Programming Paradigms

(Lectures on High-performance Computing for Economists VII)

&

Penn

UNIVERSITY of PENNSYLVANIA

Jesis Fernandez-Villaverde! and Pablo Guerrén?

January 27, 2022

LUniversity of Pennsylvania

2Boston College



Programming Approaches



Paradigms |

e A paradigm is the preferred approach to programming that a language supports.

e Main paradigms in scientific computation (many others for other fields):
1. Imperative.
2. Structured.
3. Procedural.
4. Object-Oriented.

5. Functional.



Paradigms Il

Multi-paradigm languages: C++, introduction a few years go of A-calculus features.

Different problems are better suited to different paradigms.

e You can always “speak” with an accent.

Idiomatic programming.



Imperative, structured, and
procedural



Imperative

Oldest approach.

Closest to the actual mechanical behavior of a computer=- original imperative languages were
abstractions of assembly language.

e A program is a list of instructions that change a memory state until desired end state is achieved.

Useful for quite simple programs.

Difficult to scale.

Soon it led to spaghetti code.



Structured

Go To Statement Considered Harmful, by Edsger Dijkstra in 1968.

Structured program theorem (Bdhm-Jacopini): sequencing, selection, and iteration are sufficient to

express any computable function.

Hence, structured: subroutines/functions, block structures, and loops, and tests.

This is paradigm you are likely to be most familiar with.



Procedural

e Evolution of structured programming.
e Divide the code in procedures: routines, subroutines, modules methods, or functions.

e Advantages:

1. Division of work.

N

Debugging and testing.
3. Maintenance.

4. Reusability.



OOP



Object-oriented programming |

Predecesors in the late 1950s and 1960s in the LISP and Simula communities.

1970s: Smalltalk from the Xerox PARC.

e Large impact on software industry.

e Complemented with other tools such as design patterns or UML.

Partial support in several languages: structures in C (and structs in older versions of Matlab).

Slower adoption in scientific and HPC.

But now even Fortran has OO support.



ted programming Il

Object: a composition of nouns (numbers, strings, or variables) and verbs (functions).

Class: a definition of an object.

Analogy with functional analysis in math.

Object receive messages, processes data, and sends messages to other objects.



Object-orientated programming: basic properties

Encapsulation.

Inheritance.

Polymorphis.

Overloading.

Abstraction penalty.



Example in Matlab

Class household.

We create the file household.m.

e We run Example Use Class.m.

Public, private, and protected properties and methods.



Functional Programming



Functional programming

Nearly as old as imperative programming.

Created by John McCarthy with LISP (list processing) in the late 1950s.

e Many important innovations that have been deeply influential.

e Always admired in academia but with little practical use (except in Artificial Intelligence).

10



11



Theoretical foundation

Inspired by Alonzo Church’s A-calculus from the 1930s.

Minimal construction of “abstractions” (functions) and substitutions (applications).

Lambda Calculus is Turing Complete: we can write a solution to any problem that can be solved by a
computer.

John McCarthy is able to implement it in a practical way.

e Robin Milner creates ML in the early 1970’ s.

12



y functional programmi

e Recent revival of interest.

e Often functional programs are:

1. Easier to read.
2. Easier to debug and maintain.

3. Easier to parallelize.

o Useful features:

1. Hindley—Milner type system.
2. Lazy evaluation.

3. Closures.

13



e All computations are implemented through functions: functions are first-class citizens.

e Main building blocks:
1. Immutability: no variables gets changed (no side effects). In some sense, there are no variables.
2. Recursions.
3. Curried functions.

4. Higher-order functions: compositions (~operators in functional analysis).

14



Interactions

e How do we interact then?

1. Pure functional languages (like Haskell): only limited side changes allowed (for example, 1/0) and
tightly enforced to prevent leakage.

2. Impure functional languages (like 0Calm or F#): side changes allowed at the discretion of the
programmer.

e Loops get substituted by recursion.

e We can implement many insights from functional programming even in standard languages such as
C++ or Matlab.

15



Functional languages

e Main languages:
1. Mathematica.
2. Common Lisp/Scheme/Clojure.
3. Standard ML/Calm/0Calm/F#.
4. Haskell.
5. Erlang/Elixir.

6. Scala.

16



