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e In modern economics, we often deal with large and complex sets of data (big data).

e Some data are “conventional” (national accounting, micro panels, industry surveys, census data,
international trade flows, ...).

e Some data come in “non-conventional” forms (plain text, library records, parish and probate records,
GIS data, electricity consumption, satellite imagery, web scraping, network structure, social media,

"

e Some data are old but now easily available. Check the amazing dataset at
https://www.ucl.ac.uk/lbs/.

e This trend will increase over time as more archives get digitalized.

e These large datasets create their own challenges regarding data wrangling, storage, management,
visualization, and processing.


https://www.ucl.ac.uk/lbs/
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Parish and probate data
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Cell phone usage

S —_———
Fig. 2. Construction of high-resolution maps of poverty and wealth from call records. Information derived from the call records of 15 million
subscribers is overlaid on a map of Rwanda. The northem and western provinces are divided into cells (the smallest administrative unit of the country), and
the cell is shaded according to the average (predicted) wealth of all mobile subscribers in that cell. The southern province is overlaid with a Voronoi division
that uses geographic identifiers in the call data to segment the region into several hundred thousand small partitions. (Bottom right inset) Enlargement of
a 1km? region near Kiyonza, with Voronoi cells shaded by the predicted wealth of small groups (5 to 15 subscribers) who live in each region.

Blumenstock et. al. (2015)



g data Il

e This will become more salient over time: watch the lectures at
http://www.equality-of-opportunity.org/bigdatacourse/.

e Why?

1. Explosion of data sources.

2. Computational power.

3. Advances in algorithms: machine learning and modern data structures/databases (influence of Google).
e This topic will require a whole course on its own, so | will only introduce fundamental ideas.

e Also, this lecture should motivate you to understand further the data structures of your favorite
programming language (e.g., in R, the dataframe; in Python, the pandas).


http://www.equality-of-opportunity.org/bigdatacourse/

References

e Some basic references:

1. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, by Hadley Wickham and
Garrett Grolemund.

2. Principles of Data Wrangling: Practical Techniques for Data Preparation, by Tye Rattenbury et al.
3. Data Wrangling with R, by Bradley C. Boehmke.

4. Database Systems: Design, Implementation, Management (12th Edition), by Carlos Coronel and Steven
Morris.

5. Designing Data-Intensive Applications, by Martin Kleppmann.

6. Big Data: Principles and Best practices of Scalable Realtime Data Systems, by Nathan Marz and James
Warren.



Data vs. metadata |

e A good way to start thinking about how to handle data efficiently is to distinguish between the data
and its metadata.

e Data: ultimate information of interest.
e Metadata: data about the data.
e Tye Rattenbury et al. subdivide metadata in five aspects:
1. Structure: format and encoding of its records and fields.
2. Granularity: kinds of entities that each data record contains information about.
3. Accuracy: quality of the data.
4. Temporality: temporal structure of the representation of the data.

5. Scope: number of distinct attributes represented and the population coverage.



Data vs. metadata Il

e For simple projects, the metadata will be trivial, and you do not need to spend much time thinking
about it.

e But for complex, large projects, spending some time “getting” the metadata right will be crucial:
1. Assess how much effort you want to spend in wrangling the data (e.g., manual vs. automatization).
2. Assess how much effort you want to spend auditing the data.
3. Assess how much effort you want to spend in storing the data efficiently.

4. Assess how early decisions regarding the metadata might limit your future analysis.



Alternative data file formats: plain text files

The Quartz guide to bad data

| once acquired the complete dog licensing database for Cook County, Illinois. Instead of requiring the

person registering their dog to choose a breed from a list, the creators of the system had simply given

them a text field to type into. As a result, this database contained at least 250 spellings of Chihuahua.

e [ssues:

Inconsistent spelling and/or historical changes.

N/A, blank, or null values.

0 values (or —1 or dates 1900, 1904, 1969, or 1970).
Text is garbled.

