Solution Methods

Jesús Fernández-Villaverde

University of Pennsylvania

March 16, 2016

Functional equations

- A large class of problems in macroeconomics search for a function d that solves a functional equation:

$$
\mathcal{H}(d)=\mathbf{0}
$$

- More formally:
(1) Let J^{1} and J^{2} be two functional spaces and let $\mathcal{H}: J^{1} \rightarrow J^{2}$ be an operator between these two spaces.
(2) Let $\Omega \subseteq \mathbb{R}^{\prime}$.
(3) Then, we need to find a function $d: \Omega \rightarrow \mathbb{R}^{m}$ such that $\mathcal{H}(d)=\mathbf{0}$.
- Notes:
(1) Regular equations are particular examples of functional equations.
(2) $\mathbf{0}$ is the space zero, different in general that the zero in the reals.

Example I

- Let's go back to our basic stochastic neoclassical growth model:

$$
\begin{gathered}
\max \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, l_{t}\right) \\
c_{t}+k_{t+1}=\left.e^{z_{t}} A k_{t}^{\alpha}\right|_{t} ^{1-\alpha}+(1-\delta) k_{t}, \forall t>0 \\
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t}, \varepsilon_{t} \sim \mathcal{N}(0,1) \\
\log \sigma_{t}=\left(1-\rho_{\sigma}\right) \log \sigma+\rho_{\sigma} \log \sigma_{t-1}+\left(1-\rho_{\sigma}^{2}\right)^{\frac{1}{2}} \eta u_{t}
\end{gathered}
$$

- The first order condition:

$$
u^{\prime}\left(c_{t}, I_{t}\right)=\beta \mathbb{E}_{t}\left\{u^{\prime}\left(c_{t+1}, I_{t+1}\right)\left(1+\alpha e^{z_{t+1}} A k_{t+1}^{\alpha-1} I_{t+1}^{1-\alpha}-\delta\right)\right\}
$$

- Where is the stochastic volatility?

Example II

- Define:

$$
x_{t}=\left(k_{t}, z_{t-1}, \log \sigma_{t-1}, \varepsilon_{t}, u_{t}\right)
$$

There is a decision rule (a.k.a. policy function) that gives the optimal choice of consumption and capital tomorrow given the states today:

$$
d=\left\{\begin{array}{c}
d^{1}\left(x_{t}\right)=I_{t} \\
d^{2}\left(x_{t}\right)=k_{t+1}
\end{array}\right.
$$

- From these two choices, we can find:

$$
c_{t}=e^{z_{t}} A k_{t}^{\alpha}\left(d^{1}\left(x_{t}\right)\right)^{1-\alpha}+(1-\delta) k_{t}-d^{2}\left(x_{t}\right)
$$

Example III

- Then:

$$
\begin{gathered}
\mathcal{H}=u^{\prime}\left(c_{t}, d^{1}\left(x_{t}\right)\right) \\
-\beta \mathbb{E}_{t}\left\{\begin{array}{c}
u^{\prime}\left(c_{t+1}, d^{1}\left(x_{t+1}\right)\right) * \\
\left(1+\alpha e^{z_{t+1}} A d^{2}\left(x_{t}\right)^{\alpha-1} d^{1}\left(x_{t+1}\right)^{1-\alpha}-\delta\right)
\end{array}\right\}=0
\end{gathered}
$$

- If we find g, and a transversality condition is satisfied, we are done!

Example IV

- There is a recursive problem associated with the previous sequential problem:

$$
\begin{gathered}
V\left(x_{t}\right)=\max _{k_{t+1}, l_{t}}\left\{u\left(c_{t}, l_{t}\right)+\beta \mathbb{E}_{t} V\left(x_{t+1}\right)\right\} \\
c_{t}+k_{t+1}=\left.e^{z_{t}} A k_{t}^{\alpha}\right|_{t} ^{1-\alpha}+(1-\delta) k_{t}, \forall t>0 \\
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t}, \varepsilon_{t} \sim \mathcal{N}(0,1) \\
\log \sigma_{t}=\left(1-\rho_{\sigma}\right) \log \sigma+\rho_{\sigma} \log \sigma_{t-1}+\left(1-\rho_{\sigma}^{2}\right)^{\frac{1}{2}} \eta u_{t}
\end{gathered}
$$

- Then:

$$
d\left(x_{t}\right)=V\left(x_{t}\right)
$$

and

$$
\widetilde{\mathcal{H}}(d)=d\left(x_{t}\right)-\max _{k_{t+1}, l_{t}}\left\{u\left(c_{t}, l_{t}\right)+\beta \mathbb{E}_{t} d\left(x_{t+1}\right)\right\}=\mathbf{0}
$$

How do we solve functional equations?

