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Motivation

Kiyotaki and Moore, 1997.

Main ideas:

1 Feedback loop between financial constraints and economic activity.

2 Dual role of assets as factors of production and as collateral (fire sale
Shleifer and Vishny, 1992).

Simple model:

1 Discrete time.

2 Perfect foresight.

3 Little heterogeneity.
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Preferences

Continuum of infinitely lived, risk-neutral agents:

1 Mass 1 of farmers:

E0

∞

∑
t=0

βtxt

2 Mass m of gatherers:

E0

∞

∑
t=0

β∗tx∗t

Assumption A: β < β∗.
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Goods and Markets

Two goods:

1 Durable asset (land): does not depreciate, fixed supply K .

2 Nondurable commodity (fruit): xt and x∗t .

Fruit is the numeraire.

Competitive spot market for land in each period t: price of 1 unit of
land qt .

Credit market: one unit of fruit at period t is exchanged for Rt units of
fruit at period t + 1.
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Technology for Farmers

Linear production function that uses land kt to produce fruit:

yt+1 = (a+ c) kt

Two parts of output:

1 a: tradable output.

2 c : non-tradable output (basically to induce some current consumption).

Assumption B: non-tradable output is big enough

c >
(
1
β
− 1

)
a
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Budget Constraint for the Farmer

Farmers buy (net) land kt − kt−1 at price qt .

Farmers borrow a quantity bt at interest rate Rt .

Farmers consume xt at cost xt − ckt−1 (total consumption less
non-tradable output).

Farmers sell output akt−1.

Therefore:

qt (kt − kt−1) + Rtbt=1 + xt − ckt−1 = akt−1 + bt
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Borrowing Constraint

Hart and Moore, 1994

Farmer labor input is necessary and lot-specific once production has
started.

Farmer labor cannot be precommitted.

Hence:

outside value = qt+1kt < (a+ c) kt = inside value

Under renegotiation after a default, the farmer can never get less than
qt+1kt .

A farmer can, then borrow a quantity bt such that (secure debt):

Rtbt ≤ qt+1kt
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Technology for Gatherers

Concave production function that uses land kt to produce fruit:

yt+1 = G (k∗t−1) .

Assumption C: to avoid corner solutions:

G ′ (0) > aRt > G ′
(
K
m

)
that is, marginal productivity of gatherers is such that, in equilibrium
both farmers and gatherers hold some land (easy because we will see
below that Rt is constant).

Budget constraint:

qt (k∗t − k∗t−1) + Rtb∗t=1 + x∗t = G (k∗t−1) + b∗t
No specific skill in production: no borrowing constraint.
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Equilibrium I

Definition

An equilibrium is an allocation {kt , k∗t , xt , x∗t }∞
t=0, debt {bt , b∗t }

∞
t=0, and

prices {qt ,Rt}∞
t=0 such that:

1 Given prices {qt ,Rt}∞
t=0, farmers solve their problem:

max
{kt ,xt ,bt}∞

t=0

E0

∞

∑
t=0

βtxt

s.t. qt (kt − kt−1) + Rtbt−1 + xt − ckt−1 = akt−1 + bt
Rtbt ≤ qt+1kt
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Equilibrium II

Definition

2. Given prices {qt ,Rt}∞
t=0, gatherers solve their problem:

max
{k ∗t ,x ∗t ,b∗t }∞

t=0

E0

∞

∑
t=0

β∗tx∗t

s.t. qt (k∗t − k∗t−1) + Rtb∗t−1 + x∗t = G (k∗t−1) + b∗t

3. Markets clear:

xt +mx∗t = (a+ c) kt−1 +mG (k
∗
t−1)

kt +mk∗t = K

bt +mb∗t = 0
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Characterizing the Equilibrium I

Since they are never constrained, gatherers satisfy Euler equation:

1 = β∗Rt+1 ⇒ R = Rt =
1
β∗

Also, by non-arbitrage, gatherers are indifferent at the margin about
buying one unit more of land

−qt +
1
R

(
G ′ (k∗t ) + qt+1

)
= 0

or, rearranging terms, equate the rate of return of land to its user cost
ut :

G ′ (k∗t ) = R
(
qt −

1
R
qt+1

)
= Rut

Hence, all gatherers have the same amount of land.
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Characterizing the Equilibrium II

Rt = 1
β∗ together with assumption A⇒farmers are always constrained.