Lines ends are garbled.

o e » w N

Text comes from optical-character recognition (OCR).
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Alternative data file formats: pdf files

e Many documents follow pdf format.
e Package in R: Pdftools 2.0.

e An example:

pdf_data(pdf, opw = "", upw = "")

11



Regular expressions |
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Regular expressions ||

You need to learn a programming language that manipulates regular expressions efficiently.

Tye Rattenbury et al. claim that between 50% and 80% of real-life data analysis is spent with data
wrangling.

About regular expressions in general:

1. Tutorial: https://www.regular-expressions.info/reference.html.

2. Online trial: https://regexr.com/.

Modern programming languages have powerful regular expressions capabilities.

In Python: https://www.tutorialspoint.com/python/python_reg_expressions.htm.

13
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Regular expressions and R

e In R: https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf.

Two key packages: dplyr and tidyr part of tidyverse:

install.packages("tidyverse")

In particular, learn to use the piping command from dplyr to make code more

x 5% £(y)
f(x, y)

A real example we will discuss below

mySelection %>%
filter(weight < 5) %>%

select(species_id, sex, Weight)

Look also at https://www.tidytextmining.com/ for text mining.

readable:

14


https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf
https://www.tidytextmining.com/
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Alternative data file formats: JSON I

e JSON: JavaScript Object Notation, https://www.json.org/:

Hierarchical data format:

1. A collection of key-value pairs.

2. An ordered list (array) of values. The values can be themselves either data or another nested structure.

Very efficient for the storage, transmitting and parsing of data.

It has gained much popularity with respect to XML.

Important for modern databases (more on this later).

At the core of Jupyter.

UBSON: Universal Binary JSON.

16


https://www.json.org/

Alternative data file formats: JSON |1

Example of JSON data, myObj:

{

"name":"Adam Smith",

"age":30,
"universities":[ "Princeton", "Penn", "Minnesota" ]

}

Accessing the data:

x = myObj.universities[0];

17



JSON and R

In Rm we can install the rjson package.

install.packages("rjson")

library (rjson)

And use its capabilities to read a JSON object:

mydata <- fromJSON (myObj)

mydata_df <- data.frame (NULL)

for(i in seq_along (mydata$universities)) {
df <- data.frame (mydata$universities)
layoff_df <- rbind (layoff_df, df)

}

18



More alternative data file formats

e HTML and XML.

e Plenty of alternative proprietary data formats:

1. Microsoft office.
2. Stata files.
3. pdf files.

4. ..
e Usually a bad idea to rely on them...

e ...but sometimes they are the only alternative. Resort to tool such as Tabula
(https://tabula.technology) and WebPlotDigitizer.

19


https://tabula.technology
WebPlotDigitizer

Spreadsheets

e For datasets of moderate size, spreadsheets are a conventional choice.

e However, you should be careful while using them:

1.
2.

Do not employ their proprietary data formats (i.e., x1sx).

Do not perform any computation in the spreadsheet. They are not reproducible, and you are bound to
make mistakes (or simply forget what you did).

e Best practices:

1. Comma-separated values (CSV) files are easier to share among co-authors, computers, and across time.
2. Load the CSV file into Julia or R and run a script file on it. Store the script!

3.
4

Use Jupyter, Hydrogen, or similar if you care about showing all the steps in detail.

. Use tidyverse in R to interact with Excel and other standard spreadsheets.

20



A database is a self-described, organized collection of records (tuples), each with multiple attributes.

e Components:

1. Data: the records and attributes of the database.

2. Metadata: the organization of the database stored in a data dictionary.

A spreadsheet is, then, just a straightforward database.

Similarly, a flat file (i.e., a simple CSV file) is a trivial database.

A blockchain is a distributed database updated by consensus through a proof-of-work ticket.

21



y databases? |

e Complex data structures require a more sophisticated database (either single or multi-user) with a
database management system (DBMS) that stores, manages, and facilitates access to records.

e For instance, your data cannot fit into a simple table without excessive redundancies or without loss

of efficiency in its processing.
e Examples in economics: CEX data, individual firm data, ....

e Other times, the data is too large to be stored in RAM, and you just want to select and manipulate
some observations efficiently.

