# A Model with Collateral Constraints 

Jesús Fernández-Villaverde<br>University of Pennsylvania

December 2, 2012

## Motivation

- Kiyotaki and Moore, 1997.
- Main ideas:
(1) Feedback loop between financial constraints and economic activity.
(2) Dual role of assets as factors of production and as collateral (fire sale Shleifer and Vishny, 1992).
- Simple model:
(1) Discrete time.
(2) Perfect foresight.
(3) Little heterogeneity.


## Preferences

- Continuum of infinitely lived, risk-neutral agents:
(1) Mass 1 of farmers:

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} x_{t}
$$

(2) Mass $m$ of gatherers:

$$
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{* t} x_{t}^{*}
$$

- Assumption A: $\beta<\beta^{*}$.


## Goods and Markets

- Two goods:
(1) Durable asset (land): does not depreciate, fixed supply $\bar{K}$.
(2) Nondurable commodity (fruit): $x_{t}$ and $x_{t}^{*}$.
- Fruit is the numeraire.
- Competitive spot market for land in each period $t$ : price of 1 unit of land $q_{t}$.
- Credit market: one unit of fruit at period $t$ is exchanged for $R_{t}$ units of fruit at period $t+1$.


## Technology for Farmers

- Linear production function that uses land $k_{t}$ to produce fruit:

$$
y_{t+1}=(a+c) k_{t}
$$

- Two parts of output:
(1) a: tradable output.
(2) $c:$ non-tradable output (basically to induce some current consumption).
- Assumption B: non-tradable output is big enough

$$
c>\left(\frac{1}{\beta}-1\right) a
$$

## Budget Constraint for the Farmer

- Farmers buy (net) land $k_{t}-k_{t-1}$ at price $q_{t}$.
- Farmers borrow a quantity $b_{t}$ at interest rate $R_{t}$.
- Farmers consume $x_{t}$ at cost $x_{t}-c k_{t-1}$ (total consumption less non-tradable output).
- Farmers sell output $a k_{t-1}$.
- Therefore:

$$
q_{t}\left(k_{t}-k_{t-1}\right)+R_{t} b_{t=1}+x_{t}-c k_{t-1}=a k_{t-1}+b_{t}
$$

## Borrowing Constraint

- Hart and Moore, 1994
- Farmer labor input is necessary and lot-specific once production has started.
- Farmer labor cannot be precommitted.
- Hence:

$$
\text { outside value }=q_{t+1} k_{t}<(a+c) k_{t}=\text { inside value }
$$

- Under renegotiation after a default, the farmer can never get less than $q_{t+1} k_{t}$.
- A farmer can, then borrow a quantity $b_{t}$ such that (secure debt):

$$
R_{t} b_{t} \leq q_{t+1} k_{t}
$$

## Technology for Gatherers

- Concave production function that uses land $k_{t}$ to produce fruit:

$$
y_{t+1}=G\left(k_{t-1}^{*}\right) .
$$

- Assumption C: to avoid corner solutions:

$$
G^{\prime}(0)>a R_{t}>G^{\prime}\left(\frac{\bar{K}}{m}\right)
$$

that is, marginal productivity of gatherers is such that, in equilibrium both farmers and gatherers hold some land (easy because we will see below that $R_{t}$ is constant).

- Budget constraint:

$$
q_{t}\left(k_{t}^{*}-k_{t-1}^{*}\right)+R_{t} b_{t=1}^{*}+x_{t}^{*}=G\left(k_{t-1}^{*}\right)+b_{t}^{*}
$$

- No specific skill in production: no borrowing constraint.


## Equilibrium I

## Definition

An equilibrium is an allocation $\left\{k_{t}, k_{t}^{*}, x_{t}, x_{t}^{*}\right\}_{t=0}^{\infty}$, debt $\left\{b_{t}, b_{t}^{*}\right\}_{t=0}^{\infty}$, and prices $\left\{q_{t}, R_{t}\right\}_{t=0}^{\infty}$ such that:
(1) Given prices $\left\{q_{t}, R_{t}\right\}_{t=0}^{\infty}$, farmers solve their problem:

$$
\begin{gathered}
\max _{\left\{k_{t}, x_{t}, b_{t}\right\}_{t=0}^{\infty}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} x_{t} \\
\text { s.t. } q_{t}\left(k_{t}-k_{t-1}\right)+R_{t} b_{t-1}+x_{t}-c k_{t-1}=a k_{t-1}+b_{t} \\
R_{t} b_{t} \leq q_{t+1} k_{t}
\end{gathered}
$$

