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Functional equations

o A large class of problems in macroeconomics search for a function d
that solves a functional equation:

H(d)=0
o More formally:

@ Let J! and J? be two functional spaces and let H : J1 — J2 be an
operator between these two spaces.

@ Let QO C R/
@ Then, we need to find a function d : 3 — R™ such that H (d) = 0.

o Notes:

@ Regular equations are particular examples of functional equations.

@ 0 is the space zero, different in general that the zero in the reals.

Jesis Fernandez-Villaverde (PENN) Solution Methods March 16, 2016 2 /36



Example |

o Let's go back to our basic stochastic neoclassical growth model:

maxIEo 2 ﬁ Ct /t

Ct+ kep1 = leAk;"/,} “+(1-6)k, Vt>0
Z = PZt—1 + 0&, & ~ N(O, ].)

1
logo: = (1—p,)logo+p,logo:—1 + (1 —p?,) > nuy
o The first order condition:
o (cer k) = BEe {1/ (ceon,leer) (14 ae™ ARSI — 6))

o Where is the stochastic volatility?
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Example I

o Define:
xt = (kt, zt—1,log o1, €, Ut)

There is a decision rule (a.k.a. policy function) that gives the optimal
choice of consumption and capital tomorrow given the states today:

d—{ d' (x:) = b
d? (xt) = ke

o From these two choices, we can find:

¢ = e AKE (d' (x¢)) "+ (1= 6) ke — & (x)
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Example Il

o Then:

H=u(c d" (x))

Ul (Ct+1, dl (Xt+1)) *
_,B]Et z 2 a—1 51 1—a =0
(1 + et Ad? (x)¥ d (1) T — 6

o If we find g, and a transversality condition is satisfied, we are done!
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Example IV

o There is a recursive problem associated with the previous sequential

problem:

V(x) = fmax {u(ce, lt) + BE:V (xe41) }

t+1 t
Cr 4 ker1 = € AKMET* (1 —6) ke, V£ >0
Zy — pZt_]_ + O&¢, € ~~ N(O, 1)
1
logos = (1—p,)logo +p,logoe—1+ (1 —p2)2 nu;

o Then:
d(x) =V (x)

and

H(d) =d(x)— max {u(ct, lt) + BE¢d (x¢41)} =0

ket1,le
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How do we solve functional equations?

o General idea: substitute d (x) by d” (x, 6) where 6 is an n — dim
vector of coefficients to be determined.

o Two Main Approaches:

@ Perturbation methods:

n

d"(x,0) =) 6;(x— xo)i

i=0
We use implicit-function theorems to find 6;.

@ Projection methods:

n

d" (x,0) = ) 0;¥; (x)
i=0
We pick a basis {¥; (x)};-, and “project” H (-) against that basis.
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Comparison with traditional solution methods

o Linearization (or loglinearization): equivalent to a first-order
perturbation.

o Linear-quadratic approximation: equivalent (under certain conditions)
to a first-order perturbation.

o Parameterized expectations: a particular example of projection.

o Value function iteration:it can be interpreted as an iterative procedure
to solve a particular projection method. Nevertheless, | prefer to think
about it as a different family of problems.

o Policy function iteration: similar to VFI.
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Advantages of the functional equation approach

(]

Generality: abstract framework highlights commonalities across
problems.

o Large set of existing theoretical and numerical results in applied math.

o It allows us to identify more clearly issue and challenges specific to
economic problems (for example, importance of expectations).

©

It allows us to deal efficiently with nonlinearities.
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Perturbation: motivation

o Perturbation builds a Taylor-series approximation of the exact
solution.

o Very accurate around the point where the approximation is
undertakes.

©

Often, surprisingly good global properties.

©

Only approach that handle models with dozens of state variables.

o Relation between uncertainty shocks and the curse of dimensionality.

Jesis Fernandez-Villaverde (PENN) Solution Methods March 16, 2016 10 / 36



N —
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o Economics:
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Our RBC-SV model

o Let me come back to our RBC-SV model.
o Three changes:

@ Eliminate labor supply and have a log utility function for consumption.
@ Full depreciation.