22



A bad design
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A good design
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y databases? ||

e Often, you can build your own database in your code using object orientation and user-defined types.
e However, sometimes you need:

1. Refined capabilities of selection/joins.

2. Scalability.

3. Ensure safe concurrent operations on data.

4. Avoid data anomalies.

5. Prevent data loss from hardware/software crashes.

6. Interact with an already built database (e.g., at a statistical agency).

7. Build your own database.

8. Parallel computation and optimized data structures.

25



Database engines

e Plenty of industry-strength, scalable DBMS.

At the core of each DBMS, you have a database engine that creates, reads, updates, and deletes
(CRUD) data.

You can always access the engine directly with an API (for instance, to use within your code in C++

or R). This is likely the most common case for researchers.

In addition, there is usually a GUI to interact with the DBMS (most famous: Microsoft Access).

Also, general query language for APls not tied to any database, such as GraphQL.

A good source of information on the popularity of database engines:

https://db-engines.com/en/.
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Popularity of databases
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Popularity by category

Wide column stores 2.9%
Time Series DBMS 1.1%
Spatial DBMS 0.5%

Document stores 10.4%

/ Graph DBMS 1.8%

Key-value stores 5.6%

2. Multivalue DBMS 0.2%
Native XML DBMS 0.3%
Object oriented DBMS 0.3%
RDF stores 0.5%

Search engines 4.4%

Relational DBMS 71.9%

© 2023, DB-Engines.com
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Open source vs. commercial databases
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Databases vs. IBM RAMAC, 1956




e As mentioned before, a DBMS plays three roles:

1. Data storage: special attention to system and disk failures and to data structures that deliver good

performance.

Interesting application of dynamic programming: Selinger et al. (1979),
https://people.eecs.berkeley.edu/~brewer/cs262/3-selinger79.pdf.

2. Data management: how data is logically organized, who has access to it (read, write), and consistency

conditions.

3. Data access: how access is accessed (queries) and what types of computations are allowed in them.
e In real-life applications, these three tasks can involve high levels of complexity.

e In particular: multiple people have access to them, and they involve various units of hardware and
software (think about an airline reservation system).

31
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Database manageme

Modern DBMS hide how data is stored from end-user applications:

1. Thus, systems can evolve (i.e., hardware and software implementation of data structures and
optimized storage) without affecting you.

2. Similarly, you can change the database (e.g., add a new table) without having to modify the code
that queries the database and manipulates the results of the query.

3. The DBMS can handle abstract applications instead of being specifically tied to one design of a
concrete application.

4. Most DBMS are declarative, not imperative (tell the software what you want, not how to get it):
4.1 Easier to use for non-programmers (many users will not be)...
4.2 ...but harder to optimize.
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Optimized data structures
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The CAP theorem

e Conjectured by Eric Brewer (2001), but proven by Seth Gilbert and Nancy Lynch (2002).

e In a distributed database, you can only choose two of:

1. Consistency.
2. Availability.

3. Partition tolerance.

e If you think about it, the real trade-off is between consistency and availability since the problem
comes from the existence of a partition tolerance.

e Extension: PACELC theorem (Daniel J. Abadi, 2012): even in the absence of partitions, one has to
choose between latency (L) and consistency (C).

36



Relational database management systems

e Relational database management system (RDBMS) manage data stored in relations (i.e., a table).

e Each relation has a schema (description of attributes, their types, and constraints). An instance is
data satisfying the schema.

e Each record (tuple) is a row of the relation, and each attribute is a column.

e Each attribute has a domain consisting of a finite set of possible values within a few primitive types.
e Each attribute might have constraints (important for safety).

e The schema of the database is the set of relation schemas.

e The relations, not just the individual observations, are of interest.
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Relational model
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Importance of constraints
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Relational model, algebra, and calculus

Built around two elements:

1. Relational model:
1.1 Proposed by Edgar F. Codd (1969, Turing Award 1981).
1.2 Data is organized as tuples grouped into relations and independent of physical properties of storage.
1.3 Consistent with first-order predicate logic.

