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Functional equations

A large class of problems in macroeconomics search for a function d
that solves a functional equation:

H (d) = 0
More formally:

1 Let J1 and J2 be two functional spaces and let H : J1 → J2 be an
operator between these two spaces.

2 Let Ω ⊆ Rl .

3 Then, we need to find a function d : Ω→ Rm such that H (d) = 0.

Notes:

1 Regular equations are particular examples of functional equations.

2 0 is the space zero, different in general that the zero in the reals.
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Example I

Let’s go back to our basic stochastic neoclassical growth model:

maxE0

∞

∑
t=0

βtu (ct , lt )

ct + kt+1 = eztAkα
t l
1−α
t + (1− δ) kt , ∀ t > 0

zt = ρzt−1 + σεt , εt ∼ N (0, 1)

log σt = (1− ρσ) log σ+ ρσ log σt−1 +
(
1− ρ2σ

) 1
2 ηut

The first order condition:

u′ (ct , lt ) = βEt
{
u′ (ct+1, lt+1)

(
1+ αezt+1Akα−1

t+1 l
1−α
t+1 − δ

)}
Where is the stochastic volatility?
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Example II

Define:
xt = (kt , zt−1, log σt−1, εt , ut )

There is a decision rule (a.k.a. policy function) that gives the optimal
choice of consumption and capital tomorrow given the states today:

d =
{

d1 (xt ) = lt
d2 (xt ) = kt+1

From these two choices, we can find:

ct = eztAkα
t

(
d1 (xt )

)1−α
+ (1− δ) kt − d2 (xt )
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Example III

Then:

H = u′
(
ct , d1 (xt )

)
−βEt

{
u′
(
ct+1, d1 (xt+1)

)
∗(

1+ αezt+1Ad2 (xt )
α−1 d1 (xt+1)

1−α − δ
) } = 0

If we find g , and a transversality condition is satisfied, we are done!
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Example IV

There is a recursive problem associated with the previous sequential
problem:

V (xt ) = max
kt+1,lt

{u (ct , lt ) + βEtV (xt+1)}

ct + kt+1 = eztAkα
t l
1−α
t + (1− δ) kt , ∀ t > 0

zt = ρzt−1 + σεt , εt ∼ N (0, 1)

log σt = (1− ρσ) log σ+ ρσ log σt−1 +
(
1− ρ2σ

) 1
2 ηut

Then:
d (xt ) = V (xt )

and

H̃ (d) = d (xt )− max
kt+1,lt

{u (ct , lt ) + βEtd (xt+1)} = 0
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How do we solve functional equations?

General idea: substitute d (x) by dn (x , θ) where θ is an n− dim
vector of coeffi cients to be determined.

Two Main Approaches:

1 Perturbation methods:

dn (x , θ) =
n

∑
i=0

θi (x − x0)i

We use implicit-function theorems to find θi .

2 Projection methods:

dn (x , θ) =
n

∑
i=0

θiΨi (x)

We pick a basis {Ψi (x)}∞
i=0 and “project”H (·) against that basis.
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Comparison with traditional solution methods

Linearization (or loglinearization): equivalent to a first-order
perturbation.

Linear-quadratic approximation: equivalent (under certain conditions)
to a first-order perturbation.

Parameterized expectations: a particular example of projection.

Value function iteration:it can be interpreted as an iterative procedure
to solve a particular projection method. Nevertheless, I prefer to think
about it as a different family of problems.

Policy function iteration: similar to VFI.
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Advantages of the functional equation approach

Generality: abstract framework highlights commonalities across
problems.

Large set of existing theoretical and numerical results in applied math.

It allows us to identify more clearly issue and challenges specific to
economic problems (for example, importance of expectations).

It allows us to deal effi ciently with nonlinearities.
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Perturbation: motivation

Perturbation builds a Taylor-series approximation of the exact
solution.

Very accurate around the point where the approximation is
undertakes.

Often, surprisingly good global properties.

Only approach that handle models with dozens of state variables.

Relation between uncertainty shocks and the curse of dimensionality.
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Our RBC-SV model

Let me come back to our RBC-SV model.

Three changes:

1 Eliminate labor supply and have a log utility function for consumption.

2 Full depreciation.

3 A = 1.

Why?
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Environment

maxE0

∞

∑
t=0

βt log ct

s.t. ct + kt+1 = eztkα
t , ∀ t > 0

zt = ρzt−1 + σεt

log σt = (1− ρσ) log σ+ ρσ log σt−1 +
(
1− ρ2σ

) 1
2 ηut

Equilibrium conditions:

1
ct
= βEt

1
ct+1

αezt+1kα−1
t+1

ct + kt+1 = eztkα
t

zt = ρzt−1 + σεt

log σt = (1− ρσ) log σ+ ρσ log σt−1 +
(
1− ρ2σ

) 1
2 ηut
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Solution

Exact solution (found by “guess and verify”):

ct = (1− αβ) eztkα
t

kt+1 = αβeztkα
t

Note that this solution is the same than in the model without
stochastic volatility.