Decision rule of farmers (close to the steady state, role of assumption
B):

1 Borrow the maximum amount possible:

bt =
qt+1kt
R

2 Consume just their non-tradable fruit:

xt = ckt−1

Jesús Fernández-Villaverde (PENN) Collateral Constraints December 2, 2012 12 / 47



Characterizing the Equilibrium III

Using 1. and 2.: farmers buy as much land as possible:

qt (kt − kt−1) + Rbt−1 + xt − ckt−1 = akt−1 + bt ⇒

qt (kt − kt−1) + qtkt−1 = akt−1 +
qt+1kt
R

⇒

(Rqt − qt+1) kt = Rakt−1 ⇒

kt =
1

qt − 1
R qt+1

akt−1 ⇒

kt =
1
ut
akt−1 =

1
ut
((a+ qt ) kt−1 − Rbt−1)

Last equation: farmer leverages his net wealth (a+ qt ) kt−1 − Rbt−1
given the down payment ut (which is also the user cost of land!)

Decision rules are linear: distribution of land among farmers is irrelevant.
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Steady State I

First,

k =
1
u
ak ⇒ u = a

Second,

u = q − 1
R
q = (1− β∗) q ⇒ q =

a
1− β∗

Third,

k∗ = G ′−1 (Ru) = G ′−1 (Ra)

k = K −mk∗
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Steady State II

Fourth,

b =
qk
R
=

β∗

1− β∗
ak

b∗ = − b
m

Fifth,

x = ck

x∗ =
a
m
k + G (k∗)
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Comparison with Social Planner

Optimal allocation of land:

G ′
(
k∗sp
)
= a+ c ⇒ k∗sp = G

′−1 (a+ c)

(same marginal productivity in both sectors).

In the market allocation:

k∗ = G ′−1 (a)

Thus:
k∗ > k∗sp

Intuition.

Consumption: it would depend on the social planner’s objective
function.
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Computation of the Equilibrium I

Given some initial k∗t and kt , we find:

ut =
1
R
G ′ (k∗t )

kt+1 =
1
ut
akt

k∗t+1 =
1
m

(
K − kt+1

)
By imposing a transversality condition to run out bubbles, we can find
{qt}∞

t=0 that satisfies:

ut = qt −
1
R
qt+1
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Computation of the Equilibrium II

To close the model:

bt =
qt+1kt
R

b∗t = −
bt
m

xt = ckt−1

x∗t =
a
m
kt−1 + G (k∗t−1)
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A Shock the Economy

Think about the case where, unanticipatedly, farmers produce at time t

yt = (a− ∆+ c) kt−1

Farmers are poorer.

Farmers demand less land: qt goes down, ut goes down, land moves
from farmers to gatherers⇒fall in production.

But a lower qt means farmers can borrow less (they are leveraged, and
hence their net wealth goes down more than proportionally to the
shock) and get even less land.

Comparison with social planner’s response.

Jesús Fernández-Villaverde (PENN) Collateral Constraints December 2, 2012 19 / 47



Feedback Loop
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An Extended Model

Two modifications:

1 Opportunities to invest arrive randomly.

2 Trees in addition to land.

We will explore them later.

Main idea.
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Computation

Basic model where:

yt = (a+ εt + c) kt−1

where
εt ∼ N (0, σ)

Dynare.
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Main Idea

We can think about equilibrium conditions as a system of functional
equations of the form:

EtH (d) = 0

for an unknown decision rule d .

Perturbation solves the problem by specifying:

dn (x , θ) =
n

∑
i=0

θi (x − x0)i

We use implicit-function theorems to find coeffi cients θi’s.

