The Econometrics of Uncertainty Shocks

Jesús Fernández-Villaverde

University of Pennsylvania

March 7, 2016

Jesús Fernández-Villaverde (PENN)

Several challenges

- How do we document the presence of time-varying uncertainty?
- How do we distinguish time-variation in the data and in expectations? Forecaster disagreement?
- How much of the uncertainty is exogenous or endogenous?
- How do we take DSGE models with time-varying uncertainty to the data?
 - Likelihood function.
 - 2 Method of moments.
- Because of time limitations, I will focus on the first and last challenges.

Jesús Fernández-Villaverde (PENN)

Interest rates

A real life example

• Remember our decomposition of interest rates:

• $\varepsilon_{tb,t}$ and $\varepsilon_{r,t}$ follow:

$$\varepsilon_{tb,t} = \rho_{tb}\varepsilon_{tb,t-1} + e^{\sigma_{tb,t}}u_{tb,t}, \ u_{tb,t} \sim \mathcal{N}(0,1)$$
$$\varepsilon_{r,t} = \rho_{r}\varepsilon_{r,t-1} + e^{\sigma_{r,t}}u_{r,t}, \ u_{r,t} \sim \mathcal{N}(0,1)$$

• $\sigma_{tb,t}$ and $\sigma_{r,t}$ follow:

$$\sigma_{tb,t} = \left(1 - \rho_{\sigma_{tb}}\right)\sigma_{tb} + \rho_{\sigma_{tb}}\sigma_{tb,t-1} + \eta_{tb}u_{\sigma_{tb},t}, \ u_{\sigma_{tb},t} \sim \mathcal{N}\left(0,1\right)$$

$$\sigma_{r,t} = \left(1 - \rho_{\sigma_{r}}\right)\sigma_{r} + \rho_{\sigma_{r}}\sigma_{r,t-1} + \eta_{r}u_{\sigma_{r},t}, \ u_{\sigma_{r},t} \sim \mathcal{N}\left(0,1\right)$$

Stochastic volatility

 Remember, as well, that we postulated a general process for stochastic volatility:

$$x_t = \rho x_{t-1} + \sigma_t \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1).$$

and

$$\log \sigma_t = (1-\rho_\sigma)\log \sigma + \rho_\sigma \log \sigma_{t-1} + \left(1-\rho_\sigma^2\right)^{\frac{1}{2}} \eta u_t, \ u_t \sim \mathcal{N}(0,1).$$

- We discussed this was a concrete example of a richer class of specifications.
- Main point: non-linear structure.

State space representation I

Define:

$$S_t = \left(egin{array}{c} x_{t-1} \ \sigma_t \end{array}
ight)$$

• Then, we have a transition equation:

$$\left(\begin{array}{c} x_t \\ \sigma_{t+1} \end{array}\right) = f\left(\left(\begin{array}{c} x_t \\ \sigma_t \end{array}\right), \left(\begin{array}{c} \varepsilon_t \\ u_{t+1} \end{array}\right); \gamma\right)$$

where the first row of $f\left(\cdot\right)$ is:

$$x_t = \rho x_{t-1} + \sigma_t \varepsilon_t$$

and the second is

$$\log \sigma_{t+1} = (1-
ho_\sigma)\log \sigma +
ho_\sigma\log \sigma_t + ig(1-
ho_\sigma^2ig)^{rac{1}{2}}\eta u_{t+1}$$

• The vector of parameters:

$$\gamma = (
ho,
ho_{\sigma}, \log \sigma, \eta)$$

Jesús Fernández-Villaverde (PENN)

State space representation II

• In more compact notation:

$$S_t = f(S_{t-1}, W_t; \gamma)$$

• We also have a trivial measurement equation:

$$Y_t = \left(egin{array}{cc} 1 & 0 \end{array}
ight) \left(egin{array}{cc} x_t \ \sigma_{t+1} \end{array}
ight)$$

• In more general notation:

$$Y_t = g\left(S_t, V_t; \gamma\right)$$

Note Markov structure.

• Note also how we can easily accommodate more general cases.

Shocks

- $\{W_t\}$ and $\{V_t\}$ are independent of each other.
- $\{W_t\}$ is known as process noise and $\{V_t\}$ as measurement noise.
- W_t and V_t have zero mean.
- No assumptions on the distribution beyond that.

Conditional densities

• From
$$S_t = f\left(S_{t-1}, W_t; \gamma\right)$$
, we can compute $p\left(S_t | S_{t-1}; \gamma\right)$.

• From
$$Y_t = g\left(S_t, V_t; \gamma
ight)$$
, we can compute $p\left(Y_t | S_t; \gamma
ight)$.

• From
$$S_t = f(S_{t-1}, W_t; \gamma)$$
 and $Y_t = g(S_t, V_t; \gamma)$, we have:
 $Y_t = g(f(S_{t-1}, W_t; \gamma), V_t; \gamma)$

and hence we can compute $p(Y_t|S_{t-1}; \gamma)$.

Jesús Fernández-Villaverde (PENN)

Filtering, smoothing, and forecasting

- Filtering: we are concerned with what we have learned up to current observation.
- Smoothing: we are concerned with what we learn with the full sample.
- Forecasting: we are concerned with future realizations.

Filtering

Goal of filtering I

• Compute conditional densities: $p(S_t|y^{t-1};\gamma)$ and $p(S_t|y^t;\gamma)$.

• Why?

- 1 It allows probability statements regarding the situation of the system.
- 2 Compute conditional moments: mean, $s_{t|t}$ and $s_{t|t-1}$, and variances $P_{t|t}$ and $P_{t|t-1}$.
- 3 Other functions of the states. Examples of interest.
- Theoretical point: do the conditional densities exist?