## Equilibrium II

## Definition

2. Given prices $\left\{q_{t}, R_{t}\right\}_{t=0}^{\infty}$, gatherers solve their problem:

$$
\begin{gathered}
\max _{\left\{k_{t}^{*}, x_{t}^{*}, b_{t}^{*}\right\}_{t=0}^{\infty}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{* t} x_{t}^{*} \\
\text { s.t. } q_{t}\left(k_{t}^{*}-k_{t-1}^{*}\right)+R_{t} b_{t-1}^{*}+x_{t}^{*}=G\left(k_{t-1}^{*}\right)+b_{t}^{*}
\end{gathered}
$$

3. Markets clear:

$$
\begin{gathered}
x_{t}+m x_{t}^{*}=(a+c) k_{t-1}+m G\left(k_{t-1}^{*}\right) \\
k_{t}+m k_{t}^{*}=\bar{K} \\
b_{t}+m b_{t}^{*}=0
\end{gathered}
$$

## Characterizing the Equilibrium I

- Since they are never constrained, gatherers satisfy Euler equation:

$$
1=\beta^{*} R_{t+1} \Rightarrow R=R_{t}=\frac{1}{\beta^{*}}
$$

- Also, by non-arbitrage, gatherers are indifferent at the margin about buying one unit more of land

$$
-q_{t}+\frac{1}{R}\left(G^{\prime}\left(k_{t}^{*}\right)+q_{t+1}\right)=0
$$

or, rearranging terms, equate the rate of return of land to its user cost $u_{t}$ :

$$
G^{\prime}\left(k_{t}^{*}\right)=R\left(q_{t}-\frac{1}{R} q_{t+1}\right)=R u_{t}
$$

- Hence, all gatherers have the same amount of land.


## Characterizing the Equilibrium II

- $R_{t}=\frac{1}{\beta^{*}}$ together with assumption $\mathrm{A} \Rightarrow$ farmers are always constrained.
- Decision rule of farmers (close to the steady state, role of assumption B):
(1) Borrow the maximum amount possible:

$$
b_{t}=\frac{q_{t+1} k_{t}}{R}
$$

(2) Consume just their non-tradable fruit:

$$
x_{t}=c k_{t-1}
$$

## Characterizing the Equilibrium III

- Using 1. and 2.: farmers buy as much land as possible:

$$
\begin{gathered}
q_{t}\left(k_{t}-k_{t-1}\right)+R b_{t-1}+x_{t}-c k_{t-1}=a k_{t-1}+b_{t} \Rightarrow \\
q_{t}\left(k_{t}-k_{t-1}\right)+q_{t} k_{t-1}=a k_{t-1}+\frac{q_{t+1} k_{t}}{R} \Rightarrow \\
\left(R q_{t}-q_{t+1}\right) k_{t}=R a k_{t-1} \Rightarrow \\
k_{t}=\frac{1}{q_{t}-\frac{1}{R} q_{t+1}} a k_{t-1} \Rightarrow \\
k_{t}=\frac{1}{u_{t}} a k_{t-1}=\frac{1}{u_{t}}\left(\left(a+q_{t}\right) k_{t-1}-R b_{t-1}\right)
\end{gathered}
$$

- Last equation: farmer leverages his net wealth $\left(a+q_{t}\right) k_{t-1}-R b_{t-1}$ given the down payment $u_{t}$ (which is also the user cost of land!)
- Decision rules are linear: distribution of land among farmers is irrelevant.


## Steady State I

- First,

$$
k=\frac{1}{u} a k \Rightarrow u=a
$$

- Second,

$$
u=q-\frac{1}{R} q=\left(1-\beta^{*}\right) q \Rightarrow q=\frac{a}{1-\beta^{*}}
$$

- Third,

$$
\begin{gathered}
k^{*}=G^{\prime-1}(R u)=G^{\prime-1}(R a) \\
k=\bar{K}-m k^{*}
\end{gathered}
$$

## Steady State II

- Fourth,

$$
\begin{aligned}
b=\frac{q k}{R} & =\frac{\beta^{*}}{1-\beta^{*}} a k \\
b^{*} & =-\frac{b}{m}
\end{aligned}
$$

- Fifth,

$$
\begin{gathered}
x=c k \\
x^{*}=\frac{a}{m} k+G\left(k^{*}\right)
\end{gathered}
$$

## Comparison with Social Planner

- Optimal allocation of land:

$$
G^{\prime}\left(k_{s p}^{*}\right)=a+c \Rightarrow k_{s p}^{*}=G^{\prime-1}(a+c)
$$

(same marginal productivity in both sectors).

- In the market allocation:

$$
k^{*}=G^{\prime-1}(a)
$$

- Thus:

$$
k^{*}>k_{s p}^{*}
$$

- Intuition.
- Consumption: it would depend on the social planner's objective function.


