
OS and Basic Utilities

(Lectures on High-performance Computing for Economists III)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

January 15, 2022

1University of Pennsylvania

2Boston College

Operating Systems

Operating systems

• If you are going to undertake some serious computation, you want to become a skilled user of your OS.

• High rate of return to moderate time investments.

• Two main families of OS:

1. Unix and Unix-like family (Ken Thompson and collaborators at Bell Labs):

1.1 Commercial versions: AIX, HP-UX, Solaris, ...

1.2 Open source: OpenBSD, Linux, ...

1.3 macOS.

2. Windows family.

1

2

Why Unix/Linux? I

• Industry-tested for four decades: powerful beyond your imagination.

• Standard OS for scientific computation and high-performance computing → as of November 2021,

ALL the Top 500 supercomputers in the world (including those owned by Microsoft!) run on Linux.

• Particularly important for:

1. Access to servers.

2. Web services such as AWS.

3. Parallelization

• It will be around forever: if you learned to use Unix in 1973, you can open a Mac today and use its

terminal without problems.

• Watch https://youtu.be/tc4ROCJYbm0.

3

https://youtu.be/tc4ROCJYbm0

Why Unix/Linux? II

• Many (Linux) open source implementations. For example, Ubuntu and Fedora. You can check

https://www.distrowatch.com/

• Much more robust: small kernel.

• Much safer: sandboxing and rich file permission system.

• Easier to port code.

• Plenty of tools.

• For instance, a default macOS installation comes with Emacs, VI, SHH, GCC, Python, Perl,....

• Existence of Windows emulators such as VMWare or Parallels.

• Converse is not true: Cygwin is still not Unix.

4

https://www.distrowatch.com/

Philosophy of Unix/Linux

• “Building blocks”+“glue” (pipes and filters) to build new tools:

1. Building blocks: programs that do only one thing, but they do it well.

2. Glue: you can easily combine them.

• Ability to handle Generalized Regular Expressions:

Ken Thompson

A regular expression is a pattern which specifies a set of strings of characters; it is said to match certain

strings.

1. grep and awk: searches plain-text data sets for lines that match a regular expression (although

nowadays you can use text processing packages in your favorite programming language).

2. Flex (fast lexical analyzer) and Bison (general-purpose parser generator).

5

Interaction

• Both GUIs and command lines.

• GUIs are useful for routine operations:

1. X11.

2. GNOME.

3. Aqua.

• Command line ends up being much more powerful and adaptable than GUIs.

• The command line works through a shell.

6

Shell

Shell

• Different shells: bash (Bourne-again shell, by Brian Fox),bourne, zsh,...

• For instance, if you type

In [1]: echo $0

on a Mac Terminal, you will probably get:

Out[1]: -zsh

• Easy to change shells.

• Most of them offer similar capabilities, but bash and derivatives is the most popular.

• Basic tutorial: http://swcarpentry.github.io/shell-novice/

7

http://swcarpentry.github.io/shell-novice/

8

Some basic instructions I

To check present working directory:

$ pwd

To list directories and files:

$ ls

To list all directories and files, including hidden ones:

$ ls -all

To navigate into directory myDirectory:

$ cd myDirectory

To go back:

$ cd ..
9

Some basic instructions II

To create a directory:

$ mkdir myDirectory

To remove a directory:

$ rmdir myDirectory

To copy myFile:

$ cp myFile

To move myFile to yourFile:

$ mv myFile yourFile

To remove myFile:

$ rm myFile
10

Some basic instructions III

To find myFile:

$ find myFile

To concatenate and print myFile:

$ cat myFile

Wild card:

$ ls myF*

Manual entries:

$ man

Shebang:

$ #!
11

Some basic instructions IV

To check permissions on myFile:

$ ls -l myFile

To change permissions on myFile:

$ chmod 744 myFile

• Interpretation digit:

• 4: read access.

• 2: write access.

• 1: execute access.

• Interpretation position:

• first: user access.

• second: group access.

• third: world access.

12

Advanced shell interaction

• Customization: .bash profile, .bash logout, and .bashrc files.

• awk programming language.

• Shell programming:

1. Automatization.

2. Aliases.

$ alias myproject = ' ~/dropbox/computational_economics_course/figures'

13

Some more information

• Good references (among many):

1. Unix in a Nutshell (4th Edition), by Arnold Robbins.

2. Learning Unix for OS X : Going Deep With the Terminal and Shell (2nd Edition), by Dave Taylor.

3. A Practical Guide to Linux Commands, Editors, and Shell Programming (4th Edition), by Mark G.

Sobell.