Filtering

Goals of filtering II

Evaluate the likelihood function of the observables y^T at parameter values γ:

$$p\left(y^{T};\gamma\right) = p\left(y_{1}|\gamma\right)\prod_{t=2}^{T}p\left(y_{t}|y^{t-1};\gamma\right)$$

 $p(y^T; \gamma)$

Then:

$$p\left(y^{T};\gamma\right) = \int p\left(y_{1}|s_{1};\gamma\right) dS_{1} \prod_{t=2}^{T} \int p\left(y_{t}|S_{t};\gamma\right) p\left(S_{t}|y^{t-1};\gamma\right) dS_{t}$$

• Hence, knowledge of $\{p(S_t|y^{t-1};\gamma)\}_{t=1}^T$ and $p(S_1;\gamma)$ allow the evaluation of the likelihood of the model.

Two fundamental tools

Chapman-Kolmogorov equation:

$$p\left(S_{t}|y^{t-1};\gamma\right) = \int p\left(S_{t}|S_{t-1};\gamma\right) p\left(S_{t-1}|y^{t-1};\gamma\right) dS_{t-1}$$

2 Bayes' theorem:

$$p\left(S_{t}|y^{t};\gamma\right) = \frac{p\left(y_{t}|S_{t};\gamma\right)p\left(S_{t}|y^{t-1};\gamma\right)}{p\left(y_{t}|y^{t-1};\gamma\right)}$$

where:

$$p\left(y_{t}|y^{t-1};\gamma\right) = \int p\left(y_{t}|S_{t};\gamma\right) p\left(S_{t}|y^{t-1};\gamma\right) dS_{t}$$

Interpretation

- All filtering problems have two steps: prediction and update.
 - 1 Chapman-Kolmogorov equation is one-step ahead predictor.
 - 2 Bayes' theorem updates the conditional density of states given the new observation.

• We can think of those two equations as operators that map measures into measures.

Recursion for conditional distribution

• Combining the Chapman-Kolmogorov and the Bayes' theorem:

$$p(S_{t}|y^{t};\gamma) = \frac{\int p(S_{t}|S_{t-1};\gamma) p(S_{t-1}|y^{t-1};\gamma) dS_{t-1}}{\int \{\int p(S_{t}|S_{t-1};\gamma) p(S_{t-1}|y^{t-1};\gamma) dS_{t-1}\} p(y_{t}|S_{t};\gamma) dS_{t}} p(y_{t}|S_{t};\gamma)$$

- To initiate that recursion, we only need a value for s_0 or $p(S_0; \gamma)$.
- Applying the Chapman-Kolmogorov equation once more, we get $\left\{p\left(S_{t}|y^{t-1};\gamma\right)\right\}_{t=1}^{T}$ to evaluate the likelihood function.

Initial conditions

- From previous discussion, we know that we need a value for s_1 or $p\left(S_1;\gamma\right)$.
- Stationary models: ergodic distribution.
- Non-stationary models: more complicated. Importance of transformations.
- Forgetting conditions.
- Non-contraction properties of the Bayes operator.

Smoothing

- We are interested on the distribution of the state conditional on all the observations, on $p(S_t|y^T;\gamma)$ and $p(y_t|y^T;\gamma)$.
- We compute:

$$p\left(S_{t}|y^{T};\gamma\right) = p\left(S_{t}|y^{t};\gamma\right) \int \frac{p\left(S_{t+1}|y^{T};\gamma\right)p\left(S_{t+1}|S_{t};\gamma\right)}{p\left(S_{t+1}|y^{t};\gamma\right)} dS_{t+1}$$

a backward recursion that we initialize with $p(S_T|y^T; \gamma)$, $\{p(S_t|y^t; \gamma)\}_{t=1}^T$ and $\{p(S_t|y^{t-1}; \gamma)\}_{t=1}^T$ we obtained from filtering.

Filtering

Forecasting

- We apply the Chapman-Kolmogorov equation recursively, we can get $p(S_{t+j}|y^t;\gamma)$, $j \ge 1$.
- Integrating recursively:

$$p\left(y_{l+1}|y^{l};\gamma\right) = \int p\left(y_{l+1}|S_{l+1};\gamma\right) p\left(S_{l+1}|y^{l};\gamma\right) dS_{l+1}$$

from $t+1$ to $t+j$, we get $p\left(y_{t+j}|y^{T};\gamma\right)$.

 Clearly smoothing and forecasting require to solve the filtering problem first! Filtering

Problem of filtering

We have the recursion

$$p(S_{t}|y^{t};\gamma) = \frac{\int p(S_{t}|S_{t-1};\gamma) p(S_{t-1}|y^{t-1};\gamma) dS_{t-1}}{\int \{\int p(S_{t}|S_{t-1};\gamma) p(S_{t-1}|y^{t-1};\gamma) dS_{t-1}\} p(y_{t}|S_{t};\gamma) dS_{t}} p(y_{t}|S_{t};\gamma)$$

- A lot of complicated and high dimensional integrals (plus the one involved in the likelihood).
- In general, we do not have closed form solution for them.
- *Translate, spread,* and *deform* (TSD) the conditional densities in ways that impossibilities to fit them within any known parametric family.

Exception

- There is one exception: linear and Gaussian case.
- Why? Because if the system is linear and Gaussian, all the conditional probabilities are also Gaussian.
- Linear and Gaussian state spaces models *translate* and *spread* the conditional distributions, but they do not *deform* them.
- For Gaussian distributions, we only need to track mean and variance (sufficient statistics).
- Kalman filter accomplishes this goal efficiently.

Nonlinear filtering

- Different approaches.
- Deterministic filtering:
 - Kalman family.
 - Grid-based filtering.
- Simulation filtering:
 - McMc.
 - Particle filtering.

Particle filtering I

• Remember,

1 Transition equation:

$$S_t = f(S_{t-1}, W_t; \gamma)$$

2 Measurement equation:

$$Y_t = g\left(S_t, V_t; \gamma\right)$$

Particle filtering II

- Some Assumptions:
 - **()** We can partition $\{W_t\}$ into two independent sequences $\{W_{1,t}\}$ and $\{W_{2,t}\}$, s.t. $W_t = (W_{1,t}, W_{2,t})$ and $\dim(W_{2,t}) + \dim(V_t) \ge \dim(Y_t)$.
 - ② We can always evaluate the conditional densities $p(y_t|W_1^t, y^{t-1}, S_0; \gamma)$.
 - ③ The model assigns positive probability to the data.