## Computation of the Equilibrium I

- Given some initial $k_{t}^{*}$ and $k_{t}$, we find:

$$
\begin{gathered}
u_{t}=\frac{1}{R} G^{\prime}\left(k_{t}^{*}\right) \\
k_{t+1}=\frac{1}{u_{t}} a k_{t} \\
k_{t+1}^{*}=\frac{1}{m}\left(\bar{K}-k_{t+1}\right)
\end{gathered}
$$

- By imposing a transversality condition to run out bubbles, we can find $\left\{q_{t}\right\}_{t=0}^{\infty}$ that satisfies:

$$
u_{t}=q_{t}-\frac{1}{R} q_{t+1}
$$

## Computation of the Equilibrium II

- To close the model:

$$
\begin{gathered}
b_{t}=\frac{q_{t+1} k_{t}}{R} \\
b_{t}^{*}=-\frac{b_{t}}{m} \\
x_{t}=c k_{t-1} \\
x_{t}^{*}=\frac{a}{m} k_{t-1}+G\left(k_{t-1}^{*}\right)
\end{gathered}
$$

## A Shock the Economy

- Think about the case where, unanticipatedly, farmers produce at time $t$

$$
y_{t}=(a-\Delta+c) k_{t-1}
$$

- Farmers are poorer.
- Farmers demand less land: $q_{t}$ goes down, $u_{t}$ goes down, land moves from farmers to gatherers $\Rightarrow$ fall in production.
- But a lower $q_{t}$ means farmers can borrow less (they are leveraged, and hence their net wealth goes down more than proportionally to the shock) and get even less land.
- Comparison with social planner's response.


## Feedback Loop



## An Extended Model

- Two modifications:
(1) Opportunities to invest arrive randomly.
(2) Trees in addition to land.
- We will explore them later.
- Main idea.


## Computation

- Basic model where:

$$
y_{t}=\left(a+\varepsilon_{t}+c\right) k_{t-1}
$$

where

$$
\varepsilon_{t} \sim \mathcal{N}(0, \sigma)
$$

- Dynare.


## Main Idea

- We can think about equilibrium conditions as a system of functional equations of the form:

$$
\mathbb{E}_{t} \mathcal{H}(d)=\mathbf{0}
$$

for an unknown decision rule $d$.

- Perturbation solves the problem by specifying:

$$
d^{n}(x, \theta)=\sum_{i=0}^{n} \theta_{i}\left(x-x_{0}\right)^{i}
$$

- We use implicit-function theorems to find coefficients $\theta_{i}$ 's.
- Inherently local approximation. However, often good global properties.


## Motivation

- Many complicated mathematical problems have:
(1) either a particular case
(2) or a related problem.
that is easy to solve.
- Often, we can use the solution of the simpler problem as a building block of the general solution.
- Very successful in physics.
- Sometimes perturbation is known as asymptotic methods.


## Applications to Economics

- Judd and Guu (1993) showed how to apply it to economic problems.
- Recently, perturbation methods have been gaining much popularity.
- In particular, second- and third-order approximations are easy to compute and notably improve accuracy.
- Perturbation theory is the generalization of the well-known linearization strategy.
- Hence, we can use much of what we already know about linearization.


## References

- General:
(1) A First Look at Perturbation Theory by James G. Simmonds and James E. Mann Jr.
(2) Advanced Mathematical Methods for Scientists and Engineers:

Asymptotic Methods and Perturbation Theory by Carl M. Bender, Steven A. Orszag.

- Economics:
(1) Perturbation Methods for General Dynamic Stochastic Models" by Hehui Jin and Kenneth Judd.
(2) Perturbation Methods with Nonlinear Changes of Variables" by Kenneth Judd.
(3) A gentle introduction: "Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function" by Martín Uribe and Stephanie Schmitt-Grohe.


