A Model with Explicit Solution

Jesús Fernández-Villaverde
University of Pennsylvania

December 2, 2012

Motivation

- Brunnermeier and Sannikov, 2012.
- Full equilibrium dynamics of an economy with financial frictions:
(1) Nonlinearity: model will respond very differently to small and large shocks.
(2) Volatility paradox: lower values of exogenous risk may lead to higher levels of endogenous risk.
- Features:
(1) Continuous time.
(2) We have more productive but less patient agents borrowing from less productive but more patient agents. Financial frictions difficult the flow of funds between both groups.

Preferences

- Continuum of infinitely lived, risk-neutral agents:
(1) Experts, $\mathbb{I}=[0,1]$:

$$
\mathbb{E}_{0} \int e^{-\rho t} d c_{t}
$$

where c_{t} is cumulative consumption until time t. We impose $d c_{t} \geq 0$.
(2) Households, $\mathbb{J}=[0,1]$:

$$
\mathbb{E}_{0} \int e^{-r t} d \underline{c}_{t}
$$

where \underline{c}_{t} is cumulative consumption until time t.
We do not impose $d \underline{c}_{t} \geq 0$ (negative consumption can be thought as additional labor effort): hence r is risk-free rate.

- Assumption : $r<\rho$.

Technology I

- Experts with efficiency units of capital k_{t} produce output:

$$
y_{t}=a k_{t}
$$

- Experts can invest:

$$
d k_{t}=\left(\phi\left(\iota_{t}\right)-\delta\right) k_{t} d t+\sigma k_{t} d Z_{t}
$$

where
(1) t_{t} is investment rate per unit of capital.
(2) $\phi\left(\iota_{t}\right)$ is an investment technology with adjustment costs $(\phi(0)=0$, $\phi^{\prime}(\cdot)=0$, and $\left.\phi^{\prime \prime}(\cdot)<0\right)$.
(3) We do not impose $t_{t}>0$. Concavity of $\phi(\cdot)$ imposes large costs to disinvestment.
(4) $d Z_{t}$ is a Brownian motion.

Technology II

- Households with efficiency units of capital \underline{k}_{t} produce output:

$$
\underline{y}_{t}=\underline{a k}_{t}
$$

where $\underline{a}<a$.

- Households can invest:

$$
d \underline{k}_{t}=\left(\phi\left(\underline{l}_{t}\right)-\underline{\delta}\right) \underline{k}_{t} d t+\sigma \underline{k}_{t} d Z_{t}
$$

where $\underline{\delta}>\delta$.

- We take output as numeraire.

Price of Capital

- Capital can be traded at price q_{t}, which evolves as:

$$
d q_{t}=\mu_{t}^{q} q_{t} d t+\sigma_{t}^{q} q_{t} d Z_{t}
$$

- Boundaries for price of capital:

$$
\begin{aligned}
& \underline{q}=\max _{\underline{\iota}} \frac{\underline{a}-\underline{\iota}}{r-\phi(\underline{\iota})+\underline{\delta}} \\
& \bar{q}=\max _{\underline{\iota}} \frac{a-\iota}{r-\phi(\iota)+\delta}
\end{aligned}
$$

Returns I

- Thus, the value of the capital hold by an expert generates:
(1) Capital gains:

$$
\frac{d\left(k_{t} q_{t}\right)}{k_{t} q_{t}}=\left(\phi\left(\iota_{t}\right)-\delta+\mu_{t}^{q}+\sigma \sigma_{t}^{q}\right) d t+\left(\sigma+\sigma_{t}^{q}\right) d Z_{t}
$$

(2) Dividend

$$
\frac{a-\iota_{t}}{q_{t}}
$$

(3) Total return:

$$
d r_{t}^{k}=\frac{a-\iota_{t}}{q_{t}}+\left(\phi\left(\iota_{t}\right)-\delta+\mu_{t}^{q}+\sigma \sigma_{t}^{q}\right) d t+\left(\sigma+\sigma_{t}^{q}\right) d Z_{t}
$$

- Similarly, return for a household:

$$
d \underline{r}_{t}^{k}=\frac{\underline{a}-\underline{\iota}_{t}}{q_{t}}+\left(\phi\left(\underline{\iota}_{t}\right)-\underline{\delta}+\mu_{t}^{q}+\sigma \sigma_{t}^{q}\right) d t+\left(\sigma+\sigma_{t}^{q}\right) d Z_{t}
$$

Returns II

- Two components of risk on returns:
(1) $\sigma d Z_{t}$ is exogenous risk caused by stochastic process for capital efficiency.
(2) $\sigma_{t}^{q} d Z_{t}$ is endogenous risk caused by financial frictions. Without them, $\sigma_{t}^{q}=0$ because $q_{t}=\bar{q}$.
- Even if experts are risk-neutral with respect to consumption, they exhibit risk-averse behavior because the return to investment is time-varying.
- Experts suffer losses when they want to buy more capital: its price is lower.