Rewriting the likelihood function

 Evaluate the likelihood function of the a sequence of realizations of the observable y^T at a particular parameter value γ:

$$p\left(y^{T};\gamma\right)$$

• We factorize it as (careful with initial condition!):

$$p\left(y^{T};\gamma\right) = \prod_{t=1}^{T} p\left(y_{t}|y^{t-1};\gamma\right)$$
$$= \prod_{t=1}^{T} \int \int p\left(y_{t}|W_{1}^{t},y^{t-1},S_{0};\gamma\right) p\left(W_{1}^{t},S_{0}|y^{t-1};\gamma\right) dW_{1}^{t}dS_{0}$$

A law of large numbers

If
$$\left\{ \left\{ s_{0}^{t|t-1,i}, w_{1}^{t|t-1,i} \right\}_{i=1}^{N} \right\}_{t=1}^{T} N$$
 i.i.d. draws from $\left\{ p\left(W_{1}^{t}, S_{0} | y^{t-1}; \gamma \right) \right\}_{t=1}^{T}$, then:

$$p\left(y^{T};\gamma\right) \simeq \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} p\left(y_{t} | w_{1}^{t|t-1,i}, y^{t-1}, s_{0}^{t|t-1,i};\gamma\right)$$

The problem of evaluating the likelihood is equivalent to the problem of drawing from

$$\{p(W_1^t, S_0|y^{t-1}; \gamma)\}_{t=1}^T$$

Introducing particles I

•
$$\left\{s_{0}^{t-1,i}, w_{1}^{t-1,i}\right\}_{i=1}^{N} N \text{ i.i.d. draws from } p\left(W_{1}^{t-1}, S_{0} | y^{t-1}; \gamma\right).$$

• Each
$$s_0^{t-1,i}$$
, $w_1^{t-1,i}$ is a *particle* and $\left\{s_0^{t-1,i}, w_1^{t-1,i}\right\}_{i=1}^N$ a *swarm of particles*.

•
$$\left\{s_0^{t|t-1,i}, w_1^{t|t-1,i}\right\}_{i=1}^N N \text{ i.i.d. draws from } p\left(W_1^t, S_0|y^{t-1}; \gamma\right).$$

Introducing particles II

• Each
$$s_0^{t|t-1,i}$$
, $w_1^{t|t-1,i}$ is a proposed particle and $\left\{s_0^{t|t-1,i}, w_1^{t|t-1,i}\right\}_{i=1}^N$ a swarm of proposed particles.

• Weights:

$$q_{t}^{i} = \frac{p\left(y_{t}|w_{1}^{t|t-1,i}, y^{t-1}, s_{0}^{t|t-1,i}; \gamma\right)}{\sum_{i=1}^{N} p\left(y_{t}|w_{1}^{t|t-1,i}, y^{t-1}, s_{0}^{t|t-1,i}; \gamma\right)}$$

A proposition

Theorem

Let $\{\widetilde{s}_{0}^{i}, \widetilde{w}_{1}^{i}\}_{i=1}^{N}$ be a draw with replacement from $\{s_{0}^{t|t-1,i}, w_{1}^{t|t-1,i}\}_{i=1}^{N}$ and probabilities q_{t}^{i} . Then $\{\widetilde{s}_{0}^{i}, \widetilde{w}_{1}^{i}\}_{i=1}^{N}$ is a draw from $p(W_{1}^{t}, S_{0}|y^{t}; \gamma)$.

Importance:

1 It shows how a draw
$$\left\{s_{0}^{t|t-1,i}, w_{1}^{t|t-1,i}\right\}_{i=1}^{N}$$
 from $p\left(W_{1}^{t}, S_{0}|y^{t-1}; \gamma\right)$
can be used to draw $\left\{s_{0}^{t,i}, w_{1}^{t,i}\right\}_{i=1}^{N}$ from $p\left(W_{1}^{t}, S_{0}|y^{t}; \gamma\right)$.
2 With a draw $\left\{s_{0}^{t,i}, w_{1}^{t,i}\right\}_{i=1}^{N}$ from $p\left(W_{1}^{t}, S_{0}|y^{t}; \gamma\right)$ we can use

$$p\left(W_{1,t+1};\gamma
ight)$$
 to get a draw $\left\{s_{0}^{t+1|t,i}, w_{1}^{t+1|t,i}
ight\}_{i=1}^{N}$ and iterate the procedure.

Jesús Fernández-Villaverde (PENN)

Algorithm

Step 0, Initialization: Set $t \rightsquigarrow 1$ and set $p(W_1^{t-1}, S_0 | y^{t-1}; \gamma) = p(S_0; \gamma).$ **Step 1, Prediction:** Sample *N* values $\left\{s_0^{t|t-1,i}, w_1^{t|t-1,i}\right\}_{i=1}^N$ from the density $p(W_1^t, S_0 | y^{t-1}; \gamma) = p(W_{1,t}; \gamma) p(W_1^{t-1}, S_0 | y^{t-1}; \gamma)$. Step 2, Weighting: Assign to each draw $s_0^{t|t-1,i}$, $w_1^{t|t-1,i}$ the weight q'_{+} . **Step 3, Sampling:** Draw $\left\{s_0^{t,i}, w_1^{t,i}\right\}_{i=1}^N$ with rep. from $\begin{cases} s_0^{t|t-1,i}, w_1^{t|t-1,i} \end{cases}_{i=1}^N \text{ with probabilities } \{q_t^i\}_{i=1}^N. \text{ If } t < T \text{ set} \\ t \rightsquigarrow t+1 \text{ and go to step 1. Otherwise go to step 4.} \end{cases}$ Step 4, Likelihood: Use $\left\{ \left\{ s_0^{t|t-1,i}, w_1^{t|t-1,i} \right\}_{i=1}^N \right\}_{i=1}^T$ to compute: $p\left(y^{T};\gamma\right) \simeq \prod_{i=1}^{l} \frac{1}{N} \sum_{i=1}^{N} p\left(y_{t} | w_{1}^{t|t-1,i}, y^{t-1}, s_{0}^{t|t-1,i};\gamma\right)$

Jesús Fernández-Villaverde (PENN)

Evaluating a Particle filter

- We just saw a plain vanilla particle filter.
- How well does it work in real life?
- Is it feasible to implement in large models?