## Asymptotic Expansion

$$
\begin{aligned}
y_{t}= & \left.y\left(s_{t}, \varepsilon_{t} ; \sigma\right)\right|_{k, 0,0}=y(s, 0 ; 0) \\
& +y_{s}(s, 0 ; 0)\left(s_{t}-s\right)+y_{\varepsilon}(s, 0 ; 0) \varepsilon_{t}+y_{\sigma}(s, 0 ; 0) \sigma \\
& +\frac{1}{2} y_{s s}(s, 0 ; 0)\left(s_{t}-s\right)^{2}+\frac{1}{2} y_{s \varepsilon}(s, 0 ; 0)\left(s_{t}-s\right) \varepsilon_{t} \\
& +\frac{1}{2} y_{s \sigma}(s, 0 ; 0)\left(s_{t}-s\right) \sigma+\frac{1}{2} y_{\varepsilon s}(s, 0 ; 0) z_{t}\left(k_{t}-k\right) \\
& +\frac{1}{2} y_{\varepsilon \varepsilon}(s, 0 ; 0) \varepsilon_{t}^{2}+\frac{1}{2} y_{\varepsilon \sigma}(s, 0 ; 0) \varepsilon_{t} \sigma \\
& +\frac{1}{2} y_{\sigma s}(s, 0 ; 0) \sigma\left(k_{t}-k\right)+\frac{1}{2} y_{\sigma \varepsilon}(s, 0 ; 0) \sigma \varepsilon_{t} \\
& +\frac{1}{2} y_{\sigma^{2}}(s, 0 ; 0) \sigma^{2}+\ldots
\end{aligned}
$$

## The General Case

- Most of previous argument can be easily generalized.
- The set of equilibrium conditions of many DSGE models can be written as (note recursive notation)

$$
\mathbb{E}_{t} \mathcal{H}\left(y, y^{\prime}, x, x^{\prime}\right)=0
$$

where $y_{t}$ is a $n_{y} \times 1$ vector of controls and $x_{t}=\left(s_{t}, \varepsilon_{t}\right)$ is a $n_{x} \times 1$ vector of states.

- Define $n=n_{x}+n_{y}$.
- Then $\mathcal{H}$ maps $R^{n_{y}} \times R^{n_{y}} \times R^{n_{x}} \times R^{n_{x}}$ into $R^{n}$.


## Partitioning the State Vector

- The state vector $x_{t}$ can be partitioned as $x=\left[x_{1} ; x_{2}\right]^{t}$.
- $x_{1}=s_{t}$ is a $\left(n_{x}-n_{\epsilon}\right) \times 1$ vector of endogenous state variables.
- $x_{2}=\varepsilon_{t}$ is a $n_{\epsilon} \times 1$ vector of exogenous state variables.
- Why do we want to partition the state vector?


## Exogenous Stochastic Process

$$
x_{2}^{\prime}=\Lambda x_{2}+\sigma \eta_{\epsilon} \epsilon^{\prime}
$$

- Process with 3 parts:
(1) The deterministic component $\Lambda x_{2}$ :
(1) $\Lambda$ is a $n_{\epsilon} \times n_{\epsilon}$ matrix, with all eigenvalues with modulus less than one.
(2) More general: $x_{2}^{\prime}=\Gamma\left(x_{2}\right)+\sigma \eta_{\epsilon} \epsilon^{\prime}$, where $\Gamma$ is a non-linear function satisfying that all eigenvalues of its first derivative evaluated at the non-stochastic steady state lie within the unit circle.
(2) The scaled innovation $\eta_{\epsilon} \epsilon^{\prime}$ where:
(1) $\eta_{\epsilon}$ is a known $n_{\epsilon} \times n_{\epsilon}$ matrix.
(2) $\epsilon$ is a $n_{\epsilon} \times 1$ i.i.d innovation with bounded support, zero mean, and variance/covariance matrix $I$.
(3) The perturbation parameter $\sigma$.
- We can accommodate very general structures of $x_{2}$ through changes in the definition of the state space: i.e. stochastic volatility.
- Note we do not impose gaussianity.


## The Perturbation Parameter

- The scalar $\sigma \geq 0$ is the perturbation parameter.
- If we set $\sigma=0$ we have a deterministic model.
- Important: there is only ONE perturbation parameter. The matrix $\eta_{\epsilon}$ takes account of relative sizes of different shocks.
- Why bounded support? Samuelson (1970) and Jin and Judd (2002).


## Solution of the Model

- The solution to the model is of the form:

$$
\begin{gathered}
y=g(x ; \sigma) \\
x^{\prime}=h(x ; \sigma)+\sigma \eta \epsilon^{\prime}
\end{gathered}
$$

where $g$ maps $R^{n_{x}} \times R^{+}$into $R^{n_{y}}$ and $h$ maps $R^{n_{x}} \times R^{+}$into $R^{n_{x}}$.

- The matrix $\eta$ is of order $n_{x} \times n_{\epsilon}$ and is given by:

$$
\eta=\left[\begin{array}{l}
\varnothing \\
\eta_{\epsilon}
\end{array}\right]
$$

## Perturbation

- We wish to find a perturbation approximation of the functions $g$ and $h$ around the non-stochastic steady state, $x_{t}=\bar{x}$ and $\sigma=0$.
- We define the non-stochastic steady state as vectors $(\bar{x}, \bar{y})$ such that:

$$
\mathcal{H}(\bar{y}, \bar{y}, \bar{x}, \bar{x})=0 .
$$

- Note that $\bar{y}=g(\bar{x} ; 0)$ and $\bar{x}=h(\bar{x} ; 0)$. This is because, if $\sigma=0$, then $\mathbb{E}_{t} \mathcal{H}=\mathcal{H}$.