- General idea: substitute $d(x)$ by $d^{n}(x, \theta)$ where θ is an $n-\operatorname{dim}$ vector of coefficients to be determined.
- Two Main Approaches:
(1) Perturbation methods:

$$
d^{n}(x, \theta)=\sum_{i=0}^{n} \theta_{i}\left(x-x_{0}\right)^{i}
$$

We use implicit-function theorems to find θ_{i}.
(2) Projection methods:

$$
d^{n}(x, \theta)=\sum_{i=0}^{n} \theta_{i} \Psi_{i}(x)
$$

We pick a basis $\left\{\Psi_{i}(x)\right\}_{i=0}^{\infty}$ and "project" $\mathcal{H}(\cdot)$ against that basis.

Comparison with traditional solution methods

- Linearization (or loglinearization): equivalent to a first-order perturbation.
- Linear-quadratic approximation: equivalent (under certain conditions) to a first-order perturbation.
- Parameterized expectations: a particular example of projection.
- Value function iteration:it can be interpreted as an iterative procedure to solve a particular projection method. Nevertheless, I prefer to think about it as a different family of problems.
- Policy function iteration: similar to VFI.

Advantages of the functional equation approach

- Generality: abstract framework highlights commonalities across problems.
- Large set of existing theoretical and numerical results in applied math.
- It allows us to identify more clearly issue and challenges specific to economic problems (for example, importance of expectations).
- It allows us to deal efficiently with nonlinearities.

Perturbation: motivation

- Perturbation builds a Taylor-series approximation of the exact solution.
- Very accurate around the point where the approximation is undertakes.
- Often, surprisingly good global properties.
- Only approach that handle models with dozens of state variables.
- Relation between uncertainty shocks and the curse of dimensionality.

References

- General:
(1) A First Look at Perturbation Theory by James G. Simmonds and James E. Mann Jr.
(2) Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory by Carl M. Bender, Steven A. Orszag.
- Economics:
(1) Perturbation Methods for General Dynamic Stochastic Models" by Hehui Jin and Kenneth Judd.
(2) Perturbation Methods with Nonlinear Changes of Variables" by Kenneth Judd.
(3) A gentle introduction: "Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function" by Martín Uribe and Stephanie Schmitt-Grohe.

Our RBC-SV model

- Let me come back to our RBC-SV model.
- Three changes:
(1) Eliminate labor supply and have a log utility function for consumption.
(2) Full depreciation.
(3) $A=1$.
- Why?

Environment

$$
\begin{gathered}
\max \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \log c_{t} \\
\text { s.t. } c_{t}+k_{t+1}=e^{z_{t}} k_{t}^{\alpha}, \forall t>0 \\
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t} \\
\log \sigma_{t}=\left(1-\rho_{\sigma}\right) \log \sigma+\rho_{\sigma} \log \sigma_{t-1}+\left(1-\rho_{\sigma}^{2}\right)^{\frac{1}{2}} \eta u_{t}
\end{gathered}
$$

- Equilibrium conditions:

$$
\begin{gathered}
\frac{1}{c_{t}}=\beta \mathbb{E}_{t} \frac{1}{c_{t+1}} \alpha e^{z_{t+1}} k_{t+1}^{\alpha-1} \\
c_{t}+k_{t+1}=e^{z_{t}} k_{t}^{\alpha} \\
z_{t}=\rho z_{t-1}+\sigma \varepsilon_{t}
\end{gathered}
$$

$$
\log \sigma_{t}=\left(1-\rho_{\sigma}\right) \log \sigma+\rho_{\sigma} \log \sigma_{t-1}+\left(1-\rho_{\sigma}^{2}\right)^{\frac{1}{2}} \eta u_{t}
$$

Solution

- Exact solution (found by "guess and verify"):

$$
\begin{gathered}
c_{t}=(1-\alpha \beta) e^{z_{t}} k_{t}^{\alpha} \\
k_{t+1}=\alpha \beta e^{z_{t}} k_{t}^{\alpha}
\end{gathered}
$$

- Note that this solution is the same than in the model without stochastic volatility.
- Intuition.
- However, the dynamics of the model is affected by the law of motion for z_{t}.