Why did we resample?

- We could have not resampled and just used the weights as you would have done in *importance sampling* (this is known as *sequential importance sampling*).
- Most weights go to zero.
- But resampling impoverish the swarm.
- Eventually, this becomes a problem.

Why did we resample?

• Effective Sample Size:

$$ESS_{t} = \frac{1}{\left[\sum_{i=1}^{N} p\left(y_{t} | w_{1}^{t|t-1,i}, y^{t-1}, s_{0}^{t|t-1,i}; \gamma\right)\right]^{2}}$$

Alternatives:

(1) Stratified resampling (Kitagawa, 1996): optimal in terms of variance.

Adaptive resampling.

Simpler notation

- To simplify notation:
 - Let me write the conditional distributions in terms of the current state (instead of the innovations and the initial state).
 - 2 Let me forget about the special notation required for period 1 (y^{t-1} = Ø).
- Then, the evaluation of the likelihood is just:

$$p\left(y^{T};\gamma\right) = \prod_{t=1}^{T} \int \int p\left(y_{t}|S^{t};\gamma\right) p\left(S_{t}|y^{t-1};\gamma\right) dS_{t}$$

• Thus, we are looking for
$$\left\{ \left\{ s^{t|t-1,i} \right\}_{i=1}^{N} \right\}_{t=1}^{I} N$$
 i.i.d. draws from $\left\{ p\left(S_{t}|y^{t-1};\gamma\right) \right\}_{t=1}^{T}$.

Improving our Particle filter I

- Remember what we did:
 - We draw from

$$s^{t|t-1,i} \sim p\left(S_t|s^{t-1,i};\gamma\right)$$

2 We resample them with:

$$q_{t}^{i} = \frac{p\left(y_{t}|s^{t|t-1,i}, y^{t-1}; \gamma\right)}{\sum_{i=1}^{N} p\left(y_{t}|s^{t|t-1,i}, y^{t-1}; \gamma\right)}$$

• But, what if I can draw instead from $s^{t|t-1,i} \sim q\left(S_t|s^{t-1,i}, y_t; \gamma\right)$?

Intuition.

Improving our Particle filter II

New weights:

$$q_{t}^{i} = \frac{p\left(y_{t}|s^{t|t-1,i}, y^{t-1}; \gamma\right) \frac{p\left(S_{t}|s^{t-1,i}; \gamma\right)}{q\left(S_{t}|s^{t-1,i}, y_{t}; \gamma\right)}}{\sum_{i=1}^{N} p\left(y_{t}|s^{t|t-1,i}, y^{t-1}; \gamma\right) \frac{p\left(S_{t}|s^{t-1,i}; \gamma\right)}{q\left(S_{t}|s^{t-1,i}, y_{t}; \gamma\right)}}$$

 \bullet Clearly, if $q\left(S_t|s^{t-1,i},y_t;\gamma\right) = p\left(S_t|s^{t-1,i};\gamma\right)$

we get back our basic Particle Filter.

- How do we create the proposal $q(S_t|s^{t-1,i}, y_t; \gamma)$?
 - Linearized model.
 - 2 Unscented Kalman filter.
 - Information from the problem.

Improving our Particle filter III

- Auxiliary Particle Filter: Pitt and Shephard (1999).
- Imagine we can compute either

$$p\left(y_{t+1} \middle| s^{t,i}\right)$$

or

$$\widetilde{p}\left(y_{t+1}|s^{t,i}\right)$$

• Then:

$$q_{t}^{i} = \frac{\widetilde{p}\left(y_{t+1}|s^{t,i}\right)p\left(y_{t}|s^{t|t-1,i},y^{t-1};\gamma\right)\frac{p\left(S_{t}|s^{t-1,i};\gamma\right)}{q\left(S_{t}|s^{t-1,i},y_{t};\gamma\right)}}{\sum_{i=1}^{N}\widetilde{p}\left(y_{t+1}|s^{t,i}\right)p\left(y_{t}|s^{t|t-1,i},y^{t-1};\gamma\right)\frac{p\left(S_{t}|s^{t-1,i};\gamma\right)}{q\left(S_{t}|s^{t-1,i},y_{t};\gamma\right)}}$$

Auxiliary Particle Filter tends to work well when we have fat tail...

• ...but it can temperamental.

Improving our Particle filter IV

- Resample-Move.
- Blocking.
- Many others.
- A Tutorial on Particle Filtering and Smoothing: Fifteen years later, by Doucet and Johansen (2012)

Nesting it in a McMc

- Fernández-Villaverde and Rubio Ramírez (2007) and Flury and Shepard (2008).
- You nest the Particle filter inside an otherwise standard McMc.
- Two caveats:
 - 1 Lack of differentiability of the Particle filter.
 - 2 Random numbers constant to avoid chatter and to be able to swap operators.

Parallel programming

- Why?
- Divide and conquer.
- Shared and distributed memory.
- Main approaches:
 - OpenMP.
 - MPI.
 - 3 GPU programming: CUDA and OpenCL.

CPU

DR	A	M							

GPU

Tools

- In Matlab: parallel toolboox.
- In R: package parallel.
- In Julia: built-in procedures.
- In Mathematica: parallel computing tools.
- GPUs: ArrayFire.

Parallel Particle filter

- Simplest strategy: generating and evaluating draws.
- A temptation: multiple swarms.
- How to nest with a McMc?