Budget Constraint

- Because of an agency problem, experts must retain 100 percent of equity and finance the rest of their investment with risk-free debt.
- Experts:

$$
\frac{d n_{t}}{n_{t}}=x_{t} d r_{t}^{k}+\left(1-x_{t}\right) r d t-\frac{d c_{t}}{n_{t}}
$$

where $n_{t} \geq 0$ is net wealth, a fraction $x_{t} \geq 0$ invested in capital and a fraction $1-x_{t}$ in the risk-free asset. In general, $x_{t}>1$. The solvency constrain: $n_{t} \geq 0$.

- Households:

$$
\frac{d \underline{n}_{t}}{\underline{n}_{t}}=\underline{x}_{t} d \underline{r}_{t}^{k}+\left(1-\underline{x}_{t}\right) r d t-\frac{d \underline{c}_{t}}{\underline{n}_{t}}
$$

with $\underline{x}_{t} \geq 0$.

Equilibrium I

Definition

For any initial endowments of capital $\left\{k_{0}^{i}, \underline{k}_{0}^{j} ; i \in \mathbb{I}, j \in \mathbb{J}\right\}$ such that:

$$
\int_{\mathbb{I}} k_{0}^{i} d i+\int_{\mathbb{J}} k_{0}^{i} d j=K_{0}
$$

an equilibrium is described by a group of stochastic processes on the filtered probability space defined by the Brownian motion $\left\{Z_{t}, t \geq 0\right\}$: the price process for capital $\left\{q_{t}\right\}$, net worths $\left\{n_{t}^{i}, \underline{n}_{t}^{j} \geq 0\right\}$, capital holdings $\left\{k_{t}^{i}, \underline{k}_{t}^{j} \geq 0\right\}$, investment decisions $\left\{l_{t}^{i}, \underline{l}_{t}^{j}\right\}$, and consumption choices $\left\{d c_{t}^{i} \geq 0, d \underline{c}_{t}^{j}\right\}$ of individual agents $i \in \mathbb{I}, j \in \mathbb{J}$ such that:
(1) Given prices, all experts and households maximize.
(2) Initial net worths satisfy $n_{0}^{i}=k_{0}^{i} q_{0}$ and $\underline{n}_{0}^{i}=\underline{k}_{0}^{i} q_{0}$ for all $i \in \mathbb{I}, j \in \mathbb{I}$.

Equilibrium II

Definition

3. Markets clear:

$$
\begin{gathered}
\int_{\mathbb{I}} k_{t}^{i} d i+\int_{\mathbb{J}} \underline{k}_{t}^{i} d j=K_{t} \\
\int_{\mathbb{I}}\left(d c_{t}^{i}\right) d i+\int_{\mathbb{J}}\left(d \underline{c}_{t}^{i}\right) d j=\left(\int_{\mathbb{I}}\left(a-\iota_{t}^{i}\right) k_{t}^{i} d i+\int_{\mathbb{J}}\left(\underline{a}-\underline{\underline{t}}_{t}^{j}\right) \underline{k}_{t}^{j} d j\right) d t \\
d K_{t}=\left(\int_{\mathbb{I}}\left(\phi\left(l_{t}^{i}\right)-\delta\right) k_{t}^{i} d i+\int_{\mathbb{J}}\left(\phi\left(\underline{l}_{t}^{i}\right)-\underline{\delta}\right) \underline{k}_{t}^{j} d j\right) d t+\sigma K_{t} d Z_{t}
\end{gathered}
$$

Excess Returns I

- First, to maximize experts return with respect to l_{t}, from

$$
d r_{t}^{k}=\frac{a-\iota_{t}}{q_{t}}+\left(\phi\left(\iota_{t}\right)-\delta+\mu_{t}^{q}+\sigma \sigma_{t}^{q}\right) d t+\left(\sigma+\sigma_{t}^{q}\right) d Z_{t}
$$

set:

$$
\phi^{\prime}\left(\iota_{t}\right)=\frac{1}{q_{t}} \Rightarrow \iota_{t}=\iota\left(q_{t}\right)
$$

