p(I, \tilde{l}) \\
& u^{\text {spouse }}(c, s, l, \widetilde{I})=\varphi_{j} \frac{\left(\left(\gamma_{e} c\right)^{\alpha}\left(\gamma_{e} s\right)^{1-\alpha}\right)^{1-\sigma}}{1-\sigma}-\widetilde{B}_{m} \frac{\tilde{I}^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\widetilde{\phi} \cdot l(\tilde{I}>0)+u h p(I, \tilde{l})
\end{aligned}
$$

Preferences

- Married Agent:

$$
u^{\text {head }}(c, s, I, \widetilde{I})=\varphi_{j} \frac{\left(\left(\gamma_{e} c\right)^{\alpha}\left(\gamma_{e} s\right)^{1-\alpha}\right)^{1-\sigma}}{1-\sigma}-B_{m} \frac{I^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\phi \cdot I(I>0)+u h p(I, \widetilde{I})
$$

c, s are "joint" consumption and housing services.
γ_{e} transforms them into per capita terms (e.g. $\gamma_{e}>0.5$).

Preferences

- Married Agent:

$$
u^{\text {head }}(c, s, I, \widetilde{I})=\varphi_{j} \frac{\left(\left(\gamma_{e} c\right)^{\alpha}\left(\gamma_{e} s\right)^{1-\alpha}\right)^{1-\sigma}}{1-\sigma}-B_{m} \frac{I^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\phi \cdot I(I>0)+u h p(I, \widetilde{I})
$$

c, s are "joint" consumption and housing services.
γ_{e} transforms them into per capita terms (e.g. $\gamma_{e}>0.5$).
φ_{j} allows for marginal utility of c, s to differ over the life-cycle.

Preferences

- Married Agent:

$$
u^{\text {head }}(c, s, I, \widetilde{I})=\varphi_{j} \frac{\left(\left(\gamma_{e} c\right)^{\alpha}\left(\gamma_{e} s\right)^{1-\alpha}\right)^{1-\sigma}}{1-\sigma}-B_{m} \frac{I^{1+\frac{1}{\gamma}}}{1+\frac{1}{\gamma}}-\phi \cdot I(I>0)+u h p(I, \widetilde{I})
$$

c, s are "joint" consumption and housing services.
γ_{e} transforms them into per capita terms (e.g. $\gamma_{e}>0.5$).
φ_{j} allows for marginal utility of c, s to differ over the life-cycle.
Utility from home production is modeled as

$$
u h p(I, \widetilde{I})= \begin{cases}0 & \text { if both working } \\ \frac{\omega_{\text {uhp }}}{h_{\psi}} & \text { if only one spouse working } \\ \omega_{\text {uhp }} & \text { if no one working. }\end{cases}
$$

Single household's problem (Age

- State variables: $X_{j}^{s}:=(j, a, h, y)$. Heterogeneity across age (j), total asset(a), housing asset (h), productivity (y)

Single household's problem (Age

- State variables: $X_{j}^{s}:=(j, a, h, y)$. Heterogeneity across age (j), total asset(a), housing asset (h), productivity (y)
- Choices: consume(c), rent (m), save in non-housing $\left(b^{\prime}\right) /$ housing asset $\left(h^{\prime}\right)$, work($/$)

Single household's problem (Age

- State variables: $X_{j}^{s}:=(j, a, h, y)$. Heterogeneity across age (j), total asset(a), housing asset (h), productivity (y)
- Choices: consume (c), rent (m), save in non-housing $\left(b^{\prime}\right) /$ housing $\operatorname{asset}\left(h^{\prime}\right)$, work (I)
- Single household's problem:

$$
\begin{aligned}
& V^{s}\left(X_{j}^{s}\right)=\max _{c, m, b^{\prime}, h^{\prime}, l}\left\{u(c, s, l)+\beta\left[q_{s s, j} \cdot \mathbb{E} V^{s}\left(j+1, a^{\prime}, h^{\prime}, y^{\prime}\right)\right.\right. \\
& \left.\left.\quad+q_{s m, j} \cdot \mathbb{E} V^{m}\left(j+1,\left(a^{\prime}+\widetilde{a}\right)-\kappa_{s} P^{H}\left(h^{\prime}+\widetilde{h^{\prime}}\right), 0, y^{\prime}, \widetilde{y^{\prime}}\right)\right]\right\}
\end{aligned}
$$