## Plugging-in the Proposed Solution

- Substituting the proposed solution, we define:

$$
F(x ; \sigma) \equiv \mathbb{E}_{t} \mathcal{H}\left(g(x ; \sigma), g\left(h(x ; \sigma)+\eta \sigma \epsilon^{\prime}, \sigma\right), x, h(x ; \sigma)+\eta \sigma \epsilon^{\prime}\right)=0
$$

- Since $F(x ; \sigma)=0$ for any values of $x$ and $\sigma$, the derivatives of any order of $F$ must also be equal to zero.
- Formally:

$$
F_{x^{k} \sigma^{j}}(x ; \sigma)=0 \quad \forall x, \sigma, j, k
$$

where $F_{x^{k} \sigma^{j}}(x, \sigma)$ denotes the derivative of $F$ with respect to $x$ taken $k$ times and with respect to $\sigma$ taken $j$ times.

## First-Order Approximation

- We are looking for approximations to $g$ and $h$ around $(x, \sigma)=(\bar{x}, 0)$ of the form:

$$
\begin{aligned}
& g(x ; \sigma)=g(\bar{x} ; 0)+g_{x}(\bar{x} ; 0)(x-\bar{x})+g_{\sigma}(\bar{x} ; 0) \sigma \\
& h(x ; \sigma)=h(\bar{x} ; 0)+h_{x}(\bar{x} ; 0)(x-\bar{x})+h_{\sigma}(\bar{x} ; 0) \sigma
\end{aligned}
$$

- As explained earlier,

$$
\begin{aligned}
g(\bar{x} ; 0) & =\bar{y} \\
h(\bar{x} ; 0) & =\bar{x}
\end{aligned}
$$

- The remaining four unknown coefficients of the first-order approximation to $g$ and $h$ are found by using the fact that:

$$
\begin{aligned}
& F_{x}(\bar{x} ; 0)=0 \\
& F_{\sigma}(\bar{x} ; 0)=0
\end{aligned}
$$

- Before doing so, I need to introduce the tensor notation.


## Tensors

- General trick from physics.
- An $n^{\text {th }}$-rank tensor in a m-dimensional space is an operator that has $n$ indices and $m^{n}$ components and obeys certain transformation rules.
- $\left[\mathcal{H}_{y}\right]_{\alpha}^{i}$ is the $(i, \alpha)$ element of the derivative of $\mathcal{H}$ with respect to $y$ :
(1) The derivative of $\mathcal{H}$ with respect to $y$ is an $n \times n_{y}$ matrix.
(2) Thus, $\left[\mathcal{H}_{y}\right]_{\alpha}^{i}$ is the element of this matrix located at the intersection of the $i$-th row and $\alpha$-th column.
(3) Thus, $\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{x}\right]_{j}^{\beta}=\sum_{\alpha=1}^{n_{y}} \sum_{\beta=1}^{n_{x}} \frac{\partial \mathcal{H}^{i}}{\partial y^{\alpha}} \frac{\partial g^{\alpha}}{\partial x^{\beta}} \frac{\partial h^{\beta}}{\partial x^{j}}$.
- $\left[\mathcal{H}_{y^{\prime} y^{\prime}}\right]_{\alpha \gamma}^{i}$ :
(1) $\mathcal{H}_{y^{\prime} y^{\prime}}$ is a three dimensional array with $n$ rows, $n_{y}$ columns, and $n_{y}$ pages.
(2) Then $\left[\mathcal{H}_{y^{\prime} y^{\prime}}\right]_{\alpha \gamma}^{i}$ denotes the element of $\mathcal{H}_{y^{\prime} y^{\prime}}$ located at the intersection of row $i$, column $\alpha$ and page $\gamma$.


## Solving the System I

- $g_{x}$ and $h_{x}$ can be found as the solution to the system:

$$
\begin{aligned}
{\left[F_{x}(\bar{x} ; 0)\right]_{j}^{i} } & =\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{x}\right]_{j}^{\beta}+\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{x}\right]_{j}^{\alpha}+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{x}\right]_{j}^{\beta}+\left[\mathcal{H}_{x}\right]_{j}^{i}=( \\
i & =1, \ldots, n ; \quad j, \beta=1, \ldots, n_{x} ; \quad \alpha=1, \ldots, n_{y}
\end{aligned}
$$

- Note that the derivatives of $\mathcal{H}$ evaluated at $\left(y, y^{\prime}, x, x^{\prime}\right)=(\bar{y}, \bar{y}, \bar{x}, \bar{x})$ are known.
- Then, we have a system of $n \times n_{x}$ quadratic equations in the $n \times n_{x}$ unknowns given by the elements of $g_{x}$ and $h_{x}$.
- We can solve with a standard quadratic matrix equation solver.