A problem

- Basic Random Walk Metropolis Hastings is difficult to parallelize.
- Why? Proposal draw θ_{i+1}^* depends on θ_i .
- Inherently serial procedure.
- Assume, instead, that we have N processors.
- Possible solutions:
 - Run parallel chains.
 - Independence sampling.
 - ③ Pre-fetching.

Multiple chains

- We run *N* chains, one in each processor.
- We merge them at the end.
- It goes against the principle of one, large chain.
- But it may works well when the burn-in period is small.
- If the burn-in is large or the chain has subtle convergence issues, it results in waste of time and bad performance.

Independence sampling

- We generate N proposals $\tilde{\theta}_{i+1}^{j}$ from an independent distribution.
- We evaluate the posterior from each proposal in a different processor.
- We do N Metropolis steps with each proposal.
- Advantage: extremely simple to code, nearly linear speed up.
- Disadvantage: independence sampling is very inefficient. Solution⇒design a better proposal density.

Prefetching I

- Proposed by Brockwell (2006).
- Idea: we can compute the relevant posteriors several periods in advance.
- Set superindex 1 for rejection and 2 for acceptance.
- Advantage: if we reject a draw, we have already evaluated the next step.
- Disadvantage: wasteful. More generally, you can show that the speed up will converge only to log₂ *N*.

Prefetching II

1 Assume we are at θ_i .

2 We draw 2 paths for iteration
$$i + 1$$
, $\left\{ \widetilde{\theta}_{i+1}^1 = \theta_i, \widetilde{\theta}_{i+1}^2 \sim g(\theta_i) \right\}$.

$$\begin{array}{l} \textbf{③ We draw 4 paths for iteration } i+2 \\ \left\{\widetilde{\theta}_{i+2}^{11} = \widetilde{\theta}_{i+1}^{1}, \widetilde{\theta}_{i+2}^{12} \sim g\left(\widetilde{\theta}_{i+1}^{1}\right), \widetilde{\theta}_{i+2}^{21} = \widetilde{\theta}_{i+1}^{2}, \widetilde{\theta}_{i+2}^{22} \sim g\left(\widetilde{\theta}_{i+1}^{2}\right) \right\}. \end{array}$$

- **(4)** We iterate h steps, until we have $N = 2^h$ possible sequences.
- **(5)** We evaluate each of the posteriors $p\left(\tilde{\theta}_{i+h}^{1,...,1}\right), ..., p\left(\tilde{\theta}_{i+h}^{2,...,2}\right)$ in each of the *N* processors.
- We do a MH in each step of the path using the previous posteriors (note that any intermediate posterior is the same as the corresponding final draw where all the following children are "rejections").

A simpler prefetching algorithm I

- Algorithm for N processors, where N is small.
- Given θ_i :

1 We draw
$$N\left\{\widetilde{\theta}_{i+1,1}, ..., \widetilde{\theta}_{i+1,N}\right\}$$
 and we evaluate the posteriors $p\left(\widetilde{\theta}_{i+1,1}\right), ..., p\left(\widetilde{\theta}_{i+1,N}\right)$.

- 2 We evaluate the first proposal, $\tilde{\theta}_{i+1,1}$:
 - 1 If accepted, we disregard $\theta_{i+1,2}, ..., \theta_{i+1,2}$.
 - ② If rejected, we make $\theta_{i+1} = \theta_i$ and $\tilde{\theta}_{i+2,1} = \tilde{\theta}_{i+1,2}$ is our new proposal for i + 2.
 - 3 We continue down the list of N proposals until we accept one.
- Advantage: if we reject a draw, we have already evaluated the next step.

A simpler prefetching algorithm II

- Imagine we have a PC with N = 4 processors.
- Well gauged acceptance for a normal SV model $\approx 20\%-25\%$. Let me fix it to 25% for simplicity.
- Then:
 - 1) $P(accepting 1^{st} draw) = 0.25$. We advance 1 step.
 - ② $P(accepting 2^{nd} draw) = 0.75 * 0.25$. We advance 2 steps.
 - 3 $P(accepting 3^{tr} draw) = 0.75^2 * 0.25$. We advance 3 steps.
 - (accepting $4^{th} draw$) = 0.75³ * 0.25. We advance 4 steps.
 - **(5)** $P(not \ accepting \ any \ draw) = 0.75^{*4}$. We advance 4 steps.
- Therefore, expected numbers of steps advanced in the chain:

 $1*0.25+2*0.75*0.25+3*0.75^{\ast2}*0.25+4*0.75^3=2.7344$

First-order approximation

 Remember that the first-order approximation of a canonical RBC model without persistence in productivity shocks:

$$\widehat{k}_{t+1} = a_1 \widehat{k}_t + a_2 \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}\left(0, 1\right)$$

Then:

$$\widehat{k}_{t+1} = a_1 \left(a_1 \widehat{k}_{t-1} + a_2 \varepsilon_{t-1} \right) + a_2 \varepsilon_t$$

$$= a_1^2 \widehat{k}_{t-1} + a_1 a_2 \varepsilon_{t-1} + a_2 \varepsilon_t$$

• Since $a_1 < 1$ and assuming $\widehat{k}_0 = 0$

$$\widehat{k}_{t+1} = extbf{a}_2 \sum_{j=0}^t extbf{a}_1^j arepsilon_{t-j}$$

which is a well-understood MA system.

Higher-order approximations

• Second-order approximation:

$$\widehat{k}_{t+1} = a_0 + a_1 \widehat{k}_t + a_2 \varepsilon_t + a_3 \widehat{k}_t^2 + a_4 \varepsilon_t^2 + a_5 \widehat{k}_t \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1)$$

Then:

$$\widehat{k}_{t+1} = a_0 + a_1 \left(a_0 + a_1 \widehat{k}_t + a_2 \varepsilon_t + a_3 \widehat{k}_t^2 + a_4 \varepsilon_t^2 + a_5 \widehat{k}_t \varepsilon_t \right) + a_2 \varepsilon_t$$

$$+ a_3 \left(a_0 + a_1 \widehat{k}_t + a_2 \varepsilon_t + a_3 \widehat{k}_t^2 + a_4 \varepsilon_t^2 + a_5 \widehat{k}_t \varepsilon_t \right)^2 + a_4 \varepsilon_t^2$$

$$+ a_5 \left(a_0 + a_1 \widehat{k}_t + a_2 \varepsilon_t + a_3 \widehat{k}_t^2 + a_4 \varepsilon_t^2 + a_5 \widehat{k}_t \varepsilon_t \right) \varepsilon_t$$

• We have terms in \hat{k}_t^3 and \hat{k}_t^4 .