2. Relational algebra and calculus:

2.1 Proposed, again, by Edgar F. Codd (1972).
2.2 A collection of operations (mutating joins, filtering joins, and set operations).

2.3 A way defining logical outcomes for data transformations.
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Edgar F. Codd (1923-2003)
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Most popular relational database management systems

ORACLE’ ’ '
Microsoft SQLite

saL SQL Server Postgre SQL
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e SQL (Structured English Query Language) is a domain-specific language for defining, managing, and
manipulating data in relational databases.

e Developed at IBM in the early 1970s. Popularized by Oracle in the late 1970s.

e Based on Codd's twelve rules (actually, 13, from 0 to 12) of an RDBMS:
https://computing.derby.ac.uk/c/codds-twelve-rules/.

e Current standard: SQL:2016. Check https://modern-sql.com/.

e Many different implementations (both open source and commercial) with some differences in syntax

and adherence to current standards.
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e Good implementations follow the ACID (Atomicity, Consistency, Isolation, Durability) standard:
1. Atomicity: either all operations in the database succeed, or none do.
2. Consistency: a transaction in the database cannot leave the database in an inconsistent state.
3. Isolation: one transaction in the database cannot interfere with another.

4. Durability: a completed transaction persists, even after applications restart.

e Thus, you can understand SQL as choosing consistency over availability in the CAP theorem
(although “consistency” in ACID and the CAP theorem are slightly different concepts). Most likely,
the right choice in research.
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Morover SQL has more procedural instructions than originally.

In fact, SQL, after the introduction of Persistent Stored Modules (PSMs), is Turing complete.

Also, over time, SQL has incorporated many objected-oriented features = object-relational database
management system (ORDBMS).

e Distributed computation: Apache Drill at https://drill.apache.org/ (also for many NoSQL
databases).

e You can try basic SQL instructions at http://sqlfiddle.com/.

49
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Open-source implementations |: PostgreSQL

e Current release: 10.5, available at https://www.postgresql.org/.

e Evolved from the Interactive graphics and retrieval system (Ingres) project at Berkeley, led by Michael
Stonebraker (Turing Award 2014).

e Powerful ORDBMS implementation that can handle the most complex tasks.
e Available for all OS (for instance, it is the default in mac0S Server).

e Highly extensible: user-defined data types, custom functions, and allows for programming in different
languages (including the definition of DSLs).

e Many add-ons, such as the PostGIS geospatial database extender.

e Multiversion concurrency control (less critical for economists unless you have many coauthors and
RAs).
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Open-source implementations Il: SQLite

e Available at https://sqlite.org/about.html, but pre-installed in macOS and most Linux
distributions.

e Current release: 3.25.2.
e Uses PostgreSQL as a reference platform, but SQLite is serverless.

e Extremely popular, as it does not require a client-server engine (it is contained in a C programming
library), and its installation is rather compact and with “zero configuration.” Attractive features for
economics.

e Bindings for all popular programming languages.

e Faster than regular file 1/O in your operating system with a carefully designed application file format:
a complete SQLite database is stored in a single cross-platform disk file.
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Some SQLite instructions: basic interaction |

Getting Started with SQL: A Hands-On Approach for Beginners, by Thomas Nield.

To lunch the command-line shell

sqlite3d

You can also add commands after sqlite3 as in any other Unix/Linux program.

To exit:

sqlite> .exit

Alternative GUI = SQLite Studio: https://sqlitestudio.pl/
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Some SQLite instructions: basic interaction |l

Help:

To

To

To

sqlite> .help

read commands from script files:

sqlite> .read myfile

print a string:

sqlite> .print STRING

load a file:

sqlite> .output FILENAME

Finally, to comment:

sqlite> -- This is a comment
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Some SQLite instructions: basic interaction Il

To check existing databases and associated files:

sqlite> .databases

To create a database

sqlite3 Economists.db

To check existing tables:

sqlite> .tables

To check the schema of tables:

sqlite> .schema

In practice, you automatize the task described below with script files and mix in your favorite

programming language.
54



Some SQLite instructions: DDL - Data Definition Language |

To create a table:

sqlite> CREATE TABLE Faculty (

Name TEXT, NOT NULL,

Age INTEGER CHECK (Age=>0 and Age<100),
Field CHAR (20),

PhD CHAR (25),

PRIMARY KEY (Name),

FOREIGN KEY(id));

Note:
1. Capital case, optional (SQLite is mainly case insensitive) but common.
2. Keys are also optional.