## Solving the System II

- $g_{\sigma}$ and $h_{\sigma}$ are the solution to the $n$ equations:

$$
\begin{gathered}
{\left[F_{\sigma}(\bar{x} ; 0)\right]^{i}=} \\
\mathbb{E}_{t}\left\{\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{\sigma}\right]^{\beta}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}[\eta]_{\phi}^{\beta}\left[\epsilon^{\prime}\right]^{\phi}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{\sigma}\right]^{\alpha}\right. \\
\left.+\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{\sigma}\right]^{\alpha}+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{\sigma}\right]^{\beta}+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}[\eta]_{\phi}^{\beta}\left[\epsilon^{\prime}\right]^{\phi}\right\} \\
i=1, \ldots, n ; \quad \alpha=1, \ldots, n_{y} ; \quad \beta=1, \ldots, n_{x} ; \quad \phi=1, \ldots, n_{\epsilon} .
\end{gathered}
$$

- Then:

$$
\begin{gathered}
{\left[F_{\sigma}(\bar{x} ; 0)\right]^{i}} \\
=\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{\sigma}\right]^{\beta}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{\sigma}\right]^{\alpha}+\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{\sigma}\right]^{\alpha}+\left[f_{x^{\prime}}\right]_{\beta}^{i}\left[h_{\sigma}\right]^{\beta}=0 ; \\
i=1, \ldots, n ; \quad \alpha=1, \ldots, n_{y} ; \quad \beta=1, \ldots, n_{x} ; \quad \phi=1, \ldots, n_{\varepsilon} .
\end{gathered}
$$

- Certainty equivalence: linear and homogeneous equation in $g_{\sigma}$ and $h_{\sigma}$. Thus, if a unique solution exists, it satisfies:

$$
h_{\sigma}=\mathbf{0}
$$

## Second-Order Approximation I

The second-order approximations to $g$ around $(x ; \sigma)=(\bar{x} ; 0)$ is

$$
\begin{aligned}
{[g(x ; \sigma)]^{i}=} & {[g(\bar{x} ; 0)]^{i}+\left[g_{x}(\bar{x} ; 0)\right]_{a}^{i}[(x-\bar{x})]_{a}+\left[g_{\sigma}(\bar{x} ; 0)\right]^{i}[\sigma] } \\
& +\frac{1}{2}\left[g_{x x}(\bar{x} ; 0)\right]_{a b}^{i}[(x-\bar{x})]_{a}[(x-\bar{x})]_{b} \\
& +\frac{1}{2}\left[g_{x \sigma}(\bar{x} ; 0)\right]_{a}^{i}[(x-\bar{x})]_{a}[\sigma] \\
& +\frac{1}{2}\left[g_{\sigma x}(\bar{x} ; 0)\right]_{a}^{i}[(x-\bar{x})]_{a}[\sigma] \\
& +\frac{1}{2}\left[g_{\sigma \sigma}(\bar{x} ; 0)\right]^{i}[\sigma][\sigma]
\end{aligned}
$$

where $i=1, \ldots, n_{y}, a, b=1, \ldots, n_{x}$, and $j=1, \ldots, n_{x}$.

## Second-Order Approximation II

The second-order approximations to $h$ around $(x ; \sigma)=(\bar{x} ; 0)$ is

$$
\begin{aligned}
{[h(x ; \sigma)]^{j}=} & {[h(\bar{x} ; 0)]^{j}+\left[h_{x}(\bar{x} ; 0)\right]_{a}^{j}[(x-\bar{x})]_{a}+\left[h_{\sigma}(\bar{x} ; 0)\right]^{j}[\sigma] } \\
& +\frac{1}{2}\left[h_{x x}(\bar{x} ; 0)\right]_{a b}^{j}[(x-\bar{x})]_{a}[(x-\bar{x})]_{b} \\
& +\frac{1}{2}\left[h_{x \sigma}(\bar{x} ; 0)\right]_{a}^{j}[(x-\bar{x})]_{a}[\sigma] \\
& +\frac{1}{2}\left[h_{\sigma x}(\bar{x} ; 0)\right]_{a}^{j}[(x-\bar{x})]_{a}[\sigma] \\
& +\frac{1}{2}\left[h_{\sigma \sigma}(\bar{x} ; 0)\right]^{j}[\sigma][\sigma],
\end{aligned}
$$

where $i=1, \ldots, n_{y}, a, b=1, \ldots, n_{x}$, and $j=1, \ldots, n_{x}$.

