
Coding Tools

(Lectures on High-performance Computing for Economists VI)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

January 27, 2022

1University of Pennsylvania

2Boston College

Compilers

Compilers

• If you use a compiled language such as C/C++ or Fortran, you have another choice: which compiler

to use?

• Huge differences among compilers in:

1. Performance.

2. Compatibility with standards.

3. Implementation of new features:

http://en.cppreference.com/w/cpp/compiler_support.

4. Extra functionality (MPI, OpenMP, CUDA, OpenACC. ...).

• High return in learning how to use your compiler proficiently.

• Often you can mix compilers in one project.

1

http://en.cppreference.com/w/cpp/compiler_support

2

3

The GCC compiler collection

• A good default option: GNU GCC 11.2 compiler.

1. Open source.

2. C, C++, Objective-C, Java, Fortran, Ada, and Go.

3. Integrates well with other tools, such as JetBrains’ IDEs.

4. Updated (C++20).

5. Efficient.

6. An Introduction to GCC, by Brian Gough,

https:

//tfetimes.com/wp-content/uploads/2015/09/An_Introduction_to_GCC-Brian_Gough.pdf

4

https://tfetimes.com/wp-content/uploads/2015/09/An_Introduction_to_GCC-Brian_Gough.pdf
https://tfetimes.com/wp-content/uploads/2015/09/An_Introduction_to_GCC-Brian_Gough.pdf

The LLVM compiler infrastructure

1. LLVM (http://llvm.org/), including Clang.

1.1 It comes with macOS and Xcode.

1.2 Simple abstract syntax tree (AST).

1.3 Faster for compiling, uses less memory.

1.4 Run time is (very) slightly worse than GCC.

1.5 Useful for extensions:Cling (https://github.com/root-project/cling).

1.6 Architecture of Julia.

2. DragonEgg: uses LLVM as a GCC backend.

5

http://llvm.org/
https://github.com/root-project/cling

Commercial compilers

1. Intel oneAPI Base Toolkit (in particular with MKL) for C, C++, DPC++, and Fortran (plus a

highly efficient Python distribution). Community edition available.

2. PGI. Community edition available. Good for OpenACC.

3. Microsoft Visual Studio for C, C++, and other languages less relevant in scientific computation.

Community edition available.

4. C/C++: C++Builder.

5. Fortran: Absoft, Lahey, and NAG.

6

Libraries

Libraries I

• Why libraries?

• Well-tested, state-of-the-art algorithms.

• Save on time.

• Classic ones:

1. BLAS (Basic Linear Algebra Subprograms).

2. Lapack (Linear Algebra Package).

7

Libraries II

• More modern implementations:

1. Accelerate Framework (macOS).

2. ATLAS (Automatically Tuned Linear Algebra Software).

3. MKL (Math Kernel Library).

• Open source libraries:

1. GNU Scientific Library.

2. GNU Multiple Precision Arithmetic Library.

3. Armadillo.

4. Boost.

5. Eigen.

8

Build Automation

Build automation

• A build tool automatizes the linking and compilation of code.

• This includes latex and pdf codes!

• Why?

1. Avoid repetitive task.

2. Get all the complicated linking and compiling options right (and, if text, graphs, options, etc.).

3. Avoid errors.

4. Reproducibility.

• GNU Make and CMake.

9

Why Make?

• Programed by Stuart Feldman, when he was a summer intern!

• Open source.

• Well documented.

• Close to Unix.

• Additional tools: etags, cscope, ctree.

10

11

Basic idea

• You build a make file: script file with:

1. Instructions to make a file.

2. Update dependencies.

3. Clean old files.

• Daily builds. Continuous integration proposes even more.

• Managing Projects with GNU Make (3rd Edition) by Robert Mecklenburg,

http://oreilly.com/catalog/make3/book/.

12

http://oreilly.com/catalog/make3/book/

Containers

• A container is stand-alone, executable package of some software.

• It should include everything needed to run it: code, system tools, system libraries, settings, ...

• Why? Keep all your environment together and allow for multi-platform development and team coding.

• Easier alternative to VMs. But dockers are not “lightweight VMs.”

• Most popular: Docker https://www.docker.com/.

• Built around dockerfiles and layers.

13

https://www.docker.com/

Linting

Linting

• Lint was a particular program that flagged suspicious and non-portable constructs in C source code.

• Later, it became a generic word for any tool that discovers errors in a code (syntax, typos, incorrect

uses) before the code is compiled (or run)⇒static code analyzer.

• It also enforces coding standards.

• Good practice: never submit anything to version control (or exit the text editor) unless your linting

tool is satisfied.

• Examples:

1. Good IDEs and GCC (and other compilers) have excellent linting tools.

2. C/C++: clang-tidy and ccpcheck.

3. Julia: Lint.jl.

4. R: lintr.

5. Matlab: checkcode in the editor.
14

Debugging

Debugging

C. Titus Brown

If you’re confident your code works, you’re probably wrong. And that should worry you.

• Why bugs? Harvard Mark II, September 9, 1947.

• Find and eliminate mistakes in the code.

• In practice more time is spent debugging than in actual coding.

• Complicated by the interaction with optimization.

• Difference between a bug and a wrong algorithm.

15

16

Typical bugs

• Memory overruns.

• Type errors.

• Logic errors.

• Loop errors.

• Conditional errors.

• Conversion errors.

• Allocation/deallocation errors.

17

How to avoid them

• Techniques of good coding.

• Error handling.

• Strategies of debugging:

1. Tracing: line by line.

2. Stepping: breakpoints and stepping over/stepping out commands.

3. Variable watching.

18

Debuggers

• Manual inspection of the code. Particularly easy in interpreted languages and short scripts.

• Use assert.

• More powerful → debuggers:

1. Built in your application: RStudio, Matlab or IDEs.

2. Explicit debugger:

2.1 GNU Debugger (GDB), installed in your Unix machine.

2.2 Python: pdb.

2.3 Julia: https://julialang.org/blog/2019/03/debuggers/.

19

https://julialang.org/blog/2019/03/debuggers/

20

Unit testing

• Idea.

• Tools:

1. xUnit framework (CppUnit, testthat in R,).

2. In Julia: Test module.

3. In Matlab: matlab.unittest framework.

• Regression testing.

21

Profiler

Profiler

• You want to identify the hot spots of performance.

• Often, they are in places you do not suspect and small re-writtings of the code bring large

performance improvements.

• Technique:

1. Sampling.

2. Instrumentation mode.

• We will come back to code optimization.

22

	Compilers
	Libraries
	Build Automation
	Linting
	Debugging
	Profiler