Single household's problem (Age

- State variables: $X_{j}^{s}:=(j, a, h, y)$. Heterogeneity across age (j), total asset(a), housing asset (h), $\operatorname{productivity}(y)$
- Choices: consume (c), rent (m), save in non-housing $\left(b^{\prime}\right) /$ housing $\operatorname{asset}\left(h^{\prime}\right)$, work (I)
- Single household's problem:

$$
\begin{aligned}
& \begin{array}{l}
V^{s}\left(X_{j}^{s}\right)=\max _{c, m, b^{\prime}, h^{\prime}, l}\left\{u(c, s, l)+\beta\left[q_{s s, j} \cdot \mathbb{E} V^{s}\left(j+1, a^{\prime}, h^{\prime}, y^{\prime}\right)\right.\right. \\
\left.\left.\quad+q_{s m, j} \cdot \mathbb{E} V^{m}\left(j+1,\left(a^{\prime}+\widetilde{a}^{\prime}\right)-\kappa_{s} P^{H}\left(h^{\prime}+\widetilde{h^{\prime}}\right), 0, y^{\prime}, \widetilde{y^{\prime}}\right)\right]\right\} \\
\text { s.t. } \quad c+m+b^{\prime}+P^{H} h^{\prime}=w y l+a-I\left(h^{\prime} \neq h\right) \cdot\left(\kappa_{b} P^{H} h^{\prime}+\kappa_{s} P^{H} h\right) \\
c \geq 0, \quad s \geq 0, \quad b^{\prime} \geq-\eta P^{H} h^{\prime} \text { with } 0 \leq \eta \leq 1 .
\end{array} .
\end{aligned}
$$

Single household's problem (Age

- State variables: $X_{j}^{s}:=(j, a, h, y)$. Heterogeneity across age (j), total asset(a), housing asset (h), $\operatorname{productivity}(y)$
- Choices: consume (c), rent (m), save in non-housing $\left(b^{\prime}\right) /$ housing $\operatorname{asset}\left(h^{\prime}\right)$, work (I)
- Single household's problem:

$$
\begin{aligned}
& V^{s}\left(X_{j}^{s}\right)=\max _{c, m, b^{\prime}, h^{\prime}, l}\left\{u(c, s, l)+\beta\left[q_{s s, j} \cdot \mathbb{E} V^{s}\left(j+1, a^{\prime}, h^{\prime}, y^{\prime}\right)\right.\right. \\
& \left.\left.+q_{s m, j} \cdot \mathbb{E} V^{m}\left(j+1,\left(a^{\prime}+\widetilde{a}^{\prime}\right)-\kappa_{s} P^{H}\left(h^{\prime}+\widetilde{h}^{\prime}\right), 0, y^{\prime}, \tilde{y}^{\prime}\right)\right]\right\} \\
& \text { s.t. } \quad c+m+b^{\prime}+P^{H} h^{\prime}=w y I+a-I\left(h^{\prime} \neq h\right) \cdot\left(\kappa_{b} P^{H} h^{\prime}+\kappa_{s} P^{H} h\right) \\
& c \geq 0, \quad s \geq 0, \quad b^{\prime} \geq-\eta P^{H} h^{\prime} \quad \text { with } 0 \leq \eta \leq 1 . \\
& a^{\prime}=\left(1+r\left(b^{\prime}\right)\right) b^{\prime}+P^{H}\left(1-\delta^{\prime}\right) h^{\prime}, \quad \text { where } \quad r\left(b^{\prime}\right)= \begin{cases}r & \text { if } b^{\prime} \geq 0 \\
r^{H} & \text { otherwise }\end{cases}
\end{aligned}
$$