Problem

- For a large realization of ε_t , the terms in \hat{k}_t^3 and \hat{k}_t^4 make the system explode.
- This will happen as soon as we have a large simulation ⇒ no unconditional moments would exist based on this approximation.
- This is true even when the corresponding linear approximation is stable.
- Then:
 - 1 How do you calibrate? (translation, spread, and deformation).
 - ② How do you implement GMM or SMM?
 - ③ Asymptotics?

A solution

- For second-order approximations, Kim et al. (2008): pruning.
- Idea:

$$\widehat{k}_{t+1} = a_0 + a_1 \left(a_0 + a_1 \widehat{k}_t + a_2 \varepsilon_t + a_3 \widehat{k}_t^2 + a_4 \varepsilon_t^2 + a_5 \widehat{k}_t \varepsilon_t \right) + a_2 \varepsilon_t$$

$$+ a_3 \left(a_0 + a_1 \widehat{k}_t + a_2 \varepsilon_t + a_3 \widehat{k}_t^2 + a_4 \varepsilon_t^2 + a_5 \widehat{k}_t \varepsilon_t \right)^2 + a_4 \varepsilon_t^2$$

$$+ a_5 \left(a_0 + a_1 \widehat{k}_t + a_2 \varepsilon_t + a_3 \widehat{k}_t^2 + a_4 \varepsilon_t^2 + a_5 \widehat{k}_t \varepsilon_t \right) \varepsilon_t$$

- We omit terms raised to powers higher than 2.
- Pruned approximation does not explode.

What do we do?

- Build a pruned state-space system.
- Apply pruning to an approximation of any arbitrary order.
- Prove that first and second unconditional moments exist.
- Closed-form expressions for first and second unconditional moments and IRFs.
- Conditions for the existence of some higher unconditional moments, such as skewness and kurtosis.
- Apply to a New Keynesian model with EZ preferences.
- Software available for distribution.

Practical consequences

- **(1)** GMM and IRF-matching can be implemented without simulation.
- ② First and second unconditional moments or IRFs can be computed in a trivial amount of time for medium-sized DSGE models approximated up to third-order.
- ③ Use the unconditional moment conditions in optimal GMM estimation to build a limited information likelihood function for Bayesian inference (Kim, 2002).
- ④ Foundation for indirect inference as in Smith (1993) and SMM as in Duffie and Singleton (1993).

Dynamic models and state-space representations

Oynamic model:

$$\begin{split} \mathbf{x}_{t+1} &= \mathbf{h}\left(\mathbf{x}_{t}, \sigma\right) + \sigma \eta \boldsymbol{\varepsilon}_{t+1}, \ \boldsymbol{\varepsilon}_{t+1} \sim \textit{IID}\left(\mathbf{0}, \mathbf{I}\right) \\ \mathbf{y}_{t} &= \mathbf{g}\left(\mathbf{x}_{t}, \sigma\right) \end{split}$$

- Comparison with our previous structure.
- Again, general framework (augmented state vector).

The state-space system I

- Perturbation methods approximate $\mathbf{h}(\mathbf{x}_t, \sigma)$ and $\mathbf{g}(\mathbf{x}_t, \sigma)$ with Taylor-series expansions around $\mathbf{x}_{ss} = \sigma = 0$.
- A first-order approximated state-space system replaces $\mathbf{g}(\mathbf{x}_t, \sigma)$ and $\mathbf{h}(\mathbf{x}_t, \sigma)$ with $\mathbf{g}_{\mathbf{x}}\mathbf{x}_t$ and $\mathbf{h}_{\mathbf{x}}\mathbf{x}_t$.
- If $\forall \mod(\text{eig}(\mathbf{h}_{\mathbf{x}})) < 1$, the approximation fluctuates around the steady state (also its mean value).
- Thus, easy to calibrate the model based on first and second moments or to estimate it using Bayesian methods, MLE, GMM, SMM, etc.

The state-space system II

- We can replace $\mathbf{g}(\mathbf{x}_t, \sigma)$ and $\mathbf{h}(\mathbf{x}_t, \sigma)$ with their higher-order Taylor-series expansions.
- However, the approximated state-space system cannot, in general, be shown to have any finite moments.
- Also, it often displays explosive dynamics.
- This occurs even with simple versions of the New Keynesian model.
- Hence, it is difficult to use the approximated state-space system to calibrate or to estimate the parameters of the model.

The pruning method: second-order approximation I

Partition states:

$$\left[\begin{array}{c} \left(\mathbf{x}_{t}^{f} \right)' & \left(\mathbf{x}_{t}^{s} \right)' \end{array} \right]$$

• Original state-space representation:

$$\begin{aligned} \mathbf{x}_{t+1}^{(2)} &= \mathbf{h}_{\mathbf{x}} \left(\mathbf{x}_{t}^{f} + \mathbf{x}_{t}^{s} \right) + \frac{1}{2} \mathbf{H}_{\mathbf{x}\mathbf{x}} \left(\left(\mathbf{x}_{t}^{f} + \mathbf{x}_{t}^{s} \right) \otimes \left(\mathbf{x}_{t}^{f} + \mathbf{x}_{t}^{s} \right) \right) + \frac{1}{2} \mathbf{h}_{\sigma\sigma} \sigma^{2} + \sigma \eta \boldsymbol{\epsilon}_{t+} \\ \mathbf{y}_{t}^{(2)} &= \mathbf{g}_{\mathbf{x}} \mathbf{x}_{t}^{(2)} + \frac{1}{2} \mathbf{G}_{\mathbf{x}\mathbf{x}} \left(\mathbf{x}_{t}^{(2)} \otimes \mathbf{x}_{t}^{(2)} \right) + \frac{1}{2} \mathbf{g}_{\sigma\sigma} \sigma^{2} \end{aligned}$$