3. SQLite uses dynamic typing. Most SQL database engines use static, rigid typing. | am following the
standard typing convention in SQL and relying on affinity rules here. 55



Some SQLite instructions: DDL - Data Definition Language Il

Beyond the standard types (text, integer, character, XML,...), we can define our own types

To

To

sqlite> CREATE ROW TYPE personalAddress (
Street CHARACTER VARYING (25),

City CHARACTER VARYING(20),

State CHARACTER (2),

PostalCode CHARACTER VARYING (9));

alter a table (note: some of the options of ALTER TABLE are not supported

sqlite> ALTER TABLE Faculty ADD COLUMN Phone INTEGER;
sqlite> ALTER TABLE Faculty ADD COLUMN personalAddress
addr_type;

drop a table:

sqlite> DROP TABLE Faculty;

by SQLite):
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Some SQLite instructions: DML - Data Manipulation Language

To insert a record:

sqlite> INSERT INTO Faculty (Name, Age, Field, PhD)
VALUES('Adam Smith', 35, 'Economics', 'Glasgow');
VALUES('David Ricardo', 42, 'Economics', 'London');

To modify the record:

sqlite> UPDATE Faculty SET Name = 'David Ricardo' WHERE
Name = 'Adam Smith';
sqlite> UPDATE Faculty SET Age = Age+1;

To delete the record:

sqlite> DELETE FROM Faculty WHERE Field = 'Economics';);
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Some SQLite instructions: DQL - Data Query Language |

To list records:

sqlite> SELECT Name, Field FROM Faculty;

To select records:

sqlite> SELECT * FROM Faculty ORDER BY Age ASC;

sqlite> SELECT * FROM Faculty WHERE Age>50;

sqlite> SELECT * FROM Faculty WHERE Age>50 ORDER BY Age DESC;

sqlite> SELECT Name FROM Faculty WHERE Name = 'A.x'

sqlite> SELECT MIN(Age) FROM Faculty;

sqlite> SELECT MAX(Age) FROM Faculty WHERE Field = 'Economics';

sqlite> SELECT Field AVG(Age) FROM Faculty GROUP by Field;

sqlite> SELECT Field AVG(Age) FROM Faculty GROUP by Field HAVING COUNT (*)>2;

sqlite> SELECT Field AVG(Age) AS avg_age, COUNT(*) as size FROM Faculty
GROUP WHERE Age>50 by Field HAVING COUNT(*)>2 ORDER BY Age DESC;
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Some SQLite instructions: DQL - Data Query Language Il




Some SQLite instructions: DQL - Data Query

To (inner) join records:

sqlite> SELECT Name Dues FROM Faculty INNER JOIN
AmericanEconomicAssociation on Faculty.Name =
AmericanEconomicAssociation.Name;

Similar instructions for cross and outer joins.

You can insert NULL

sqlite> INSERT INTO Faculty (Name, Age, Field, PhD)
VALUES('J.M. Keynes', NULL, 'Economics', 'Cambridge');
sqlite> SELECT * FROM Faculty WHERE Age IS NOT NULL;

60



SELECT <select_list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A

LEFT JOIN TablcB B
ON A.Key = B.Key
WHERE B.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON AKey = B.Key

SQL JOINS Q’

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
INNER JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A

RIGHT JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL

SELECT <select_list>

FROM TableA A

FULL OUTER JOIN TableB B
ON A.Key = B.Key

WHERE A.Key IS NULL

© C.L. Moffatt, 2008 OR B.Key IS NULL
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Some SQLite instructions: DQL - Data Query

You can create your own views:

sqlite> CREATE VIEW Econ_Faculty_View AS
SELECT Name, Age

FROM Faculty

WHERE Field = 'Economics';

The select can be as sophisticated as you want or subselect from the view.

sqlite> SELECT * FROM Econ_Faculty_View;

You cannot, however, to DELETE, INSERT or UPDATE statements on a view.