Intuition.

However, the dynamics of the model is affected by the law of motion
for zt .
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Steady state

Steady state is also easy to find:

k = (αβ)
1
1−α

c = (αβ)
α
1−α − (αβ)

1
1−α

z = 0

log σ = log σ

Steady state in more general models.

Jesús Fernández-Villaverde (PENN) Solution Methods March 16, 2016 15 / 36



The goal

Define xt = (kt , zt−1, log σt−1, εt , ut ;λ).

Role of λ: perturbation parameter.

We are searching for decision rules:

d =
{

ct = c (xt )
kt+1 = k (xt )

Then, we have a system of functional equations:

1
c (xt )

= βEt
1

c (xt+1)
αezt+1k (xt )

α−1

c (xt ) + k (xt ) = eztkα
t

zt = ρzt−1 + σtλεt

log σt = (1− ρσ) log σ+ ρσ log σt−1 +
(
1− ρ2σ

) 1
2 ηλut

Jesús Fernández-Villaverde (PENN) Solution Methods March 16, 2016 16 / 36



Taylor’s theorem

We will build a local approximation around x = (k, 0, log σ, 0, 0;λ).

Given equilibrium conditions:

Et

(
1

c (xt )
− β

1
c (xt+1)

αezt+1k (xt )
α−1
)
= 0

c (xt ) + k (xt )− eztkα
t = 0

We will take derivatives with respect to (k, z , log σ, ε, u;λ) and
evaluate them around x = (k, 0, log σ, 0, 0;λ).

Why?

Apply Taylor’s theorem and a version of the implicit-function theorem.

Jesús Fernández-Villaverde (PENN) Solution Methods March 16, 2016 17 / 36



Taylor series expansion I

ct = c (kt , zt−1, log σt−1, εt , ut ; 1)|k ,0,0 = c (x)
+ck (x) (kt − k) + cz (x) zt−1 + clog σ (x) log σt−1 +

+cε (x) εt + cu (x) ut + cλ (x)

+
1
2
ckk (x) (kt − k)2 +

1
2
ckz (x) (kt − k) zt−1 +

+
1
2
ck log σ (x) (kt − k) log σt−1 + ...
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Taylor series expansion II

kt = k (kt , zt−1, log σt−1, εt , ut ; 1)|k ,0,0 = k (x)
+kk (x) (kt − k) + kz (x) zt−1 + klog σ (x) log σt−1 +

+kε (x) εt + ku (x) ut + kλ (x)

+
1
2
kkk (x) (kt − k)2 +

1
2
kkz (x) (kt − k) zt−1 +

+
1
2
kk log σ (x) (kt − k) log σt−1 + ...
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Comment on notation

From now on, to save on notation, I will write

F (xt ) = Et

[
1

c (xt )
− β 1

c (xt+1)
αezt+1k (xt )

α−1

c (xt ) + k (xt )− eztkα
t

]
=

[
0
0

]

I will take partial derivatives of F (xt ) and evaluate them at the
steady state

Do these derivatives exist?
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First-order approximation

We take first-order derivatives of F (xt ) around x .

Thus, we get:
DF (x) = 0

A matrix quadratic system.

Why quadratic? Stable and unstable manifold.

However, it has a nice recursive structure that we can and should
exploit.
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Solving the system II

Procedures to solve quadratic systems:

1 Blanchard and Kahn (1980) .

2 Uhlig (1999).

3 Sims (2000).

4 Klein (2000).

All of them equivalent.
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Properties of the first-order solution

Coeffi cients associated with λ are zero.

Coeffi cients associated with log σt−1 are zero.

Coeffi cients associated with ut are zero.

In fact, up to first-order, stochastic volatility is irrelevant.

This result recovers traditional macroeconomic approach to
fluctuations.
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Interpretation

No precautionary behavior.

Difference between risk-aversion and precautionary behavior. Leland
(1968), Kimball (1990).

Risk-aversion depends on the second derivative (concave utility).

Precautionary behavior depends on the third derivative (convex
marginal utility).
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Second-order approximation

We take first-order derivatives of F (xt ) around x .

Thus, we get:
D2F (x) = 0

We substitute the coeffi cients that we already know.

A matrix linear system.