Married household's problem

- State variables: $X_{j}^{m}:=(j, a, h, y, \tilde{y})$.
- Choose spousal labor supply \widetilde{I}. So labor income is $w(y l+\widetilde{y} \widetilde{I})$.
- A married household solves a joint problem which maximizes the average utility with equal weights.

$$
\begin{aligned}
& V^{m}\left(X_{j}^{m}\right)=\max _{c, m, b^{\prime}, h^{\prime}, l, \tilde{I}}\left\{u(c, s, l, \widetilde{I})+\beta\left[q_{m m, j} \cdot \mathbb{E} V^{m}\left(j+1, a^{\prime}, h^{\prime}, y^{\prime}, \widetilde{y}^{\prime}\right)\right.\right. \\
&\left.\left.+q_{m s, j} \cdot \mathbb{E} V^{s}\left(j+1, \sqrt{\frac{1}{2}\left(a^{\prime}-\kappa_{s} P^{H} h^{\prime}\right)}, 0, y^{\prime}\right)\right]\right\} \\
& \text { where } \quad u(c, s, l, \widetilde{I})=\frac{u^{\text {head }}(c, s, I, \widetilde{I})+u^{\text {spouse }}(c, s, I, \widetilde{I})}{2}
\end{aligned}
$$

- There is no margin of disagreement between the spouses.

Shocks

- Labor efficiency shock y is modeled to be combination of age trend $\chi(j)$ and idiosyncratic shock x of AR(1) after taken log.

$$
\begin{aligned}
y & =\chi(j) x \\
\log \left(x^{\prime}\right) & =\rho_{x} \log (x)+\epsilon^{x} \\
\epsilon^{x} & \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right) \quad \text { i.i.d. }
\end{aligned}
$$

- Idiosyncratic house price shock is uniformly distributed, $\delta \sim \mathcal{U}[\underline{\delta}, \bar{\delta}]$.
- Age-dependent probabilities of marital transitions ($q_{m m, j}, q_{m s, j}, q_{s m, j}, q_{s, j}$) are constructed from the data.
- We can use this model to analyze 1970 vs. 1995 as two steady states.
- Common house price P^{H} is fixed.
- This will be extended to model time-varying house price.

Estimation

- Some parameters are calibrated with external information.
- e.g.) transaction cost of buying: $2.5 \% /$ selling: 7% of house value
- We then estimate the other parameters by a limited information Bayesian method to match the moments from 1995's cross-section data.
- e.g.) life-cycle profiles for homeownership, portfolio share, labor supply across marital status
- List of parameters estimated:

Parameter	Explanation	Posterior median
ζ_{1}	Housing preference: constant	1.36
ζ_{2}	Housing preference: slope	0.34
$\omega_{u h p}$	Utility from home production	1.02
γ_{e}	Economies of scale	0.61
$\phi, \widetilde{\phi}, B_{s}, B_{m}, \widetilde{B}_{m}$	Fixed cost, disutility of labor supply	$1.37,0.83,48.67,17.49,48.32$

Life-cycle Profiles: Model vs. Data (1995)

Homeownership Rate

Labor Force Participation (Head) Labor Force Participation (Spouse)

Housing Asset Share

Major changes between 1970 and 1995

(1) Marital transition probabilities changed. (Left: Marriage, Right: Divorce)

(1) Marital transition probabilities change

Married: Housing Asset Share

- High marriage probability \rightarrow The single's homeownership rate \Downarrow
- Lower divorce probability \rightarrow The married's housing asset share \Uparrow

Major changes between 1970 and 1995

(2) Downpayment constraint was tighter in 1970.

$$
\left(1-\eta_{1995}\right)=\left(1-\eta_{1970}\right) \times 2 / 3
$$

* Reference: Fisher and Gervais (2011), Bullard (2012)
(3) Earnings risk was lower in 1970.