Inherently local approximation. However, often good global properties.
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Motivation

Many complicated mathematical problems have:

1 either a particular case

2 or a related problem.

that is easy to solve.

Often, we can use the solution of the simpler problem as a building
block of the general solution.

Very successful in physics.

Sometimes perturbation is known as asymptotic methods.
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Applications to Economics

Judd and Guu (1993) showed how to apply it to economic problems.

Recently, perturbation methods have been gaining much popularity.

In particular, second- and third-order approximations are easy to
compute and notably improve accuracy.

Perturbation theory is the generalization of the well-known linearization
strategy.

Hence, we can use much of what we already know about linearization.

Jesús Fernández-Villaverde (PENN) Collateral Constraints December 2, 2012 25 / 47



References

General:

1 A First Look at Perturbation Theory by James G. Simmonds and James
E. Mann Jr.

2 Advanced Mathematical Methods for Scientists and Engineers:
Asymptotic Methods and Perturbation Theory by Carl M. Bender, Steven
A. Orszag.

Economics:

1 Perturbation Methods for General Dynamic Stochastic Models”by Hehui
Jin and Kenneth Judd.

2 Perturbation Methods with Nonlinear Changes of Variables”by Kenneth
Judd.

3 A gentle introduction: “Solving Dynamic General Equilibrium Models
Using a Second-Order Approximation to the Policy Function”by Martín
Uribe and Stephanie Schmitt-Grohe.

Jesús Fernández-Villaverde (PENN) Collateral Constraints December 2, 2012 26 / 47



Asymptotic Expansion

yt = y (st , εt ; σ)|k ,0,0 = y (s, 0; 0)
+ys (s, 0; 0) (st − s) + yε (s, 0; 0) εt + yσ (s, 0; 0) σ

+
1
2
yss (s, 0; 0) (st − s)2 +

1
2
ys ε (s, 0; 0) (st − s) εt

+
1
2
ysσ (s, 0; 0) (st − s) σ+

1
2
yεs (s, 0; 0) zt (kt − k)

+
1
2
yεε (s, 0; 0) ε2t +

1
2
yεσ (s, 0; 0) εtσ

+
1
2
yσs (s, 0; 0) σ (kt − k) +

1
2
yσε (s, 0; 0) σεt

+
1
2
yσ2 (s, 0; 0) σ2 + ...
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The General Case

Most of previous argument can be easily generalized.

The set of equilibrium conditions of many DSGE models can be written
as (note recursive notation)

EtH(y , y ′, x , x ′) = 0,

where yt is a ny × 1 vector of controls and xt = (st , εt ) is a nx × 1
vector of states.

Define n = nx + ny .

Then H maps Rny × Rny × Rnx × Rnx into Rn.
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Partitioning the State Vector

The state vector xt can be partitioned as x = [x1; x2]t .

x1 = st is a (nx − nε)× 1 vector of endogenous state variables.

x2 = εt is a nε × 1 vector of exogenous state variables.

Why do we want to partition the state vector?
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Exogenous Stochastic Process

x ′2 = Λx2 + σηεε′

Process with 3 parts:
1 The deterministic component Λx2:

1 Λ is a nε × nε matrix, with all eigenvalues with modulus less than one.
2 More general: x ′2 = Γ(x2) + σηεε′, where Γ is a non-linear function
satisfying that all eigenvalues of its first derivative evaluated at the
non-stochastic steady state lie within the unit circle.

2 The scaled innovation ηεε′ where:
1 ηε is a known nε × nε matrix.
2 ε is a nε × 1 i.i.d innovation with bounded support, zero mean, and
variance/covariance matrix I .

3 The perturbation parameter σ.

We can accommodate very general structures of x2 through changes in
the definition of the state space: i.e. stochastic volatility.
Note we do not impose gaussianity.
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The Perturbation Parameter

The scalar σ ≥ 0 is the perturbation parameter.

If we set σ = 0 we have a deterministic model.

Important: there is only ONE perturbation parameter. The matrix ηε

takes account of relative sizes of different shocks.