It also has a recursive structure, but now it is less crucial to exploit it.
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Properties of the second-order solution

Coeffi cients associated with λ are zero, but not coeffi cients associated
with λ2.

Coeffi cients associated with (log σt−1)
2 are zero, but not coeffi cients

associated with εt log σt−1.

Coeffi cients associated with u2t are zero, but not coeffi cients
associated with εtut .

Thus, up to second-order, stochastic volatility matters.

However, we cannot compute impulse-response functions to volatility
shocks.
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Third-order approximation

We take third-order derivatives of F (xt ) around x .

Thus, we get:
D3F (x) = 0

We substitute the coeffi cients that we already know.

Still a matrix linear system with a recursive structure.

Memory management considerations.
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Computer

In practice you do all this approximations with a computer:

1 First-,second-, and third- order: Dynare.

2 Higher order: Mathematica, Dynare++.

Burden: analytical derivatives.

Why are numerical derivatives a bad idea?

Alternatives: automatic differentiation?
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An alternative: projection

Remember that we want to solve a functional equations of the form:

H (d) = 0

for an unknown decision rule d .

Projection methods solve the problem by specifying:

dn (x , θ) =
n

∑
i=0

θiΨi (x)

We pick a basis {Ψi (x)}∞
i=0 and “project”H (·) against that basis to

find the θi’s.

We work with linear combinations of basis functions because theory of
nonlinear approximations is not as developed as the linear case.
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Algorithm

1 Define n known linearly independent functions ψi : Ω→ <m , where
n < ∞. We call the ψ0 (·) ,ψ2 (·) , ...,ψn (·) the basis functions.

2 Define a vector of coeffi cients θ = [θ0, θ‘, ..., θn ].
3 Define a combination of the basis functions and the θ’s:

dn ( ·| θ) =
n

∑
i=0

θiψn (·)

4 Plug dn ( ·| θ) into H (·) to find the residual equation:

R ( ·| θ) = H (dn ( ·| θ))

5 Find θ̂ that make the residual equation as close to 0 as possible given
some objective function ρ : J1 × J1 → J2:

θ̂ = arg min
θ∈<n

ρ (R ( ·| θ) , 0)
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Models with heterogeneous agents

Obviously, we cannot review here all the literature on solution
methods for models with heterogeneous agents.

Particular example of Bloom et al. (20012)

Based on Krusell and Smith (1998) and Kahn and Thomas (2008)

FOCs:

wt = φctn
ξ
t

mt = β
ct
ct+1

Jesús Fernández-Villaverde (PENN) Solution Methods March 16, 2016 31 / 36



Original formulation of the recursive problem

Remember:

V
(
k, n−1, z ;A, σZ , σA,Φ

)
= max

i ,n


y − w

(
A, σZ , σA,Φ

)
n− i

−AC k (k, k ′)− AC n (n−1, n)
+EmV

(
k ′, n, z ′;A′, σZ ′, σA′,Φ′

)


s.t. Φ′ = Γ
(
A, σZ , σA,Φ

)
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Alternative formulation of the recursive problem

Then, we can rewrite:

Ṽ
(
k, n−1, z ;A, σZ , σA,Φ

)
= max

i ,n

{ 1
c

(
y − φcn1+ξ − i − AC k (k, k ′)− AC n (n−1, n)

)
+βEṼ

(
k ′, n, z ′;A′, σZ ′, σA′,Φ′

) }
s.t. Φm′ = Γ

(
A, σZ , σA,Φ

)
where

Ṽ =
1
c
V

We can apply a version of K-S algorithm.
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K-S algorithm I

We approximate:

Ṽ
(
k, n−1, z ;A, σZ , σA,Φm

)
= max

i ,n

{ 1
c

(
y − φcn1+ξ − i − AC k (k, k ′)− AC n (n−1, n)

)
+βEṼ

(
k ′, n, z ′;A′, σZ ′, σA′,Φm′) }

s.t. Φm′ = Γ
(
A, σZ , σA,Φm

)
Forecasting rules for 1c and Γ.
Since they are aggregate rules, a common guess is of the form:

log
1
c

= α1
(
A, σZ , σA

)
+ α2

(
A, σZ , σA

)
K

logK ′ = α3
(
A, σZ , σA

)
+ α4

(
A, σZ , σA

)
K
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K-S algorithm II

1 Guess initial values for {α1, α2, α3, α4} .

2 Given guessed forecasting rules, solve value function of an individual
firm.

3 Simulate the economy for a large number of periods, computing 1
c

and K ′.

4 Use regression to update forecasting rules.

5 Iterate until convergence
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Extensions

I presented the plain vanilla K-S algorithm.

Many recent developments.

Check Algan, Allais, Den Haan, and Rendahl (2014).
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