$$
\sigma_{x, 1995}^{2}=\sigma_{x, 1970}^{2} \times(1+0.4)
$$

* Reference: Fisher and Gervais (2011), Santos and Weiss (2013)
(4) Spousal labor productivity was lower in 1970.

$$
\text { change wage gap via } \widetilde{\chi}(j) \text { and fixed cost of working } \widetilde{\phi}
$$

[^0]
(2) Downpayment constraint change

Married: Housing Asset Share

- Tighter constraint $\left\{\begin{array}{l}\text { The single's ownership rate } \Downarrow \\ \text { The married's housing asset share } \Downarrow\end{array}\right.$

(3) Earnings risk change

Single: Homeownership

Married: Housing Asset Share

- Earnings risk $\left\{\begin{array}{l}\text { Precautionary savings (ownership, share } \Uparrow \text {) } \\ \text { Delay until wealthy enough (ownership, share } \Downarrow \text {) }\end{array}\right.$
- Lower volatility makes (ownership, share \Downarrow) for the single/the married.

(4) Spousal labor productivity change

Single: Homeownership

Married: Housing Asset Share

- Not much change due to labor supply adjustment between spouses.
- The married head works more as the spouse works less.

Decomposition - Single's homeownership

	Data	Counterfactuals	
Age	\% Change	Case (I)	Case (II)
$25-29$	-61%		
$30-34$	-30%		
$35-39$	-29%		
$40-44$	-30%		
Average	-38%		

- For counterfactuals,
- Case (I): Changes (2) $+(3)+(4)$ applied
- Case (II): Case (I) + (1) Change in likelihood of marital transitions

Decomposition - Single's homeownership

	Data	Counterfactuals	
Age	\% Change	Case (I)	Case (II)
$25-29$	-61%	-24%	
$30-34$	-30%	-11%	
$35-39$	-29%	-16%	
$40-44$	-30%	-18%	
Average	-38%	-17%	

- For the change in single's homeownership rate,
- 45% of the change can be accounted for by the other three factors.

Decomposition - Single's homeownership

	Data	Counterfactuals	
Age	\% Change	Case (I)	Case (II)
$25-29$	-61%	-24%	-56%
$30-34$	-30%	-11%	-16%
$35-39$	-29%	-16%	-19%
$40-44$	-30%	-18%	-21%
Average	-38%	-17%	-28%

- For the change in single's home ownership rate,
- 45% of the change can be accounted for by the other three factors.
- 29% of the change can be by the likelihood of marital transitions.

Decomposition - Married's housing asset share

	Data	Counterfactuals	
Age	\% Change	Case (I)	Case (II)
$25-29$	17%		
$30-34$	11%		
$35-39$	18%		
$40-44$	6%		
Average	13%		

- For counterfactuals,
- Case (I): Changes (2) $+(3)+(4)$ applied.
- Case (II): Case (I) + (1) Change in likelihood of marital transitions.

Decomposition - Married's housing asset share

	Data	Counterfactuals	
Age	\% Change	Case (I)	Case (II)
$25-29$	17%	-3%	
$30-34$	11%	-3%	
$35-39$	18%	-2%	
$40-44$	6%	-11%	
Average	13%	-3%	

- Without the channel (1), the sign of change becomes the opposite.

Decomposition - Married's housing asset share

	Data	Counterfactuals	
Age	$\%$	Change	Case (I)
Case (II)			
$25-29$	17%	-3%	8%
$30-34$	11%	-3%	7%
$35-39$	18%	-2%	5%
$40-44$	6%	-11%	-6%
Average	13%	-3%	4%

- Without the channel (1), the sign of change becomes the opposite.
- 31% of the change can be accounted for by applying all changes.

Marital transitions: 1995 vs. mid-2000s

- Marital transition is an important risk factor to understand the change in housing variables between 1970 and 1995.
- What about more recent periods? (Left: Marriage, Right: Divorce)

Marital transitions: 1995 vs. mid-2000s

- Marital transition is an important risk factor to understand the change in housing variables between 1970 and 1995.
- What about more recent periods? (Left: Marriage, Right: Divorce)

Marriage probabilities continued to fall for the young.