Why bounded support? Samuelson (1970) and Jin and Judd (2002).
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Solution of the Model

The solution to the model is of the form:

y = g(x ; σ)

x ′ = h(x ; σ) + σηε′

where g maps Rnx × R+ into Rny and h maps Rnx × R+ into Rnx .

The matrix η is of order nx × nε and is given by:

η =

[
∅
ηε

]

Jesús Fernández-Villaverde (PENN) Collateral Constraints December 2, 2012 32 / 47



Perturbation

We wish to find a perturbation approximation of the functions g and h
around the non-stochastic steady state, xt = x̄ and σ = 0.

We define the non-stochastic steady state as vectors (x̄ , ȳ) such that:

H(ȳ , ȳ , x̄ , x̄) = 0.

Note that ȳ = g(x̄ ; 0) and x̄ = h(x̄ ; 0). This is because, if σ = 0, then
EtH = H.
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Plugging-in the Proposed Solution

Substituting the proposed solution, we define:

F (x ; σ) ≡ EtH(g(x ; σ), g(h(x ; σ) + ησε′, σ), x , h(x ; σ) + ησε′) = 0

Since F (x ; σ) = 0 for any values of x and σ, the derivatives of any order
of F must also be equal to zero.

Formally:

Fx kσj (x ; σ) = 0 ∀x , σ, j , k ,

where Fx kσj (x , σ) denotes the derivative of F with respect to x taken k
times and with respect to σ taken j times.
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First-Order Approximation

We are looking for approximations to g and h around (x , σ) = (x̄ , 0) of
the form:

g(x ; σ) = g(x̄ ; 0) + gx (x̄ ; 0)(x − x̄) + gσ(x̄ ; 0)σ

h(x ; σ) = h(x̄ ; 0) + hx (x̄ ; 0)(x − x̄) + hσ(x̄ ; 0)σ

As explained earlier,

g(x̄ ; 0) = ȳ

h(x̄ ; 0) = x̄

The remaining four unknown coeffi cients of the first-order
approximation to g and h are found by using the fact that:

Fx (x̄ ; 0) = 0

Fσ(x̄ ; 0) = 0

Before doing so, I need to introduce the tensor notation.
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Tensors

General trick from physics.

An nth-rank tensor in a m-dimensional space is an operator that has n
indices and mn components and obeys certain transformation rules.

[Hy ]iα is the (i , α) element of the derivative of H with respect to y :

1 The derivative of H with respect to y is an n× ny matrix.
2 Thus, [Hy ]iα is the element of this matrix located at the intersection of
the i-th row and α-th column.

3 Thus, [Hy ]iα[gx ]αβ[hx ]
β
j = ∑

ny
α=1 ∑nxβ=1

∂Hi
∂y α

∂g α

∂x β
∂hβ

∂x j .

[Hy ′y ′ ]iαγ:

1 Hy ′y ′ is a three dimensional array with n rows, ny columns, and ny pages.
2 Then [Hy ′y ′ ]iαγ denotes the element of Hy ′y ′ located at the intersection
of row i , column α and page γ.
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Solving the System I

gx and hx can be found as the solution to the system:

[Fx (x̄ ; 0)]ij = [Hy ′ ]iα[gx ]αβ[hx ]
β
j + [Hy ]iα[gx ]αj + [Hx ′ ]iβ[hx ]

β
j + [Hx ]ij = 0;

i = 1, . . . , n; j , β = 1, . . . , nx ; α = 1, . . . , ny

Note that the derivatives of H evaluated at (y , y ′, x , x ′) = (ȳ , ȳ , x̄ , x̄)
are known.

Then, we have a system of n× nx quadratic equations in the n× nx
unknowns given by the elements of gx and hx .