To drop a view:

sqlite> DROP VIEW Econ_Faculty_View;
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SQL and R |

e You can run SQL in R or R in the SQL server.

The former approach is more common in research.

Check:

1. https://db.rstudio.com/

2. https://datacarpentry.org/R-ecology-lesson/05-r-and-databases.html.

In addition, new versions of RStudio integrate interaction with SQL.
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SQL and R Il

e Package dplyr: provides a flexible grammar of data manipulation centered around data frames. In
particular, dplyr allows you to translate the dplyr verbs into SQL queries and use the SQL Engine
to run the data transformations. You need to install dbplyr (a backend for databases) as well: it
translates R code into database-specific variants.

e Package RSQLite: embeds the SQLite database engine in R and provides an interface compliant
with the DBI package (a database interface definition for communication between R and relational

database management systems).

e Package odbc: provides a DBl-compliant interface to Open Database Connectivity (ODBC)
drivers, including SQL Server, Oracle, and MySQL (and also PostgreSQL, SQLite).

e Package dbplot: allows processing a plot's calculations inside a database.
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SQL and R Il

Use dplyr to interact with the database

ol = —ff

Collect tibble

Results

AP
Database R Studio
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SQL and R IV

Open Source Databases
Data Access & Wrangle

DBI | dplyr
RSQthe package package | package
blgrquery package

Database
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SQL and RV

Commercial Databases

B

Database

Database Driver

Access & Wrangle

odbc | DBI | dplyr

package | package | package
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SQLite in R |

Let us first clear everything:

rm(list=1s())

We install required R packages:

install.packages(c("dplyr", "dbplyr", "RSQLite"))

We load relevant packages

library(dplyr)
library(dbplyr)
library (RSQLite)
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SQLite in R Il

We download a standard SQLite database used to teach and install it in a new directory:

dir.create("data_class_computation", showWarnings = FALSE)
download.file(url = "https://ndownloader.figshare.com/
files/2292171", destfile = "data_class_computation/

portal_mammals.sqlite", mode = "wb")

We connect R to SQLite:

mammals <- DBI::dbConnect(RSQLite::SQLite(), "data_class_

computation/portal_mammals.sqlite")

We inspect the database:

src_dbi (mammals)
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SQLite in R I

We select some observations with SQL syntax:

mySelection <- tbl(mammals, sql("SELECT year, species_id,
plot_id FROM surveys"))

We look at the top 5 observations:

head (mySelection, n = 5)

But it is easier to select with with dplyr syntax:

mySelection <- tbl(mammals, "surveys")

We can look again at the top 5 observations:

head (mySelection, n = 5)

You can also load the query in a R Notebook.
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SQLite in R IV

We pipe the selection:

mySelection %>%
filter(weight < 5) %>%
select(species_id, sex, weight)

We link across tables:

species <- tbl(mammals, '"species")

left_join(mySelection, species) %>%
filter(taxa == "Rodent") %>%
group_by (taxa, year) %>%
tally %>%
collect()

dyplr allows easy implementation of all four joins for dataframes. 71



Alternatives

DuckDB.

It supports analytical query workloads, also known as Online analytical processing (OLAP).

Complex, relatively long-running queries that process significant portions of the stored dataset.

e |t interacts well with R: duckdb.
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NoSQL |

e Databases not based on tabular relations.

Originally, it meant No+SQL.

Today most NoSQL databases include some SQL features, so most people call it Not only SQL.

e Concept existed since the 1960s (such as hierarchical databases), but it became popular in the early
2000s.

Interesting example of move towards /ess abstraction.