House price dynamics

- We need to incorporate house price boom happened over the 2000s!
- Common house price shock P_{t}^{H} is a three-point process with a Markov transition matrix similar to Corbae and Quintin (2015).
- Just with P_{t}^{H}, households do not own more when housing is expensive.
- I incorporate an additional shock o_{t} to capture that households expect housing price appreciation.

$$
o_{t} \in\{0, \epsilon=0.6\}, \quad \Pi_{o} \equiv\left[\begin{array}{ll}
\pi_{00} & \pi_{\circ \epsilon} \\
\pi_{\epsilon 0} & \pi_{\epsilon \epsilon}
\end{array}\right]=\left[\begin{array}{cc}
0.85 & 0.15 \\
0.5 & 0.5
\end{array}\right] .
$$

- If $o_{t}=\epsilon$, households expect $P_{t+1}^{H} \times(1+\epsilon)$ with probability 0.5 .

Changes over time

Year	1995	2000	2005	2010
house price P_{t}^{H}	p_{2}^{H}			
belief/optimism ot	0			
wage w	1.0			
downpayment constraint $(1-\eta)$	0.25			
borrowing interest rate r^{H}	0.07			
savings interest rate r	0.02			
marital transition prob.	baseline			

Notes: The wage w is normalized so that the value in 1995 is 1.0 . The interest rates are annual.

Changes over time

Year	1995	2000	2005	2010
house price P_{t}^{H}	p_{2}^{H}	p_{2}^{H}	p_{3}^{H}	p_{2}^{H}
belief/optimism o_{t}	0	ϵ	ϵ	0
wage w	1.0			
downpayment constraint $(1-\eta)$	0.25			
borrowing interest rate r^{H}	0.07			
savings interest rate r	0.02			
marital transition prob.	baseline			

Notes: The wage w is normalized so that the value in 1995 is 1.0 . The interest rates are annual.

Changes over time

Year	1995	2000	2005	2010
house price P_{t}^{H}	p_{2}^{H}	p_{2}^{H}	p_{3}^{H}	p_{2}^{H}
belief/optimism o_{t}	0	ϵ	ϵ	0
wage w	1.0	1.07	1.07	1.0
downpayment constraint $(1-\eta)$	0.25			
borrowing interest rate r^{H}	0.07			
savings interest rate r	0.02			
marital transition prob.	baseline			

Notes: The wage w is normalized so that the value in 1995 is 1.0 . The interest rates are annual.

Changes over time

Year	1995	2000	2005	2010
house price P_{t}^{H}	p_{2}^{H}	p_{2}^{H}	p_{3}^{H}	p_{2}^{H}
belief/optimism oot	0	ϵ	ϵ	0
wage w	1.0	1.07	1.07	1.0
downpayment constraint $(1-\eta)$	0.25	0.2	0.15	0.25
borrowing interest rate r^{H}	0.07	0.06	0.05	0.07
savings interest rate r	0.02	0.018	0.015	0.02
marital transition prob.	baseline			

Notes: The wage w is normalized so that the value in 1995 is 1.0 . The interest rates are annual.

Baseline under high house price

Figure 1: Homeownership Rate of Singles (Boom: Data vs. Model)

Marital transition probabilities change

- With marriage \Downarrow, singles' homeownership rate \Uparrow

Higher wage + relaxed credit constraints

- With these changes, homeownership rate \Uparrow
- It is still insufficient to generate what's observed in the data.

Optimism about house price appreciation

- The data's pattern is matched by beliefs about appreciation coupled with changes in labor income and borrowing capacity.

Optimism about house price appreciation

- Change in the likelihood of marital transitions puts upward pressure on the singles' homeownership by 6.8\%.

[^0]: * Reference: Francis and Ramey (2009), Heathcote et al. (2010)