We can solve with a standard quadratic matrix equation solver.
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Solving the System II

gσ and hσ are the solution to the n equations:

[Fσ(x̄ ; 0)]i =

Et{[Hy ′ ]iα[gx ]αβ[hσ]
β + [Hy ′ ]iα[gx ]αβ[η]

β
φ[ε
′]φ + [Hy ′ ]iα[gσ]

α

+[Hy ]iα[gσ]
α + [Hx ′ ]iβ[hσ]

β + [Hx ′ ]iβ[η]
β
φ[ε
′]φ}

i = 1, . . . , n; α = 1, . . . , ny ; β = 1, . . . , nx ; φ = 1, . . . , nε.

Then:

[Fσ(x̄ ; 0)]i

= [Hy ′ ]iα[gx ]αβ[hσ]
β + [Hy ′ ]iα[gσ]

α + [Hy ]iα[gσ]
α + [fx ′ ]

i
β[hσ]

β = 0;

i = 1, . . . , n; α = 1, . . . , ny ; β = 1, . . . , nx ; φ = 1, . . . , nε.

Certainty equivalence: linear and homogeneous equation in gσ and hσ.
Thus, if a unique solution exists, it satisfies:

hσ = 0
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Second-Order Approximation I

The second-order approximations to g around (x ; σ) = (x̄ ; 0) is

[g(x ; σ)]i = [g(x̄ ; 0)]i + [gx (x̄ ; 0)]ia[(x − x̄)]a + [gσ(x̄ ; 0)]i [σ]

+
1
2
[gxx (x̄ ; 0)]iab [(x − x̄)]a[(x − x̄)]b

+
1
2
[gxσ(x̄ ; 0)]ia[(x − x̄)]a[σ]

+
1
2
[gσx (x̄ ; 0)]ia[(x − x̄)]a[σ]

+
1
2
[gσσ(x̄ ; 0)]i [σ][σ]

where i = 1, . . . , ny , a, b = 1, . . . , nx , and j = 1, . . . , nx .
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Second-Order Approximation II

The second-order approximations to h around (x ; σ) = (x̄ ; 0) is

[h(x ; σ)]j = [h(x̄ ; 0)]j + [hx (x̄ ; 0)]ja[(x − x̄)]a + [hσ(x̄ ; 0)]j [σ]

+
1
2
[hxx (x̄ ; 0)]

j
ab [(x − x̄)]a[(x − x̄)]b

+
1
2
[hxσ(x̄ ; 0)]ja[(x − x̄)]a[σ]

+
1
2
[hσx (x̄ ; 0)]ja[(x − x̄)]a[σ]

+
1
2
[hσσ(x̄ ; 0)]j [σ][σ],

where i = 1, . . . , ny , a, b = 1, . . . , nx , and j = 1, . . . , nx .
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Second-order Approximation III

The unknowns of these expansions are [gxx ]iab , [gxσ]ia, [gσx ]ia, [gσσ]i ,
[hxx ]

j
ab , [hxσ]

j
a, [hσx ]

j
a, [hσσ]j .

These coeffi cients can be identified by taking the derivative of F (x ; σ)
with respect to x and σ twice and evaluating them at (x ; σ) = (x̄ ; 0).

By the arguments provided earlier, these derivatives must be zero.
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Solving the System I

We use Fxx (x̄ ; 0) to identify gxx (x̄ ; 0) and hxx (x̄ ; 0):

[Fxx (x̄ ; 0)]ijk =(
[Hy ′y ′ ]iαγ[gx ]

γ
δ [hx ]

δ
k + [Hy ′y ]iαγ[gx ]

γ
k + [Hy ′x ′ ]

i
αδ[hx ]

δ
k + [Hy ′x ]iαk

)
[gx ]αβ[hx ]

β
j

+[Hy ′ ]iα[gxx ]αβδ[hx ]
δ
k [hx ]

β
j + [Hy ′ ]iα[gx ]αβ[hxx ]

β
jk

+
(
[Hyy ′ ]iαγ[gx ]

γ
δ [hx ]

δ
k + [Hyy ]iαγ[gx ]

γ
k + [Hyx ′ ]

i
αδ[hx ]

δ
k + [Hyx ]iαk

)
[gx ]αj

+[Hy ]iα[gxx ]αjk
+
(
[Hx ′y ′ ]iβγ[gx ]

