
Web Scrapping

(Lectures on High-performance Computing for Economists X)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

January 27, 2022

1University of Pennsylvania

2Boston College



Web scraping I

• Internet includes thousands of data points that can be used for research.

• Examples:

1. Yelp: David, Dingel, Monras, and Morales: “’How segregated is urban consumption’ (Accepted JPE).

2. Craigslist: Halket and Pignatti: “Homeownership and the scarcity of rentals” (JME 2015).

3. Walmart, Target, CVS ...: Cavallo (2017): “Are Online and Offline Prices Similar? Evidence from Large

Multi-channel Retailers” (AER 2017).

4. Government document: Hsieh, Miguel, Ortega, and Rodriguez: “The Price of Political Opposition:

Evidence from Venezuela’s Maisanta” (AEJ: Applied Economics, 2011).

5. Google: Ginsberg, Mohebbi, Patel, Brammer, Smolinski, and Brilliant: “Detecting influenza epidemics

using search engine query data” (Nature, 2009).

1



Web scraping II

• However, data may be split across thousands of URLs (requests):

• And include multiple filters: bedrooms, bathrooms, size, price range, pets:

• Automatize data collection: code that gathers data from websites.

• (Almost) any website can be scraped. 2



Permissions

• Beware of computational, legal, and ethical issues related with web scrapping. Check with your IT

team and read the terms of service of a web site.

• Go to The Robots Exclusion Protocol of a website, adding “/robots.txt” to the website’s URL:

www.google.com/robots.txt.

• E.g.: Spotify’s robots.txt’s file:

• Three components:

1. User-agent: the type of robots to which the section applies.

2. Disallow: directories/prefixes of the website not allowed to robots.

3. Allow: sections of the website allowed to robots.

• robots.txt is a de facto standard (see http://www.robotstxt.org). 3

www.google.com/robots.txt
http://www.robotstxt.org


How do you scrap?

• You can rely on existing packages:

1. Scraper for Google Chrome.

2. Scrapy: https://scrapy.org/

• Or you use your own code:

1. Custom made.

2. Python: packages BeautifulSoup, requests, httplib, and urllib.

3. R: package httr, RCurl, and rvest.

4

https://scrapy.org/


HMTL

• Nearly all websites are written in standard HTML (Hyper Text Markup Language).

• Due to simple structure of HTML, all data can be extracted from the code written in this language.

• Advantages of web scrapping vs., for example, APIs:

1. Websites are constantly updated and maintained.

2. No rate limits (such as limits to daily queries in APIs) – apart from explicit restrictions.

3. Data is readily available.

• However, there is no bulletproof method:

1. Data is structured differently on every website (different request methods, HTML labels, etc.).

2. Unlike APIs, usually no documentation.

3. Take your time, be patient!

5



A motivating example in R I

Let us first clear everything:

rm(list=ls())

We install and load required packages:

install.packages("rvest")

library(rvest)

library(dplyr)

We read a webpage into a a parsed HTML document:

my_page <- read_html("relevant_page.html")

We extract a table:

my_page %>%

html_node("table") %>% html_table()
6



A motivating example II

A more realistic example of getting financial information:

page <- read_html("https://finance.yahoo.com/quote/MSFT")

We get price:

page %>%

html_node("div#quote-header-info > section > span") %>%

html_text() %>%

as.numeric()

We get key statistics:

page %>%

html_node("#key-statistics table") %>%

html_table()

7



Requests

• Every time you click on a website and data is updated, a request is being made.

• Steps to web scraping:

1. Figure out request method of website:

• Usually data split over different URLs.

• Tables update with filters.

• . . .

2. Fetch the HTML, JSON, . . . data of a website using a request.

3. Parse the data in a structured way.

4. Access/organize the data.

• Avoid 1 if interested only in scraping data from a single URL.
8



HTTP

• HTTP (Hypertext Transfer Protocol) enables communication between clients and servers.

• Works through a request-response protocol.

• Every time data is updated in browser, a request has been made.

• Most used HTTP request methods are GET and POST (although there are many others, such as HEAD,

PATCH, PUT, . . .).

• Understanding requests is useful to scrape multiple websites/queries:

• Prices on Craigslist.

• Government press releases.

• Flight data.

• Before scraping, need to figure out:

1. What type of request is being made?

2. What are the parameters of the request/query?

9



GET requests I

• Most common HTTP request method.

• GET requests sent through URL.

• Look if/how URL changes as you change filters/search terms.

• Remove/add parameters in URL to see changes in data displayed.

• On every request there’s usually a “?” at the beginning of request, and a “&” between each

key/value.

10



GET requests II

• In JSTOR, search for “sargent” with publication dates starting in 1960 and ending in 1980:

• Try to remove unnecessary filters/parameters until left with only necessary ones to load data.

• Usually there’s limit on number of results displayed – multiple pages.