Steady state

- Steady state is also easy to find:

$$
\begin{gathered}
k=(\alpha \beta)^{\frac{1}{1-\alpha}} \\
c=(\alpha \beta)^{\frac{\alpha}{1-\alpha}}-(\alpha \beta)^{\frac{1}{1-\alpha}} \\
z=0 \\
\log \sigma=\log \sigma
\end{gathered}
$$

- Steady state in more general models.

The goal

- Define $x_{t}=\left(k_{t}, z_{t-1}, \log \sigma_{t-1}, \varepsilon_{t}, u_{t} ; \lambda\right)$.
- Role of λ : perturbation parameter.
- We are searching for decision rules:

$$
d=\left\{\begin{array}{c}
c_{t}=c\left(x_{t}\right) \\
k_{t+1}=k\left(x_{t}\right)
\end{array}\right.
$$

- Then, we have a system of functional equations:

$$
\begin{gathered}
\frac{1}{c\left(x_{t}\right)}=\beta \mathbb{E}_{t} \frac{1}{c\left(x_{t+1}\right)} \alpha e^{z_{t+1}} k\left(x_{t}\right)^{\alpha-1} \\
c\left(x_{t}\right)+k\left(x_{t}\right)=e^{z_{t}} k_{t}^{\alpha} \\
z_{t}=\rho z_{t-1}+\sigma_{t} \lambda \varepsilon_{t} \\
\log \sigma_{t}=\left(1-\rho_{\sigma}\right) \log \sigma+\rho_{\sigma} \log \sigma_{t-1}+\left(1-\rho_{\sigma}^{2}\right)^{\frac{1}{2}} \eta \lambda u_{t}
\end{gathered}
$$

Taylor's theorem

- We will build a local approximation around $x=(k, 0, \log \sigma, 0,0 ; \lambda)$.
- Given equilibrium conditions:

$$
\begin{gathered}
\mathbb{E}_{t}\left(\frac{1}{c\left(x_{t}\right)}-\beta \frac{1}{c\left(x_{t+1}\right)} \alpha e^{z_{t+1}} k\left(x_{t}\right)^{\alpha-1}\right)=0 \\
c\left(x_{t}\right)+k\left(x_{t}\right)-e^{z_{t}} k_{t}^{\alpha}=0
\end{gathered}
$$

We will take derivatives with respect to $(k, z, \log \sigma, \varepsilon, u ; \lambda)$ and evaluate them around $x=(k, 0, \log \sigma, 0,0 ; \lambda)$.

- Why?
- Apply Taylor's theorem and a version of the implicit-function theorem.

Taylor series expansion I

$$
\begin{aligned}
c_{t}= & \left.c\left(k_{t}, z_{t-1}, \log \sigma_{t-1}, \varepsilon_{t}, u_{t} ; 1\right)\right|_{k, 0,0}=c(x) \\
& +c_{k}(x)\left(k_{t}-k\right)+c_{z}(x) z_{t-1}+c_{\log \sigma}(x) \log \sigma_{t-1}+ \\
& +c_{\varepsilon}(x) \varepsilon_{t}+c_{u}(x) u_{t}+c_{\lambda}(x) \\
& +\frac{1}{2} c_{k k}(x)\left(k_{t}-k\right)^{2}+\frac{1}{2} c_{k z}(x)\left(k_{t}-k\right) z_{t-1}+ \\
& +\frac{1}{2} c_{k} \log \sigma(x)\left(k_{t}-k\right) \log \sigma_{t-1}+\ldots
\end{aligned}
$$

Taylor series expansion II

$$
\begin{aligned}
k_{t}= & \left.k\left(k_{t}, z_{t-1}, \log \sigma_{t-1}, \varepsilon_{t}, u_{t} ; 1\right)\right|_{k, 0,0}=k(x) \\
& +k_{k}(x)\left(k_{t}-k\right)+k_{z}(x) z_{t-1}+k_{\log \sigma}(x) \log \sigma_{t-1}+ \\
& +k_{\varepsilon}(x) \varepsilon_{t}+k_{u}(x) u_{t}+k_{\lambda}(x) \\
& +\frac{1}{2} k_{k k}(x)\left(k_{t}-k\right)^{2}+\frac{1}{2} k_{k z}(x)\left(k_{t}-k\right) z_{t-1}+ \\
& +\frac{1}{2} k_{k} \log \sigma(x)\left(k_{t}-k\right) \log \sigma_{t-1}+\ldots
\end{aligned}
$$

Comment on notation

- From now on, to save on notation, I will write

$$
F\left(x_{t}\right)=\mathbb{E}_{t}\left[\begin{array}{c}
\frac{1}{c\left(x_{t}\right)}-\beta \frac{1}{c\left(x_{t+1}\right)} \alpha e^{z_{t+1}} k\left(x_{t}\right)^{\alpha-1} \\
c\left(x_{t}\right)+k\left(x_{t}\right)-e^{z_{t}} k_{t}^{\alpha}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- I will take partial derivatives of $F\left(x_{t}\right)$ and evaluate them at the steady state
- Do these derivatives exist?