## Second-order Approximation III

- The unknowns of these expansions are $\left[g_{x x}\right]_{a b}^{i},\left[g_{x \sigma}\right]_{a}^{i},\left[g_{\sigma x}\right]_{a}^{i},\left[g_{\sigma \sigma}\right]^{i}$, $\left[h_{x x}\right]_{a b}^{j},\left[h_{x \sigma}\right]_{a}^{j},\left[h_{\sigma x}\right]_{a}^{j},\left[h_{\sigma \sigma}\right]^{j}$.
- These coefficients can be identified by taking the derivative of $F(x ; \sigma)$ with respect to $x$ and $\sigma$ twice and evaluating them at $(x ; \sigma)=(\bar{x} ; 0)$.
- By the arguments provided earlier, these derivatives must be zero.

Solving the System I
We use $F_{x x}(\bar{x} ; 0)$ to identify $g_{x x}(\bar{x} ; 0)$ and $h_{x x}(\bar{x} ; 0)$ :

$$
\begin{gathered}
{\left[F_{x x}(\bar{x} ; 0)\right]_{j k}^{i}=} \\
\left.\left[\mathcal{H}_{y^{\prime} y^{\prime}}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{y^{\prime} y}\right]_{\alpha \gamma}^{j}\left[g_{x}\right]_{k}^{\gamma}+\left[\mathcal{H}_{y^{\prime} x^{\prime}}\right]_{\alpha \delta}^{i}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{y^{\prime} x}\right]_{\alpha k}^{j}\right)\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{x}\right]_{j}^{\beta} \\
+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x x}\right]_{\beta \delta}^{\alpha}\left[h_{x}\right]_{k}^{\delta}\left[h_{x}\right]_{j}^{\beta}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{x x}\right]_{j k}^{\beta} \\
\left.+\left(\left[\mathcal{H}_{y y^{\prime}}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{y y}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{k}^{\gamma}+\left[\mathcal{H}_{y x^{\prime}}\right]_{\alpha \delta}^{i} l_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{y x}\right]_{\alpha k}^{i}\right)\left[g_{x}\right]_{j}^{\alpha} \\
+\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{x x}\right]_{j k}^{\alpha} \\
+\left(\left[\mathcal{H}_{x^{\prime} y^{\prime}}\right]_{\beta \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{x^{\prime} y}\right]_{\beta \gamma}^{i}\left[g_{x}\right]_{k}^{\gamma}+\left[\mathcal{H}_{x^{\prime} x^{\prime}}\right]{ }_{\beta \delta \delta}^{i}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{x^{\prime} x}\right]_{\beta k}^{i}\right)\left[h_{x}\right]_{j}^{\beta} \\
+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{x x}\right]_{j k}^{\beta} \\
\left.+\left[\mathcal{H}_{x \prime^{\prime}}\right]_{j \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{x y}\right]_{j \gamma}^{i}\left[g_{x}\right]_{k}^{\gamma}+\left[\mathcal{H}_{x x^{\prime}}\right]\right]_{j \delta}^{j}\left[h_{x}\right]_{k}^{\delta}+\left[\mathcal{H}_{x x}\right]_{j k}^{j}=0 ; \\
i=1, \ldots n, \quad j, k, \beta, \delta=1, \ldots n_{x} ; \quad \alpha, \gamma=1, \ldots n_{y} .
\end{gathered}
$$

## Solving the System II

- We know the derivatives of $\mathcal{H}$.
- We also know the first derivatives of $g$ and $h$ evaluated at $\left(y, y^{\prime}, x, x^{\prime}\right)=(\bar{y}, \bar{y}, \bar{x}, \bar{x})$.
- Hence, the above expression represents a system of $n \times n_{x} \times n_{x}$ linear equations in then $n \times n_{x} \times n_{x}$ unknowns elements of $g_{x x}$ and $h_{x x}$.