γ
δ [hx ]

δ
k + [Hx ′y ]iβγ[gx ]

γ
k + [Hx ′x ′ ]

i
βδ[hx ]

δ
k + [Hx ′x ]iβk

)
[hx ]

β
j

+[Hx ′ ]iβ[hxx ]
β
jk

+[Hxy ′ ]ijγ[gx ]
γ
δ [hx ]

δ
k + [Hxy ]ijγ[gx ]

γ
k + [Hxx ′ ]

i
jδ[hx ]

δ
k + [Hxx ]ijk = 0;

i = 1, . . . n, j , k, β, δ = 1, . . . nx ; α,γ = 1, . . . ny .
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Solving the System II

We know the derivatives of H.

We also know the first derivatives of g and h evaluated at
(y , y ′, x , x ′) = (ȳ , ȳ , x̄ , x̄).

Hence, the above expression represents a system of n× nx × nx linear
equations in then n× nx × nx unknowns elements of gxx and hxx .
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Solving the System III

Similarly, gσσ and hσσ can be obtained by solving:

[Fσσ(x̄ ; 0)]i = [Hy ′ ]iα[gx ]αβ[hσσ]
β

+[Hy ′y ′ ]iαγ[gx ]
γ
δ [η]

δ
ξ [gx ]

α
β[η]

β
φ[I ]

φ
ξ

+[Hy ′x ′ ]iαδ[η]
δ
ξ [gx ]

α
β[η]

β
φ[I ]

φ
ξ

+[Hy ′ ]iα[gxx ]αβδ[η]
δ
ξ [η]

β
φ[I ]

φ
ξ + [Hy ′ ]

i
α[gσσ]

α

+[Hy ]iα[gσσ]
α + [Hx ′ ]iβ[hσσ]

β

+[Hx ′y ′ ]iβγ[gx ]
γ
δ [η]

δ
ξ [η]

β
φ[I ]

φ
ξ

+[Hx ′x ′ ]iβδ[η]
δ
ξ [η]

β
φ[I ]

φ
ξ = 0;

i = 1, . . . , n; α,γ = 1, . . . , ny ; β, δ = 1, . . . , nx ; φ, ξ = 1, . . . , nε

a system of n linear equations in the n unknowns given by the elements of
gσσ and hσσ.
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Cross Derivatives

The cross derivatives gxσ and hxσ are zero when evaluated at (x̄ , 0).
Why? Write the system Fσx (x̄ ; 0) = 0 taking into account that all
terms containing either gσ or hσ are zero at (x̄ , 0).
Then:

[Fσx (x̄ ; 0)]ij = [Hy ′ ]iα[gx ]αβ[hσx ]
β
j + [Hy ′ ]iα[gσx ]

α
γ[hx ]

γ
j +

[Hy ]iα[gσx ]
α
j + [Hx ′ ]iβ[hσx ]

β
j = 0;

i = 1, . . . n; α = 1, . . . , ny ; β,γ, j = 1, . . . , nx .

This is a system of n× nx equations in the n× nx unknowns given by
the elements of gσx and hσx .
The system is homogeneous in the unknowns.
Thus, if a unique solution exists, it is given by:

gσx = 0

hσx = 0
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Structure of the Solution

The perturbation solution of the model satisfies:

gσ(x̄ ; 0) = 0

hσ(x̄ ; 0) = 0

gxσ(x̄ ; 0) = 0

hxσ(x̄ ; 0) = 0

Standard deviation only appears in:

1 A constant term given by 12gσσσ2 for the control vector yt .

2 The first nx − nε elements of 12hσσσ2.

Correction for risk.

Quadratic terms in endogenous state vector x1.

Those terms capture non-linear behavior.
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Higher-Order Approximations

We can iterate this procedure as many times as we want.

We can obtain n-th order approximations.

Problems:

1 Existence of higher order derivatives (Santos, 1992).

2 Numerical instabilities.

3 Computational costs.
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