- Similarly, for a household:

$$
\phi^{\prime}\left(\underline{\iota}_{t}\right)=\frac{1}{q_{t}} \Rightarrow \underline{\iota}_{t}=\iota\left(q_{t}\right)
$$

- Thus:

$$
\iota_{t}=\underline{\iota}_{t}=\iota\left(q_{t}\right)
$$

Excess Returns II

- Now, define expected excess returns:

$$
\begin{aligned}
& \frac{\mathbb{E}_{t} d r_{t}^{k}}{d t}-r=\frac{a-\iota\left(q_{t}\right)}{q_{t}}+\phi\left(\iota\left(q_{t}\right)\right)-\delta+\mu_{t}^{q}+\sigma \sigma_{t}^{q}-r \\
& \frac{\mathbb{E}_{t} d \underline{r}_{t}^{k}}{d t}-r=\frac{a}{q_{t}}+\iota\left(q_{t}\right) \\
& q_{t}
\end{aligned} \phi\left(\iota\left(q_{t}\right)\right)-\underline{\delta}+\mu_{t}^{q}+\sigma \sigma_{t}^{q}-r .
$$

Optimal Strategies I

- Consider a feasible strategy for the experts $\left\{x_{t}, d \zeta_{t}\right\}$ with payoff:

$$
\theta_{t} n_{t}=\mathbb{E}_{t} \int_{t}^{\infty} e^{-\rho(s-t)} d c_{s}
$$

where $d c_{t}=n_{t} d \zeta_{t}$

- Then, for a price process for capital $\left\{q_{t}\right\}$ that generates a finite maximal payoff, a feasible strategy is optimal if and only if:

$$
\begin{gathered}
\max _{\widehat{x}_{t} \geq 0, d \widehat{\zeta}_{t} \geq 0} n_{t} d \widehat{\zeta}_{t}+\mathbb{E}_{t}\left(\theta_{t} n_{t}\right) \\
\text { s.t. } \frac{d n_{t}}{n_{t}}=\widehat{x}_{t} d r_{t}^{k}+\left(1-\widehat{x}_{t}\right) r d t-d \widehat{\zeta}_{t} \\
\mathbb{E}_{t} e^{-\rho t} \theta_{t} n_{t} \rightarrow 0
\end{gathered}
$$

Optimal Strategies II

- Moreover, for

$$
\frac{d \theta_{t}}{\theta_{t}}=\mu_{t}^{\theta} d t+\sigma_{t}^{\theta} d Z_{t}
$$

a feasible strategy is optimal if and only if:
(1) $\theta_{t} \geq 1$ and $d \zeta_{t}>0$ only when $\theta_{t}=1$.
(2) $\mu_{t}^{\theta}=\rho-r$.
(3) Either:

$$
x_{t}>0 \text { and } \frac{\mathbb{E}_{t} d r_{t}^{k}}{d t}-r=-\left(\sigma+\sigma_{t}^{q}\right) \sigma_{t}^{\theta}(\text { desire to leverage })
$$

or

$$
x_{t}=0 \text { and } \frac{\mathbb{E}_{t} d r_{t}^{k}}{d t}-r \leq-\left(\sigma+\sigma_{t}^{q}\right) \sigma_{t}^{\theta} \text { (flight to quality) }
$$

(4) $\mathbb{E} e^{-\rho t} \theta_{t} n_{t} \rightarrow 0$.

Optimal Strategies III

- For the households,

$$
\frac{\mathbb{E}_{t} d \underline{r}_{t}^{k}}{d t}-r \leq 0
$$

with equality if

$$
1-\psi_{t}=\frac{1}{K_{t}} \int_{\mathbb{J}} \underline{k}_{t}^{i} d j>0
$$

- It can be verified that, in equilibrium,

$$
\psi_{t} q_{t} K_{t}>N_{t}=\int_{\mathbb{I}} n_{t}^{i} d i
$$

Wealth Distribution I

- Aggregate wealth:

$$
\begin{gathered}
N_{t}=\int_{\mathbb{I}} n_{t}^{i} d i \\
q_{t} K_{t}-N_{t}=\int_{\mathbb{J}} \underline{n}_{t}^{i} d j
\end{gathered}
$$

