
The Elements of Programming Style

(Lectures on High-performance Computing for Economists VIII)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

January 27, 2022

1University of Pennsylvania

2Boston College



Programming Style



Motivation

• In the same way than when writing in a human language, a good style is paramount when writing

code.

• Creates code that is:

1. Clear.

2. Robust.

3. Easier to maintain.

4. Easier to share.

5. With less bugs.

• Particularly important when working with coauthors.

1



Style guides and books

• Google coding standard: https://google.github.io/styleguide/cppguide.html

• The Elements of Programming Style (2nd Edition), by Brian W. Kernighan and P. J. Plauger.

• The Elements of C++ Style, by Trevor Misfeldt, Gregory Bumgardner, and Andrew Gray.

• The Elements of Matlab Style, by Richard Johnson.

• Writing Scientific Software: A Guide to Good Style, by Suely Oliveira and David E. Stewart.

2

https://google.github.io/styleguide/cppguide.html


Main ideas

• Two guiding principles:

1. Consistency. You can have your own rules, but apply them consistenly.

2. Doing it from start (no window dressing).

• Goals from The Elements of C++ Style:

1. Simplicity.

2. Clarity.

3. Completeness.

4. Consistency.

5. Robustness.

3



Formatting



Formatting

• Keep lines short (80 columns).

• Indentation for nested statements.

• White spaces.

• Block code.

• Use parenthesis even if not extremely needed.

4



Naming



Naming: a motivating example

• What does this code do?

a = b^c*d^e

• And this one?

y = (k^a)*(l^(1-a))

• And this third one?

output = (capital^aalpha)*(labor^(1-aalpha))}

• Which one do you want to use? 5



Naming variables

• Variables should have names that are easy to understand:

1. output is a good name.

2. a is not.

• What is a good name is somewhat dependent of the context.

• For instance:

1. If you are coding an RBC model, names of variables such as y, c, i, or k are probably adequate.

2. Names for counters can be easier than names for variables.

6



Variable names and programming languages

• Modern programming languages allow for long names.

• For instance, in Matlab:

namelengthmax

ans = 63

• Is your programming language case sensitive?

• Does your variable already exist? In Matlab:

exist myvariable

ans = 1

7



Naming conventions

• Five main conventions:

1. lowerCamelCase: consumptionDurablesHousehold.

2. UpperCamelCase: ConsumptionDurablesHousehold.

3. period.separated: consumption.durables.household.

4. underscore separated: consumption durables household.

5. Hungarian notation: doubleconsumption durables household,

• lowerCamelCase is perhaps the most used.

• period.separated: confusion with objects, structures, and dataframes (in R).

• underscore separated: for files names.

• Hungarian notation is not very useful with modern IDEs that show workspaces.

8



Other names

• Best practices:

1. Use v as first letter in vectors: vCapitalGrid.

2. Use m as first letter in in Matrices: mValueFunction.

3. Use i as the first letter in iterators: iCapitalNextPeriod.

• Idyosincratic: I double first letter of greek letters: bbeta.

9



Naming functions and objects

• Same ideas for functions, subroutines, objects, and classes, etc.

• Best practices:

1. Use lowercase only for functions.

2. Use verbs in the name of the functions.

3. Use nouns to name classes: household.

4. Reserve get and set for interactions with objects.

5. is for Boolean functions: isUtilityPositive.

10



Comments



Comments I

• In the ideal case, code is understandable without adding comments (although you always want a

header).

• However, complicated pieces of code may need clarifying remarks.

• In that case, describe what the code is aimed to do, not how it does it.

• Share with others and with your future self.

• You will probably spend more time reading code than writing code.

• Document early.

• However, realize that just like code, comments have to be maintained.

• So writing code that is readable without comments can save you a lot of time when fixing bugs or

updating your compendium.

• It is better to have no comments than comments that are wrong.
11



Comments II

• Use TODO/FIXME/NOTE comments: many IDEs will gather them together automatically.

• Automatic systems to Generate documentation from source code.

• Doxigen: https://www.doxygen.nl/index.html

• Literate programming (Knuth): weave.jl, knitr.

• Reproducible Research with R and RStudio (2nd Edition) by Christopher Gandrud.

• Dynamic Documents with R and knitr (2nd Edition) by Yihui Xie.

12

https://www.doxygen.nl/index.html


Functions



Functions

1. Write small functions.

2. Name them properly.

3. Modular use.

4. Hide implementation details.

5. Document inmediatedly.

6. Tests.

7. Use function handles.

8. Avoid not passing default parameters.

13



Optimization



Optimization

Donald Knuth

Premature optimization is the root of all evil.

• You first want to be sure your code runs properly.

• Then, you optimize.

• Some automatic tools: -O flags in your compiler.

• You want to identify algorithmic bootlenecks and computer hotspots.

• Strategies:

1. Benchmarking.

2. Profiling.

3. Vectorization.

4. Pre-allocating memory and memoization.

5. Unrolling loops.

6. Inlining. 14