@ A=1

o Why?
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Environment

max [Eg Z ﬁt log c;
t=0

st. ¢+ key1 = ek, V>0

Zt = pz-1 + 0¢€;
1
|0g0't = (1 _IOU) |Og0—+palog0-f*1 + (1 _P¢27)2 nut

o Equilibrium conditions:

1 1
R ﬁIEt
Ct Ct+1

Ct + kt+1 = e k;x

Zy = PZt—1 + 0¢

Zey1 pa—1
we* ik,

1
logo: = (1—p,)logo +p,logoe1+ (1 —p2)2 nuy
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Solution

o Exact solution (found by “guess and verify"):
e = (1—ap)e*k;
key1 = afetky
o Note that this solution is the same than in the model without
stochastic volatility.
o Intuition.

o However, the dynamics of the model is affected by the law of motion
for z;.
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Steady state

o Steady state is also easy to find:

c=(ap)TF — (af)Te
logo = logo

o Steady state in more general models.
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The goal

©

Define Xt — (ktv Zi 1, IOgO't_]_, E¢, Ut, )\)

©

Role of A: perturbation parameter.

o We are searching for decision rules:

d:{ kt+ CIE)(())

Then, we have a system of functional equations:

©

1

Ze+1 fo a—1
c (Xt) ne (Xt)

E
=P e ¢ (xe+1

c(xt) + k(x¢) = e"tk{
Zy = PZt—1 + Ut)\st

1
|Og(7't = (1 _PU) Iog0-+PU IOgU'tfl + (1 _P(27)2 WAut
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Taylor's theorem

o We will build a local approximation around x = (k, 0, logc,0,0; A).

o Given equilibrium conditions:

B <C(1Xt) - 'BC(X1t+1)D(ezmk (Xt)a_1> 0

C (Xt) + k (Xt) - eszg" =0

We will take derivatives with respect to (k, z,logo, g, u; /\) and
evaluate them around x = (k, 0, logc,0,0; A).

o Why?
o Apply Taylor's theorem and a version of the implicit-function theorem.
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Taylor series expansion |

Ct = C(kt,thl,IOgO'tfl,Et,Ut;l)‘kyoyo = C(X)
+Cx (X) (kt — k) + ¢, (X) Zt—1+ Qogo (X) logoi—1 +
+¢ (x) & + ¢y (x) ur + ¢y (x)

1 1
+ 5 (x) (ke — k) + 5 Che (x) (ke — k) ze—1 +

1
+§Ck|0g0' (X) (kl’ - k) |0g(7't_1 + ...
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Taylor series expansion |l

kt’ = k (kt,ztf]_, |og0’t,1,£t, Ug, 1)‘1(,0,0 =k (X)
+ ky (X) (kt — k) + k, (X) Zi—1 + klogg (X) logo:—1 +
+ke (x) € + ky (x) ur + ky (x)

1 1
+ 5 ki (x) (ke — k)* + 5 Kie (x) (ke — k) ze—1 +

1
+§kk|og0' (X) (kl’ - k) |0g(7't_1 + ...

Jesis Fernandez-Villaverde (PENN) Solution Methods March 16, 2016 19 / 36



Comment on notation

o From now on, to save on notation, | will write

1 1 Zt a—1
F (Xt) = ]EI‘ m o ‘BC(XHrl)D(e +1k (Xt) e |: 0 :|
c (Xt) + k (Xt) — eszg‘ 0

o | will take partial derivatives of F (x;) and evaluate them at the
steady state

o Do these derivatives exist?
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First-order approximation

o We take first-order derivatives of F (x;) around x.

o Thus, we get:
DF (x) =0
o A matrix quadratic system.
o Why quadratic? Stable and unstable manifold.

o However, it has a nice recursive structure that we can and should
exploit.
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INNSS———
Solving the system I

o Procedures to solve quadratic systems:

@ Blanchard and Kahn (1980) .
@ Uhlig (1999).
@ Sims (2000).
@ Klein (2000).

o All of them equivalent.



Properties of the first-order solution

Coefficients associated with A are zero.

©

©

Coefficients associated with logo;_1 are zero.

©

Coefficients associated with u; are zero.

©

In fact, up to first-order, stochastic volatility is irrelevant.

©

This result recovers traditional macroeconomic approach to
fluctuations.
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Interpretation

o No precautionary behavior.

©

Difference between risk-aversion and precautionary behavior. Leland
(1968), Kimball (1990).

(+]

Risk-aversion depends on the second derivative (concave utility).

©

Precautionary behavior depends on the third derivative (convex
marginal utility).
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Second-order approximation

©

We take first-order derivatives of F (x;) around x.