- Hence, experts's wealth share:

$$
\eta_{t}=\frac{N_{t}}{q_{t} K_{t}} \in[0,1]
$$

Wealth Distribution II

- Law of motion:

$$
\begin{aligned}
\frac{d \eta_{t}}{\eta_{t}}= & \left(\frac{\psi_{t}-\eta_{t}}{\eta_{t}}\right)\left(d r^{k}-r d t-\left(\sigma+\sigma_{t}^{q}\right)^{2} d t\right) \\
& +\left(\frac{a-\iota\left(q_{t}\right)}{q_{t}}+\left(1-\psi_{t}\right)(\underline{\delta}-\delta)\right) d t-d \zeta_{t}
\end{aligned}
$$

- If $\psi_{t}>0 \Rightarrow x_{t}=0$ and we have

$$
r=\frac{\mathbb{E}_{t} d r_{t}^{k}}{d t}+\left(\sigma+\sigma_{t}^{q}\right) \sigma_{t}^{\theta} \Rightarrow r d t=\mathbb{E}_{t} d r_{t}^{k}+\left(\sigma+\sigma_{t}^{q}\right) \sigma_{t}^{\theta} d t
$$

- Then:

$$
\begin{aligned}
d r^{k}-r d t & =d r^{k}-\mathbb{E}_{t} d r_{t}^{k}-\left(\sigma+\sigma_{t}^{q}\right) \sigma_{t}^{\theta} d t \\
& =\left(\sigma+\sigma_{t}^{q}\right) d Z_{t}-\left(\sigma+\sigma_{t}^{q}\right) \sigma_{t}^{\theta} d t \\
& =\left(\sigma+\sigma_{t}^{q}\right)\left(d Z_{t}-\sigma_{t}^{\theta} d t\right)
\end{aligned}
$$

Wealth Distribution III

- We can substitute

$$
\begin{aligned}
\frac{d \eta_{t}}{\eta_{t}}= & \left(\frac{\psi_{t}-\eta_{t}}{\eta_{t}}\right)\left(\sigma+\sigma_{t}^{q}\right)\left(d Z_{t}-\sigma_{t}^{\theta} d t-\left(\sigma+\sigma_{t}^{q}\right) d t\right) \\
& +\left(\frac{a-\iota\left(q_{t}\right)}{q_{t}}+\left(1-\psi_{t}\right)(\underline{\delta}-\delta)\right) d t-d \zeta_{t} \\
= & \binom{-\frac{\psi_{t}-\eta_{t}}{\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right)\left(\sigma+\sigma_{t}^{\theta}+\sigma_{t}^{q}\right)}{+\frac{a-\iota\left(q_{t}\right)}{q_{t}}+\left(1-\psi_{t}\right)(\underline{\delta}-\delta)} d t \\
& +\frac{\psi_{t}-\eta_{t}}{\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right) d Z_{t}-d \zeta_{t}
\end{aligned}
$$

Wealth Distribution IV

- By defining

$$
\begin{gathered}
\mu_{t}^{n}=-\frac{\psi_{t}-\eta_{t}}{\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right)\left(\sigma+\sigma_{t}^{q}+\sigma_{t}^{\theta}\right)+\frac{a-\iota\left(q_{t}\right)}{q_{t}}+\left(1-\psi_{t}\right)(\underline{\delta}-\delta) \\
\sigma_{t}^{\eta}=\frac{\psi_{t}-\eta_{t}}{\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right)
\end{gathered}
$$

we get

$$
\frac{d \eta_{t}}{\eta_{t}}=\mu_{t}^{n} d t+\sigma_{t}^{\eta} d Z_{t}-d \zeta_{t}
$$

Markov Equilibria

- Search for functions:

$$
\begin{aligned}
q_{t} & =q\left(\eta_{t}\right) \\
\theta_{t} & =\theta\left(\eta_{t}\right) \\
\psi_{t} & =\psi\left(\eta_{t}\right)
\end{aligned}
$$

- Then, once we know η_{t}, we can get $q_{t}, \theta_{t}, \psi_{t}$, and from

$$
\frac{d \eta_{t}}{\eta_{t}}=\mu_{t}^{n} d t+\sigma_{t}^{\eta} d Z_{t}-d \zeta_{t}
$$

we get $d \eta_{t}$.