## Solving the System III

Similarly, $g_{\sigma \sigma}$ and $h_{\sigma \sigma}$ can be obtained by solving:

$$
\begin{aligned}
{\left[F_{\sigma \sigma}(\bar{x} ; 0)\right]^{i}=} & {\left[\mathcal{H} y^{\prime}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{\sigma \sigma}\right]^{\beta} } \\
& +\left[\mathcal{H}_{y^{\prime} y^{\prime}}\right]_{\alpha \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}[\eta]_{\xi}^{\delta}\left[g_{x}\right]_{\beta}^{\alpha}[\eta]_{\phi}^{\beta}[I]_{\xi}^{\phi} \\
& +\left[\mathcal{H}_{y^{\prime} x^{\prime}}\right]_{\alpha \delta}^{i}[\eta]_{\xi}^{\delta}\left[g_{x}\right]_{\beta}^{\alpha}[\eta]_{\phi}^{\beta}[l]_{\xi}^{\phi} \\
& +\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x x}\right]_{\beta \delta}^{\alpha}[\eta]_{\xi}^{\delta}[\eta]_{\phi}^{\beta}[l]_{\xi}^{\phi}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{\sigma \sigma}\right]^{\alpha} \\
& +\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{\sigma \sigma}\right]^{\alpha}+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{\sigma \sigma}\right]^{\beta} \\
& +\left[\mathcal{H}_{x^{\prime} y^{\prime}}\right]_{\beta \gamma}^{i}\left[g_{x}\right]_{\delta}^{\gamma}[\eta]_{\xi}^{\delta}[\eta]_{\phi}^{\beta}[l]_{\xi}^{\phi} \\
& +\left[\mathcal{H}_{x^{\prime} x^{\prime}}\right]_{\beta \delta}^{i}[\eta]_{\xi}^{\delta}[\eta]_{\phi}^{\beta}[l]_{\xi}^{\phi}=0 ; \\
i= & 1, \ldots, n ; \alpha, \gamma=1, \ldots, n_{y} ; \beta, \delta=1, \ldots, n_{x} ; \phi, \xi=1, \ldots, n_{\epsilon}
\end{aligned}
$$

a system of $n$ linear equations in the $n$ unknowns given by the elements of $g_{\sigma \sigma}$ and $h_{\sigma \sigma}$.

## Cross Derivatives

- The cross derivatives $g_{x \sigma}$ and $h_{x \sigma}$ are zero when evaluated at $(\bar{x}, 0)$.
- Why? Write the system $F_{\sigma x}(\bar{x} ; 0)=0$ taking into account that all terms containing either $g_{\sigma}$ or $h_{\sigma}$ are zero at ( $\left.\bar{x}, 0\right)$.
- Then:

$$
\begin{gathered}
{\left[F_{\sigma x}(\bar{x} ; 0)\right]_{j}^{i}=\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{x}\right]_{\beta}^{\alpha}\left[h_{\sigma x}\right]_{j}^{\beta}+\left[\mathcal{H}_{y^{\prime}}\right]_{\alpha}^{i}\left[g_{\sigma x}\right]_{\gamma}^{\alpha}\left[h_{x}\right]_{j}^{\gamma}+} \\
{\left[\mathcal{H}_{y}\right]_{\alpha}^{i}\left[g_{\sigma x}\right]_{j}^{\alpha}+\left[\mathcal{H}_{x^{\prime}}\right]_{\beta}^{i}\left[h_{\sigma x}\right]_{j}^{\beta}=0 ;} \\
i=1, \ldots n ; \quad \alpha=1, \ldots, n_{y} ; \quad \beta, \gamma, j=1, \ldots, n_{x}
\end{gathered}
$$

- This is a system of $n \times n_{x}$ equations in the $n \times n_{x}$ unknowns given by the elements of $g_{\sigma x}$ and $h_{\sigma x}$.
- The system is homogeneous in the unknowns.
- Thus, if a unique solution exists, it is given by:

$$
\begin{aligned}
& g_{\sigma x}=0 \\
& h_{\sigma x}=0
\end{aligned}
$$

## Structure of the Solution

- The perturbation solution of the model satisfies:

$$
\begin{aligned}
g_{\sigma}(\bar{x} ; 0) & =0 \\
h_{\sigma}(\bar{x} ; 0) & =0 \\
g_{x \sigma}(\bar{x} ; 0) & =0 \\
h_{x \sigma}(\bar{x} ; 0) & =0
\end{aligned}
$$

- Standard deviation only appears in:
(1) A constant term given by $\frac{1}{2} g_{\sigma \sigma} \sigma^{2}$ for the control vector $y_{t}$.
(2) The first $n_{X}-n_{\epsilon}$ elements of $\frac{1}{2} h_{\sigma \sigma} \sigma^{2}$.
- Correction for risk.
- Quadratic terms in endogenous state vector $x_{1}$.
- Those terms capture non-linear behavior.


## Higher-Order Approximations

- We can iterate this procedure as many times as we want.
- We can obtain $n$-th order approximations.
- Problems:
(1) Existence of higher order derivatives (Santos, 1992).
(2) Numerical instabilities.
(3) Computational costs.