Why?
1. Usually better at dealing with big and distributed data because of their capability to scale and parallelize.
2. Schemaless data representations require less planning and allow for easier ex-post adjustments.

3. Faster to code.
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So you remember NoSQL

3 SQL DATABASES WALK INTO A

NoSQL BAR...

..A LITTLE WHILE LATER THEY WALK OUT.
BECAUSE THEY COULDN'T FIND A

TABLE
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NoSQL 11

e |nstead of ACID, NoSQL follows BASE:

1. Basic availability: each request gets a response (successful or not).

2. Soft state: the state of the database changes over time, even without any input (for eventual

consistency).

3. Eventual consistency: the database may be momentarily inconsistent but will eventually reach

consistency.
e Some NoSQL such as Neo4j, though, still deliver ACID.

e NoSQL chooses availability over consistency in the CAP theorem. Note the importance of web

applications.
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NoSQL Il

e NoSQL databases systems include a wide set of alternative approaches:
1. Document stores: schema-free organization of data = MongoDB, Couchbase.
2. Key-value stores: pairs of keys and values = Redis, Memcached.
3. Wide column stores: store data in records with huge numbers of dynamic columns = Cassandra, HBase.

4. Time series DBMS: optimized for handling time series data: each entry is associated with a timestamp
= InfluxDB, Graphite.

5. Graph DBMS: represent data in graph structures as nodes and edges. = Neo4j, AllegroGraph.
6. XML = MarkLogic, BaseX.

7. Search engines = Elasticsearch, Splunk.

8. Multimodel = Amazon DynamoDB, Microsoft Azure Cosmos DB.

e Also, object databases (although they have not taken off).
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NoSQL: trends
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e Uses in economics:

1. Graph databases, for their potential to allow us to discover important relational patterns.
2. Time Series DBMS, to deal with financial and other high-frequency data.

3. Data collections that might change over time in structure.

e Additional references:

1. Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement (2nd
Edition), by Luc Perkins with Eric Redmond and Jim Wilson.

2. Next Generation Databases: NoSQL, NewSQL, and Big Data, by Guy Harrison.
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MongoDB

e MongoDB (from “"humongous”), most popular NoSQL database.

Current release: 4.0, https://www.mongodb. com/.

Built around BSON, Binary JSON, a version of JSON.

Dual structure:

1. Documents are stored in collections using the BSON format. A collection is a group of related documents
with shared indices.

2. MongoDB collections belong to a database.

Used, for example, by CERN to collect data from the Large Hadron Collider.

Versatile and easy to use (expressive language for queries).
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Mongo data model

{

_id: <ObjectIdl>,

username: "123xyz",

contact: {
phone: "123-456-7890",
) email: "xyz@example.com” ,
access: {
level: 5,
group: "dev”
3

)
)

Embedded sub-
document

Embedded sub-
document
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NoSQL and R

e Less polished support than for SQL.
e Package nodbi for general backend.

e For MongoDB, we have package mongolite:

install.package("mongolite")

library (mongolite)

m <- mongo("mtcars", url = "mongodb://readwrite:test@mongo

.opencpu.org:43942/jeroen_test")

alldata <- dmd$find('{}")

print(alldata)

test <- dmd$find(
query = '{"cut" : "Premium"}',
fields = '{"cut" : true, "clarity" : truel}',
limit = 5)

print(test)
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e Available at https://spark.apache.org/.

Current version: 2.3.2.

A fast and general-purpose cluster computing system.

Modern alternative to Hadoop (although without a file management system).

High-level APls in Java, Scala, Python, and R.

Interacts well with SQL and has a beautiful machine learning library, ML1ib.

e Allows for real-time processing and querying.