4. Learning the bash Shell: Unix Shell Programming (2nd Edition), by William Shotts.

14

Package Manager

Package manager

• Get yourself a good package manager.

• Update your software in an efficient way.

• Particularly important for open source projects.

• I use (quite popular) Homebrew: https://brew.sh/.

• Less popular:

1. MacPorts: http://www.macports.org/.

2. Fink: https://www.finkproject.org/.

$ brew update

$ brew upgrade

15

https://brew.sh/
http://www.macports.org/
https://www.finkproject.org/

Editors

Editors

• By default, you should try to use plain, open files:

1. Text files (READMEs, HOWTOs, ...).

2. CSV files for data (also as text files).

• .docx and .xlsx files change over time and may not be portable.

• A good editor is an excellent way to write text files.

• A good editor will also help you write source code (with syntax highlight) and tex files.

16

Alternatives I

Harry J. Paarsch

Choose your editor with more care than you would your spouse because you will spend more time with

your editor, even after the spouse is gone.

• Classics:

1. Emacs, originally by Richard Stallman (with many variants: I use Aquamacs).

2. VI.

3. Textwrangler.

4. Notepad++.

5. JEdit.

6. Nano/Pico (simplest, when I am in a real hurry).

17

18

Alternatives II

• New generation:

1. Visual Studio Code (my usual choice).

2. Sublime.

3. Atom (not being developed any longer).

• Characteristics:

1. Web-based programming platform targeting customizability.

2. Use modern languages to implement the editor itself.

3. Open-source communities of 3rd party plugins.

19

IDEs

IDEs I

• Integrated Developer Environment: tools to write, compile, debug, run, and version control code.

• Advantages and disadvantages.

• Standard choices:

1. JetBrains (CLion, PyCharm,...).

2. Xcode.

3. VisualStudio.

4. Eclipse (with Parallel Application Developers package).

5. NetBeans.

20

IDEs II

• Specific languages:

1. Spyder.

2. RStudio.

3. Matlab IDE.

4. Wolfram Workbench.

21

Version Control

Challenge

• Projects nearly always end up involving many versions of code (even of your tex files).

• Version control is the management of changes to your code or documents.

• This is important:

1. When you are working yourself, to keep track of changes, and to be able to return to previous versions.

2. When you are working with coauthors, to coordinate task and ensure that all authors have the right

version of the file.

• Hard to emphasize how important this is in real life: when, why, and how you did it?

22

Simple solution

• Poor man solutions:

1. Indexing files by version (mytextfile 1, mytextfile July212018), with major and minor patches (x.y.z),

e.g., 0.1.7

2. Having a VCS folder (for Version Control System).

3. Dropbox or similar services.

4. Automatic back-up software (Time Machine for Mac, fwbackups for Linux).

• While 1-4 are useful, they are not good enough to handle complex projects.

• Nevertheless, SET UP automatic backups.

23

24

Version control software

• Alternative? version control software (open source):

1. First generation: RCS.

2. Second generation: CVS, Subversion.

3. Third generation: Mercurial, Git.

• Components:

1. Repository: place where the files are stored.

2. Checking out: getting a file from the repository.

3. Checking in or committing: placing a file back into the repository.

25

Workflow

• Standard procedure:

1. You check out a file from the repository.

2. You work on it.

3. You put it back with (optional) some comments about your changes.

4. The software keeps track of the changes (including different branches) and allows you to recover old

versions.

• Version control software is only as good as your own self-discipline.

26

27

Git I

• Modern, distributed version control system.

• Developed by Linus Torvalds and Junio Hamano.

• Simple and lightweight, yet extremely powerful.

• Easy to learn basic skills.

• Originally designed for command line instructions, but now several good GUIs: Sourcetree.

28

Git II

• Very popular: http://www.github.com

• Also, https://about.gitlab.com/

• A good reference: Pro Git (2nd Ed.) by Scott Chacon, http://git-scm.com/book.

• Many tutorials online.

• Integrated with Juno and RStudio and can easily integrate with Visual Code Studio and standard

IDEs.

29

http://www.github.com
https://about.gitlab.com/
http://git-scm.com/book

Dynamic notebooks

• Why?

• Jupyter: http://jupyter.org/. Also, JupyterLab.

• Markdown: https://www.markdownguide.org/.

• If you work in R:

1. Knitr package: https://yihui.name/knitr/.

2. Dynamic Documents with R and knitr (2nd ed.) by Yihui Xie.

• Pandoc: http://pandoc.org/

30

http://jupyter.org/
https://www.markdownguide.org/
https://yihui.name/knitr/
http://pandoc.org/

Notebook components

31