The pruning method: second-order approximation II

• New state-space representation:

$$\begin{aligned} \mathbf{x}_{t+1}^{f} &= \mathbf{h}_{\mathbf{x}} \mathbf{x}_{t}^{f} + \sigma \boldsymbol{\eta} \boldsymbol{\epsilon}_{t+1} \\ \mathbf{x}_{t+1}^{s} &= \mathbf{h}_{\mathbf{x}} \mathbf{x}_{t}^{s} + \frac{1}{2} \mathbf{H}_{\mathbf{x}\mathbf{x}} \left(\mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{f} \right) + \frac{1}{2} \mathbf{h}_{\sigma\sigma} \sigma^{2} \\ \mathbf{y}_{t}^{f} &= \mathbf{g}_{\mathbf{x}} \mathbf{x}_{t}^{f} \\ \mathbf{y}_{t}^{s} &= \mathbf{g}_{\mathbf{x}} \left(\mathbf{x}_{t}^{f} + \mathbf{x}_{t}^{s} \right) + \frac{1}{2} \mathbf{G}_{\mathbf{x}\mathbf{x}} \left(\mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{f} \right) + \frac{1}{2} \mathbf{g}_{\sigma\sigma} \sigma^{2} \end{aligned}$$

• All variables are second-order polynomials of the innovations.

The pruning method: third-order approximation I

Partition states:

$$\left[\begin{array}{cc} \left(\mathbf{x}_{t}^{f}\right)' & \left(\mathbf{x}_{t}^{s}\right)' & \left(\mathbf{x}_{t}^{rd}\right)'\end{array}\right]$$

• Original state-space representation:

$$\begin{aligned} \mathbf{x}_{t+1}^{(3)} &= \mathbf{h}_{\mathbf{x}} \mathbf{x}_{t}^{(3)} + \frac{1}{2} \mathbf{H}_{\mathbf{xx}} \left(\mathbf{x}_{t}^{(3)} \otimes \mathbf{x}_{t}^{(3)} \right) + \frac{1}{6} \mathbf{H}_{\mathbf{xxx}} \left(\mathbf{x}_{t}^{(3)} \otimes \mathbf{x}_{t}^{(3)} \otimes \mathbf{x}_{t}^{(3)} \right) \\ &+ \frac{1}{2} \mathbf{h}_{\sigma\sigma} \sigma^{2} + \frac{3}{6} \mathbf{h}_{\sigma\sigma\mathbf{x}} \sigma^{2} \mathbf{x}_{t}^{(3)} + \frac{1}{6} \mathbf{h}_{\sigma\sigma\sigma} \sigma^{3} + \sigma \eta \boldsymbol{\epsilon}_{t+1} \\ \mathbf{y}_{t}^{(3)} &= \mathbf{g}_{\mathbf{x}} \mathbf{x}_{t}^{(3)} + \frac{1}{2} \mathbf{G}_{\mathbf{xx}} \left(\mathbf{x}_{t}^{(3)} \otimes \mathbf{x}_{t}^{(3)} \right) + \frac{1}{6} \mathbf{G}_{\mathbf{xxx}} \left(\mathbf{x}_{t}^{(3)} \otimes \mathbf{x}_{t}^{(3)} \otimes \mathbf{x}_{t}^{(3)} \right) \\ &+ \frac{1}{2} \mathbf{g}_{\sigma\sigma} \sigma^{2} + \frac{3}{6} \mathbf{g}_{\sigma\sigma\mathbf{x}} \sigma^{2} \mathbf{x}_{t}^{(3)} + \frac{1}{6} \mathbf{g}_{\sigma\sigma\sigma} \sigma^{3} \end{aligned}$$

The pruning method: third-order approximation II

• New state-space representation:

Second-order pruned state-space representation+

$$\mathbf{x}_{t+1}^{rd} = \mathbf{h}_{\mathbf{x}}\mathbf{x}_{t}^{rd} + \mathbf{H}_{\mathbf{xx}}\left(\mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{s}\right) + \frac{1}{6}\mathbf{H}_{\mathbf{xxx}}\left(\mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{f} \otimes \mathbf{x}^{f}\right) \\
+ \frac{3}{6}\mathbf{h}_{\sigma\sigma\mathbf{x}}\sigma^{2}\mathbf{x}_{t}^{f} + \frac{1}{6}\mathbf{h}_{\sigma\sigma\sigma}\sigma^{3} \\
\mathbf{y}_{t}^{rd} = \mathbf{g}_{\mathbf{x}}\left(\mathbf{x}_{t}^{f} + \mathbf{x}_{t}^{s} + \mathbf{x}_{t}^{rd}\right) + \frac{1}{2}\mathbf{G}_{\mathbf{xx}}\left(\left(\mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{f}\right) + 2\left(\mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{s}\right)\right) \\
+ \frac{1}{6}\mathbf{G}_{\mathbf{xxx}}\left(\mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{f}\right) + \frac{1}{2}\mathbf{g}_{\sigma\sigma}\sigma^{2} + \frac{3}{6}\mathbf{g}_{\sigma\sigma\mathbf{x}}\sigma^{2}\mathbf{x}_{t}^{f} + \frac{1}{6}\mathbf{g}_{\sigma\sigma\sigma}\sigma^{3}$$

• All variables are third-order polynomials of the innovations.

Higher-order approximations

- We can generalize previous steps:
- Decompose the state variables into first-, second-, ..., and kth-order effects.
- ② Set up laws of motions for the state variables capturing only first-, second-, ..., and kth-order effects.
- 3 Construct the expression for control variables by preserving only effects up to kth-order.