• Go to “next” page and see how URL changes:

• OR try to change “Display 10 results per page”

11



GET requests III

• Anatomy of GET request:

GET /library.html︸ ︷︷ ︸
URL

?Query=sargent︸ ︷︷ ︸
Query string

HTTP/1.0︸ ︷︷ ︸
HTTP version

(optional headers)

• Response (HTML):

HTTP/1.1 404 Not Found

Date: Mon, 15 Nov 2018 12:15:08 GMT

Server: Apache/2.2.14 (Win32)

Content−Length: 204

Connection: close

Content−Type: text/html; charset=iso−8859−1

<!DOCTYPE HTML PUBLIC ”...”>

<html><head>

<title>404 Not Found</title>

</head><body> ... </body></html>

• HTML code ready to use
12



POST requests I

• POST requests not sent through URL ⇒ data displayed changes without URL changing.

• Sent through an HTML form with headers.

• Response usually in nicely-structured format (e.g. JSON).

• To inspect headers and response of request, go to Chrome’s:

DevTools >> Network >> XHR.

• Look through XHR requests for the ones that are pulling data:

13



POST requests II

• Anatomy of POST request:

POST /library.html HTTP/1.0

Content−Type: mime−type

Content−Length: number−of−bytes

(Query string)

• Response is usually nicely-formatted data.

14



GET vs. POST requests I

GET POST

History Parameters saved in

browser history

Parameters not saved in

browser history

Bookmark Can be bookmarked Cannot be bookmarked

Parameters Length restrictions (charac-

ters in URL)

No restrictions on data/pa-

rameter length

Cache Can be cached Cannot be cached

Security Low – sent through URL Higher – data not exposed

in URL

15



GET vs. POST requests II

• GET: data has to be gathered directly from HTML:

• POST: data usually comes in structured way. E.g. JSON:

16



Fetching the data I: Python

• Libraries: requests, httplib, urllib

import requests

URL = "http://maps.googleapis.com/maps/..."

location = "Philadelphia"

PARAMS = {'address':location}

r = requests.get(url = URL, params = PARAMS)

import requests

API_ENDP = "http://pastebin.com/api/..."

API_KEY = "123456"

data = {'api_key':API_KEY, 'api_opt':'paste'}

r = requests.post(url = API_ENDP, data = data)

17



Fetching the data II: R

• Packages: httr, RCurl, rvest

library(httr)

r <- GET("http://maps.googleapis.com/maps/...",

request = list(address = "Mexico"))

library(httr)

API_KEY = "123456"

r <- POST("http://httpbin.org/post",

body = list(api_key = "123456",

api_opt = 'paste'))

• Or if interested on a single URL:

library(rvest)

mypage <- read_html("https://finance.yahoo.com/quote/MSFT"

)
18



Parsing HTML/XML I

• Recall that HTML/XML code comes in nested structure of tags:

<!DOCTYPE html>

<html>

<head>

<title>Your web page</title>

</head>

<body>

<h1>Heading 1</h1>

<p>Paragraph 1.</p>

</body>

</html>

• Many of those websites employ CSS (Cascading Style Sheets).

• Useful to find data within the code.

19



Parsing HTML/XML II

Data on website: HTML code:

• Idea: extract the “1, 395, 430, 000” from HTML
20



Parsing HTML/XML III

“A parser is a software component that takes input data (frequently text) and builds a data structure –

often some kind of parse tree, abstract syntax tree or other hierarchical structure...”

• Use DOM (Document Object Model) to parse HTML.

• Take as input XML/HTML code and generate a tree.

• Functions used to access nodes in tree:

• Root: returns root node.

• Name: returns name of node.

• Atributes: returns node attributes.

• Parent: parent of a node.

• Siblings: siblings of a node.

• Value: value of node.

• Use XPath language (described later) to query nodes, extract data.
21



Parsing HTML/XML IV

• In Python, library BeautifulSoup:

import requests

from bs4 import BeautifulSoup

URL = "https://www.wikipedia.org/"

r = requests.get(url = URL)

soup = BeautifulSoup(r.text)

• In R, library XML:

library(httr)

library(XML)

html = GET("https://en.wikipedia.org/wiki/XML")

tree = htmlTreeParse(html)

• Data stored as an XML object 22



Accessing the data: XPath I

.

• Once we have parsed HTML into an XML object, we need to locate specific nodes with data.

• XPath (XML Path Language): language to query and access XML elements.

• Path-like syntax to navigate through nodes.

• Expressions that return nodes:

node Selects nodes with name “node”

/node Selects root element “node”

//node Selects all elements of type “node”

node[@attrname] Selects node with attribute named “attrname”

node[@attrname=’name’] Node with “attrname” and value ’name’

23



Accessing the data: XPath II

24



XPath in Python

• Many functions, depending on parsing package.

• Using lxml:

from lxml import html

import requests

page = requests.get('http://econpy.pythonanywhere.com/...'
)

tree = html.fromstring(page.content)

buyers = tree.xpath('//div[@title="buyer-name"]/text()')
prices = tree.xpath('//span[@class="item-price"]/text()')

25



XPath in R

• Main function to access nodes of XML tree using XPath: getNodeSet(tree, path)

• tree is the XML tree stored.

• path is the XPath path of the node of interest.

• In R:

getNodeSet(movies_xml, "/movies/movie")

getNodeSet(movies_xml, "//title")

getNodeSet(movies_xml, "//movie[@lang='eng']")

26