First-order approximation

- We take first-order derivatives of $F\left(x_{t}\right)$ around x.
- Thus, we get:

$$
D F(x)=0
$$

- A matrix quadratic system.
- Why quadratic? Stable and unstable manifold.
- However, it has a nice recursive structure that we can and should exploit.

Solving the system II

- Procedures to solve quadratic systems:
(1) Blanchard and Kahn (1980) .
(2) Uhlig (1999).
(3) Sims (2000).
(4) Klein (2000).
- All of them equivalent.

Properties of the first-order solution

- Coefficients associated with λ are zero.
- Coefficients associated with $\log \sigma_{t-1}$ are zero.
- Coefficients associated with u_{t} are zero.
- In fact, up to first-order, stochastic volatility is irrelevant.
- This result recovers traditional macroeconomic approach to fluctuations.

Interpretation

- No precautionary behavior.
- Difference between risk-aversion and precautionary behavior. Leland (1968), Kimball (1990).
- Risk-aversion depends on the second derivative (concave utility).
- Precautionary behavior depends on the third derivative (convex marginal utility).

Second-order approximation

- We take first-order derivatives of $F\left(x_{t}\right)$ around x.
- Thus, we get:

$$
D^{2} F(x)=0
$$

- We substitute the coefficients that we already know.
- A matrix linear system.
- It also has a recursive structure, but now it is less crucial to exploit it.

Properties of the second-order solution

- Coefficients associated with λ are zero, but not coefficients associated with λ^{2}.
- Coefficients associated with $\left(\log \sigma_{t-1}\right)^{2}$ are zero, but not coefficients associated with $\varepsilon_{t} \log \sigma_{t-1}$.
- Coefficients associated with u_{t}^{2} are zero, but not coefficients associated with $\varepsilon_{t} u_{t}$.
- Thus, up to second-order, stochastic volatility matters.
- However, we cannot compute impulse-response functions to volatility shocks.

Third-order approximation

- We take third-order derivatives of $F\left(x_{t}\right)$ around x.
- Thus, we get:

$$
D^{3} F(x)=0
$$

- We substitute the coefficients that we already know.
- Still a matrix linear system with a recursive structure.
- Memory management considerations.

Computer

- In practice you do all this approximations with a computer:
(1) First-,second-, and third- order: Dynare.
(2) Higher order: Mathematica, Dynare++.
- Burden: analytical derivatives.
- Why are numerical derivatives a bad idea?
- Alternatives: automatic differentiation?

An alternative: projection

- Remember that we want to solve a functional equations of the form:

$$
\mathcal{H}(d)=\mathbf{0}
$$

for an unknown decision rule d.

- Projection methods solve the problem by specifying:

$$
d^{n}(x, \theta)=\sum_{i=0}^{n} \theta_{i} \Psi_{i}(x)
$$

We pick a basis $\left\{\Psi_{i}(x)\right\}_{i=0}^{\infty}$ and "project" $\mathcal{H}(\cdot)$ against that basis to find the θ_{i} 's.

- We work with linear combinations of basis functions because theory of nonlinear approximations is not as developed as the linear case.

Algorithm

(1) Define n known linearly independent functions $\psi_{i}: \Omega \rightarrow \Re^{m}$, where $n<\infty$. We call the $\psi_{0}(\cdot), \psi_{2}(\cdot), \ldots, \psi_{n}(\cdot)$ the basis functions.
(2) Define a vector of coefficients $\theta=\left[\theta_{0}, \theta^{\prime}, \ldots, \theta_{n}\right]$.
(3) Define a combination of the basis functions and the θ 's:

$$
d^{n}(\cdot \mid \theta)=\sum_{i=0}^{n} \theta_{i} \psi_{n}(\cdot)
$$

(4) Plug $d^{n}(\cdot \mid \theta)$ into $H(\cdot)$ to find the residual equation:

$$
R(\cdot \mid \theta)=\mathcal{H}\left(d^{n}(\cdot \mid \theta)\right)
$$

(5) Find $\widehat{\theta}$ that make the residual equation as close to $\mathbf{0}$ as possible given some objective function $\rho: J^{1} \times J^{1} \rightarrow J^{2}$:

$$
\widehat{\theta}=\arg \min _{\theta \in \Re^{n}} \rho(R(\cdot \mid \theta), \mathbf{0})
$$