A Proposition I

Let us suppose that we know $\left(\eta, q(\eta), q^{\prime}(\eta), \theta(\eta), \theta^{\prime}(\eta)\right)$.
(1) Find $\psi \in\left(\eta, \eta+\frac{q^{\prime}(\eta)}{q(\eta)}\right)$ such that:

$$
\frac{a-\underline{a}}{q(\eta)}+\underline{\delta}-\delta+\sigma_{t}^{\theta}\left(\sigma+\sigma_{t}^{q}\right)=0
$$

where:

$$
\begin{aligned}
\sigma_{t}^{\eta} & =\frac{1}{\eta} \frac{(\psi-\eta) a}{1-(\psi-\eta) \frac{q^{\prime}(\eta)}{q(\eta)}} \\
\sigma_{t}^{q} & =\frac{q^{\prime}(\eta)}{q(\eta)} \sigma_{t}^{\eta} \eta \\
\sigma_{t}^{\theta} & =\frac{\theta^{\prime}(\eta)}{\theta(\eta)} \sigma_{t}^{\eta} \eta
\end{aligned}
$$

A Proposition II

(2) If $\psi>1$, set $\psi=1$ and recalculate $\sigma_{t}^{\eta}, \sigma_{t}^{q}, \sigma_{t}^{\theta}$.
(3) Compute:

$$
\begin{gathered}
\mu_{t}^{n}=-\sigma_{t}^{\eta}\left(\sigma+\sigma_{t}^{q}+\sigma_{t}^{\theta}\right)+\frac{a-\iota(q(\eta))}{q(\eta)}+(1-\psi)(\underline{\delta}-\delta) \\
\mu_{t}^{q}=r-\frac{a-\iota(q(\eta))}{q(\eta)}-\phi(q(\eta))+\delta-\sigma \sigma_{t}^{q}-\sigma_{t}^{\theta}\left(\sigma+\sigma_{t}^{q}\right) \\
\mu_{t}^{\theta}=\rho-r \\
q^{\prime \prime}(\eta)=\frac{2\left(\mu_{t}^{q} q(\eta)-q^{\prime}(\eta) \mu_{t}^{n} \eta\right)}{\left(\sigma_{t}^{\eta}\right)^{2} \eta^{2}} \\
\theta^{\prime \prime}(\eta)=\frac{2\left(\mu_{t}^{\theta} \theta(\eta)-\theta^{\prime}(\eta) \mu_{t}^{n} \eta\right)}{\left(\sigma_{t}^{\eta}\right)^{2} \eta^{2}}
\end{gathered}
$$

A Proposition III

(4) Use boundary conditions

$$
\begin{gathered}
q^{\prime}\left(\eta^{*}\right)=0, q(0)=\underline{q} \\
\theta\left(\eta^{*}\right)=1, \theta^{\prime}\left(\eta^{*}\right)=0 \\
\lim \theta(\eta)=\infty
\end{gathered}
$$

where η^{*} is the reflecting boundary when experts consume.

An Algorithm

- Set $q(0)=\underline{q}, \theta(0)=1$, and $\theta^{\prime}(0)=$ small number.
- Set $q_{L}=0$ and $q_{H}=$ large number.
- Guess $q^{\prime}(0)=\frac{q_{H}+q_{L}}{2}$ and solve for $q(\eta)$ and $\theta(\eta)$ until the first of the three conditions holds:
(1) $q(\eta)=\bar{q}$.
(2) $\theta^{\prime}(\eta)=0$.
(3) $q^{\prime}(\eta)=0$.
- If $q^{\prime}(\eta)=0$, set $q_{L}=q^{\prime}(0)$, otherwise $q_{H}=q^{\prime}(0)$.
- Iterate until convergence.
- Check that $q^{\prime}(\eta)$ and $\theta^{\prime}(\eta)$ reach 0 at the same point η^{*}.
- Normalize $\theta(\eta)=\frac{\theta(\eta)}{\theta\left(\eta^{*}\right)}$ to match boundary condition.

Calibration

- Parameters

ρ	r	a	\underline{a}	δ	$\underline{\delta}$	σ	$\phi(\iota)$
0.06	0.05	0.1	0.05	0.03	0.05	0.4	$0.1 \sqrt{ } 1+20 \iota$

- This implies $\underline{q}=0.5858$ and $\bar{q}=1.3101$.

Three Inefficiencies

(1) Capital misallocation: for low η_{t}, households manage part of the capital $(\psi<1)$.
(2) Under investment: $\iota\left(q_{t}\right)<\iota(\bar{q})$.
(3) Consumption distortions: experts should only consume at time 0 .

- Note: inefficiencies get worse for low η_{t}.

Adverse Feedback Loop

Figure 9: The peculiar dynamics of VIX: 2004-2012. Source: CBOE