Learning Spark: Lightning-Fast Big Data Analysis by Holden Karau and Andy Konwinski.
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Spark stack

Spark SQL Spark Streaming mg/‘c%::)ne Gr;aa[;)hhx
structured data real-time learning prgcessing
Spark Core

Standalone Scheduler YARN Mesos
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e Organized around resilient distributed datasets (RDDs).

e An RDD is a collection of items distributed across computer nodes that can be manipulated in
parallel.

e Operations: transformations (“map”, “filter") and actions (“count”, “collect”).
e Why resilient? Automatically rebuilt on failure.
e It can be stored on disk or memory.

e Completely lazy evaluation.
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Spark example code

def inside(p):
x, y = random.random(), random.random()

return x*x + y*xy < 1

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \
.filter(inside) .count ()
print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)
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Spark and R

sparklyr

dplyr GraphX Streaming Extensions
(graphframes)

spaEnks



Spark in R |

Let us first clear everything:

rm(list=1s())

We install required Spark package:

install.packages("sparklyr")

We load the relevant package and install Spark:

library (sparklyr)
spark_install(version = "2.3.0")
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Spark in R I

We contect to Spark:

sc <- spark_connect(master = "local")

We install the package with some cute data:

install.packages(c("nycflights13"))

We load the relevant package and install Spark:

library(dplyr)

flights_tbl <- copy_to(sc, nycflights13::flights, "flights
")

src_tbls(sc)

Some piping:

flights_tbl %>/ filter(dep_delay == 2)
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Machine learning

e Many of the most popular algorithms in machine learning are coded in reliable, state-of-the-art
libraries.

e Most famous:

1. Tensorflow, https://www.tensorflow.org/.

2. scikit-learn, http://scikit-learn.org/stable/.

e Note, however, that if you are going to write frontier papers in machine learning, chances are you will
need to write much (most?) of your code.
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GIS

e Geographic information systems (GIS) capture, store, manipulate, and display geographic information
data.

e Goes back to John Snow's 1855 map of the Soho cholera outbreak.

e Why the current boom? Spatial econometrics and quantitative spatial economics:
1. A Primer for Spatial Econometrics: With Applications in R, by Giuseppe Arbia.
2. Redding and Rossi-Hansberg (2017).
e Resources:
1. https://www.gislounge.com/.
2. https://gisgeography.com/
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John Snow, cholera epidemics 1858
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The effects of the Mita |
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The effects of the Mita Il
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The effects of the Mita 1l
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The effects of the Mita IV

Dependent Variable

Log Equiv. Hausehold Consumption (2001) Stunted Growth, Children 6-9 (2005)

Sample Within: <100 km <75km <50 km <100 km <75km <50 km Border
of Bound. of Bound. of Bound. of Bound. of Bound. of Bound. District
0 &) 3 ) ) ©6) )
Panel A. Cubic Polynomial in Latitude and Longitude
Mita —0.284 —0.216 —0.331 0.070 0.084* 0.087* 0.114**
(0.198) (0.207) (0.219) (0.043) (0.046) (0.048) (0.049)
R? 0.060 0.060 0.069 0.051 0.020 0.017 0.050
Panel B. Cubic Polynomial in Distance to Potosi
Mita —0.337%** —0.307*** —0.329%** 0.080*** 0.078%*** 0.078%** 0.063*
(0.087) (0.101) (0.096) (0.021) (0.022) (0.024) (0.032)
R? 0.046 0.036 0.047 0.049 0.017 0.013 0.047
Panel C. Cubic Polynomial in Distance to Mita Boundary
Mita —0.277%** —0.230%* —0.224%* 0.073%** 0.061%** 0.064%** 0.055%
(0.078) (0.089) (0.092) (0.023) (0.022) (0.023) (0.030)
R? 0.044 0.042 0.040 0.040 0.015 0.013 0.043
Geo. controls yes yes yes yes yes yes yes
Boundary FE.s yes yes yes yes yes yes yes
Clusters 71 60 52 289 239 185 63
Observations 1478 1161 1013 158,848 115,761 100,446 37,421
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QGIS, current version: 3.28.

Check https://qgis.org/en/site/. Also, note large number of plugins.

Works with PostGIS, which adds support for geographic objects to the PostgreSQL.

o Alternative: to work directly in Python or R.

Check https://www. jessesadler.com/post/gis-with-r-intro/.
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