©

Thus, we get:
D?*F (x) =0

(]

We substitute the coefficients that we already know.

©

A matrix linear system.

©

It also has a recursive structure, but now it is less crucial to exploit it.
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Properties of the second-order solution

o Coefficients associated with A are zero, but not coefficients associated
with A2

o Coefficients associated with (log Ut,1)2 are zero, but not coefficients
associated with &; logo;_1.

©

Coefficients associated with u? are zero, but not coefficients
associated with &;u;.

©

Thus, up to second-order, stochastic volatility matters.

o However, we cannot compute impulse-response functions to volatility
shocks.
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Third-order approximation

©

We take third-order derivatives of F (x;) around x.

©

Thus, we get:
D3F (x) =0

(]

We substitute the coefficients that we already know.

o Still a matrix linear system with a recursive structure.

o Memory management considerations.

Jesis Fernandez-Villaverde (PENN) Solution Methods March 16, 2016 27 / 36



Computer

o In practice you do all this approximations with a computer:

@ First-,second-, and third- order: Dynare.

@ Higher order: Mathematica, Dynare++.
o Burden: analytical derivatives.
o Why are numerical derivatives a bad idea?

o Alternatives: automatic differentiation?
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An alternative: projection
o Remember that we want to solve a functional equations of the form:

H (d) =0

for an unknown decision rule d.

o Projection methods solve the problem by specifying:

dn (X, 9) = i:)(?,‘l’, (X)

We pick a basis {¥; (x)}:, and “project” H (-) against that basis to
find the 9;'s.

o We work with linear combinations of basis functions because theory of
nonlinear approximations is not as developed as the linear case.
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Algorithm

@ Define n known linearly independent functions ¥, : () — K™, where
n < oco. We call the i, () , ¢, (-) . .... ¢, (-) the basis functions.

@ Define a vector of coefficients 6 = [0y, 0-, ..., 0,].
@ Define a combination of the basis functions and the @'s:

n
d"(+10) =} 0, ()
i=0
@ Plug d" (-]0) into H (+) to find the residual equation:

R(-|6) =1 (d"(-]0))

® Find 0 that make the residual equation as close to 0 as possible given
some objective function p : Jt x J* — J2:

6= arg minp (R (6),0)
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Models with heterogeneous agents

o Obviously, we cannot review here all the literature on solution
methods for models with heterogeneous agents.

o Particular example of Bloom et al. (20012)
o Based on Krusell and Smith (1998) and Kahn and Thomas (2008)
o FOCs:

Wy — (Pctng

Ct
my =
' 'BCt+1
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Original formulation of the recursive problem

o Remember:

v(k, n_l,z;A,UZ,UA,CD)

y — W(A,O'Z,O'A,q)) n—i
= max —ACK (k, k') — AC" (n_1, n)
+EmV (K, n, 2 A, o' o™, @)

st. @ =T (A, UZ,UA,<D>
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Alternative formulation of the recursive problem

o Then, we can rewrite:
% (k, n,l,z;A,aZ,UA,CD)

o [ E (= pen' T — i — ACK (K, K') — AC” (n_y, )
+BEV (K, nz/; A',c? o, @)

st. @™ =T (A, o2, o*, q>)
where
~ 1
V==V
c
o We can apply a version of K-S algorithm.
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K-S algorithm |

o We approximate:
% <k, n_1,z; A, (TZ,UA,CD’">

— max % (y —¢entte — i — ACK (k, k') — AC" (n_1, n))
= +BEV (K, n, 2 A', o Z! oA ™)

st. @ =T (A, oZ oA, cbm)

o Forecasting rules for % and T

o Since they are aggregate rules, a common guess is of the form:
1 Z A zZ A
log— = m <A,(7 O >+1x2 (A,U’ N )K
c

ogK' = as <A,(TZ,UA> + oy (A,UZ,UA> K
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K-S algorithm |l

@ Guess initial values for {ay, a2, a3, a4} .

@ Given guessed forecasting rules, solve value function of an individual
firm.

@ Simulate the economy for a large number of periods, computing %
and K’.

@ Use regression to update forecasting rules.

@® lterate until convergence
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L
Extensions

o | presented the plain vanilla K-S algorithm.

o Many recent developments.

o Check Algan, Allais, Den Haan, and Rendahl (2014).