Models with heterogeneous agents

- Obviously, we cannot review here all the literature on solution methods for models with heterogeneous agents.
- Particular example of Bloom et al. (20012)
- Based on Krusell and Smith (1998) and Kahn and Thomas (2008)
- FOCs:

$$
\begin{aligned}
w_{t} & =\phi c_{t} n_{t}^{\zeta} \\
m_{t} & =\beta \frac{c_{t}}{c_{t+1}}
\end{aligned}
$$

Original formulation of the recursive problem

- Remember:

$$
\begin{gathered}
V\left(k, n_{-1}, z ; A, \sigma^{Z}, \sigma^{A}, \Phi\right) \\
=\max _{i, n}\left\{\begin{array}{c}
y-w\left(A, \sigma^{Z}, \sigma^{A}, \Phi\right) n-i \\
-A C^{k}\left(k, k^{\prime}\right)-A C^{n}\left(n_{-1}, n\right) \\
+\mathbb{E} m V\left(k^{\prime}, n, z^{\prime} ; A^{\prime}, \sigma^{Z \prime}, \sigma^{A \prime}, \Phi^{\prime}\right)
\end{array}\right\} \\
\text { s.t. } \Phi^{\prime}=\Gamma\left(A, \sigma^{Z}, \sigma^{A}, \Phi\right)
\end{gathered}
$$

Alternative formulation of the recursive problem

- Then, we can rewrite:

$$
\begin{gathered}
\widetilde{V}\left(k, n_{-1}, z ; A, \sigma^{Z}, \sigma^{A}, \Phi\right) \\
=\max _{i, n}\left\{\begin{array}{c}
\frac{1}{c}\left(y-\phi c n^{1+\xi}-i-A C^{k}\left(k, k^{\prime}\right)-A C^{n}\left(n_{-1}, n\right)\right) \\
+\beta \mathbb{E} \widetilde{V}\left(k^{\prime}, n, z^{\prime} ; A^{\prime}, \sigma^{Z \prime}, \sigma^{A \prime}, \Phi^{\prime}\right)
\end{array}\right\} \\
\text { s.t. } \Phi^{m \prime}=\Gamma\left(A, \sigma^{Z}, \sigma^{A}, \Phi\right)
\end{gathered}
$$

where

$$
\widetilde{V}=\frac{1}{c} V
$$

- We can apply a version of K-S algorithm.

K-S algorithm I

- We approximate:

$$
\begin{gathered}
\widetilde{V}\left(k, n_{-1}, z ; A, \sigma^{Z}, \sigma^{A}, \Phi^{m}\right) \\
=\max _{i, n}\left\{\begin{array}{c}
\frac{1}{c}\left(y-\phi c n^{1+\xi}-i-A C^{k}\left(k, k^{\prime}\right)-A C^{n}\left(n_{-1}, n\right)\right) \\
+\beta \mathbb{E} \widetilde{V}\left(k^{\prime}, n, z^{\prime} ; A^{\prime}, \sigma^{Z \prime}, \sigma^{A \prime}, \Phi^{m \prime}\right)
\end{array}\right\} \\
\text { s.t. } \Phi^{m \prime}=\Gamma\left(A, \sigma^{Z}, \sigma^{A}, \Phi^{m}\right)
\end{gathered}
$$

- Forecasting rules for $\frac{1}{c}$ and Γ.
- Since they are aggregate rules, a common guess is of the form:

$$
\begin{aligned}
\log \frac{1}{c} & =\alpha_{1}\left(A, \sigma^{Z}, \sigma^{A}\right)+\alpha_{2}\left(A, \sigma^{Z}, \sigma^{A}\right) K \\
\log K^{\prime} & =\alpha_{3}\left(A, \sigma^{Z}, \sigma^{A}\right)+\alpha_{4}\left(A, \sigma^{Z}, \sigma^{A}\right) K
\end{aligned}
$$

K-S algorithm II

(1) Guess initial values for $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$.
(2) Given guessed forecasting rules, solve value function of an individual firm.
(3) Simulate the economy for a large number of periods, computing $\frac{1}{c}$ and K^{\prime}.
(4) Use regression to update forecasting rules.
(5) Iterate until convergence

Extensions

- I presented the plain vanilla K-S algorithm.
- Many recent developments.
- Check Algan, Allais, Den Haan, and Rendahl (2014).