Statistical properties: second-order approximation I

Theorem

If $\forall \mod(\text{eig}(\mathbf{h}_{\mathbf{x}})) < 1$ and $\boldsymbol{\epsilon}_{t+1}$ has finite fourth moments, the pruned state-space system has finite first and second moments.

Theorem

If $\forall \mod(\text{eig}(\mathbf{h}_{\mathbf{x}})) < 1$ and $\boldsymbol{\epsilon}_{t+1}$ has finite sixth and eighth moments, the pruned state-space system has finite third and fourth moments.

Statistical properties: second-order approximation II

• We introduce the vectors

$$\mathbf{z}_{t}^{(2)} \equiv \left[\begin{array}{c} \left(\mathbf{x}_{t}^{f}\right)' & \left(\mathbf{x}_{t}^{s}\right)' & \left(\mathbf{x}_{t}^{f} \otimes \mathbf{x}_{t}^{f}\right)' \end{array} \right]' \\ \boldsymbol{\xi}_{t+1}^{(2)} \equiv \left[\begin{array}{c} \boldsymbol{\epsilon}_{t+1} \otimes \boldsymbol{\epsilon}_{t+1} - \operatorname{vec}\left(\mathbf{I}_{n_{e}}\right) \\ \boldsymbol{\epsilon}_{t+1} \otimes \mathbf{x}_{t}^{f} \\ \mathbf{x}_{t}^{f} \otimes \boldsymbol{\epsilon}_{t+1} \end{array} \right] \end{array}$$

First moment:

$$\mathbb{E}\left[\mathbf{x}_{t}^{(2)}\right] = \underbrace{\mathbb{E}\left[\mathbf{x}_{t}^{f}\right]}_{=0} + \underbrace{\mathbb{E}\left[\mathbf{x}_{t}^{s}\right]}_{\neq 0}$$
$$\mathbb{E}\left[\mathbf{x}_{t}^{s}\right] = (\mathbf{I} - \mathbf{h}_{\mathbf{x}})^{-1} \left(\frac{1}{2}\mathbf{H}_{\mathbf{x}\mathbf{x}} \left(\mathbf{I} - \mathbf{h}_{\mathbf{x}} \otimes \mathbf{h}_{\mathbf{x}}\right)^{-1} \left(\sigma \eta \otimes \sigma \eta\right) \operatorname{vec}\left(\mathbf{I}_{n_{e}}\right) + \frac{1}{2}\mathbf{h}_{\sigma\sigma}\sigma^{2}\right)$$
$$\mathbb{E}\left[\mathbf{y}_{t}^{s}\right] = \mathbf{C}^{(2)}\mathbb{E}\left[\mathbf{z}_{t}^{(2)}\right] + \mathbf{d}^{(2)}$$

Statistical properties: second-order approximation III

Second moment:

$$\begin{split} \mathbb{V}\left(\mathbf{z}_{t}^{(2)}\right) &= \mathbf{A}^{(2)}\mathbb{V}\left(\mathbf{z}_{t}^{(2)}\right)\left(\mathbf{A}^{(2)}\right)' + \mathbf{B}^{(2)}\mathbb{V}\left(\boldsymbol{\xi}_{t}^{(2)}\right)\left(\mathbf{B}^{(2)}\right)'\\ Cov\left(\mathbf{z}_{t+l}^{(2)}, \mathbf{z}_{t}^{(2)}\right) &= \left(\mathbf{A}^{(2)}\right)^{l}\mathbb{V}\left(\mathbf{z}_{t}^{(2)}\right) \quad \text{for } l = 1, 2, 3, \dots\\ \mathbb{V}\left[\mathbf{x}_{t}^{(2)}\right] &= \mathbb{V}\left(\mathbf{x}_{t}^{f}\right) + \mathbb{V}\left(\mathbf{x}_{t}^{s}\right) + Cov\left(\mathbf{x}_{t}^{f}, \mathbf{x}_{t}^{s}\right) + Cov\left(\mathbf{x}_{t}^{s}, \mathbf{x}_{t}^{f}\right)\\ \mathbb{V}\left[\mathbf{y}_{t}^{s}\right] &= \mathbf{C}^{(2)}\mathbb{V}\left[\mathbf{z}_{t}\right]\left(\mathbf{C}^{(2)}\right)'\\ Cov\left(\mathbf{y}_{t}^{s}, \mathbf{y}_{t+l}^{s}\right) &= \mathbf{C}^{(2)}Cov\left(\mathbf{z}_{t+l}^{(2)}, \mathbf{z}_{t}^{(2)}\right)\left(\mathbf{C}^{(2)}\right)' \quad \text{for } l = 1, 2, 3, \dots\\ \text{where we solve for } \mathbb{V}\left(\mathbf{z}_{t}^{(2)}\right) \text{ by standard methods for discrete}\\ \text{Lyapunov equations.} \end{split}$$

Statistical properties: second-order approximation IV

• Generalized impulse response function (GIRF): Koop et al. (1996)

$$\textit{GIRF}_{\mathsf{var}}\left(\textit{I}, \textit{v}, \mathsf{w}_{t}
ight) = \mathbb{E}\left[\mathsf{var}_{t+\textit{I}} \middle| \mathsf{w}_{t}, \pmb{\epsilon}_{t+1} = \textit{v}
ight] - \mathbb{E}\left[\mathsf{var}_{t+\textit{I}} \middle| \mathsf{w}_{t}
ight]$$

• Importance in models with volatility shocks.

Statistical properties: third-order approximation

Theorem

If $\forall \mod(\text{eig}(\mathbf{h}_{\mathbf{x}})) < 1$ and ϵ_{t+1} has finite sixth moments, the pruned state-space system has finite first and second moments.

Theorem

If $\forall \mod(\text{eig}(\mathbf{h}_{\mathbf{x}})) < 1$ and $\boldsymbol{\epsilon}_{t+1}$ has finite ninth and twelfth moments, the pruned state-space system has finite third and fourth moments.

• Similar (but long!!!!!) formulae for first and second moments and IRFs.