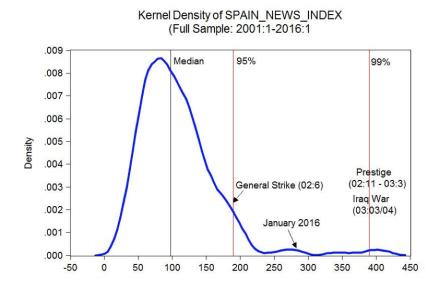
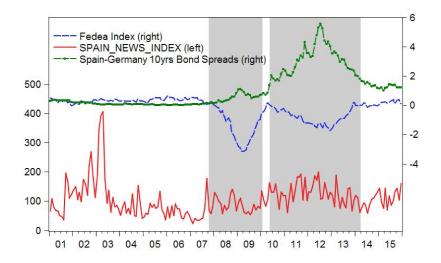
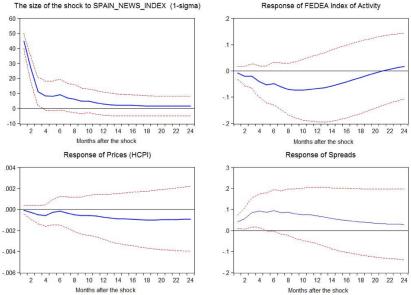
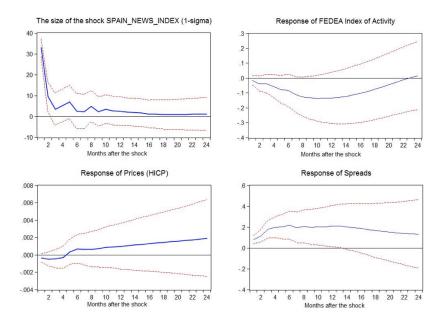
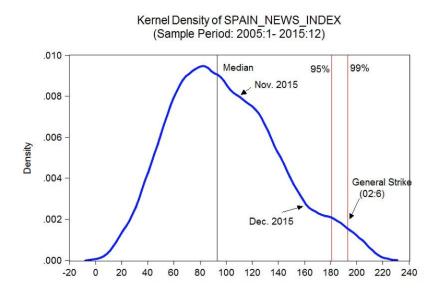

Empirical Evidence

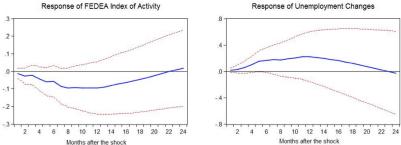

Jesús Fernández-Villaverde


University of Pennsylvania

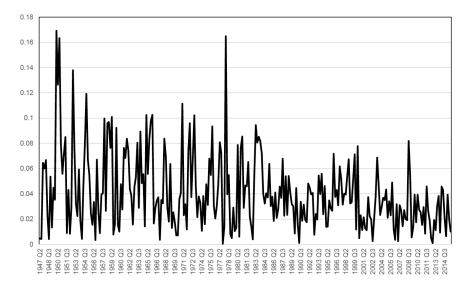

March 7, 2016


Jesús Fernández-Villaverde (PENN)





Response of Unemployment Changes

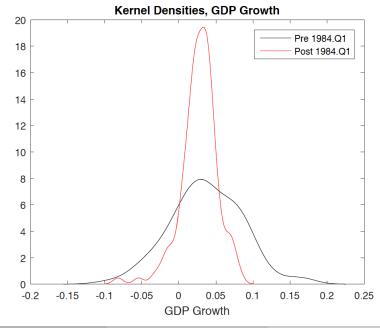

A long tradition...

- Applied macroeconomic is concerned with the effects of shocks on certain key variables.
- Shocks have been characterized by temporary changes in the conditional mean of stochastic processes feeding our models.
 - The RBC program analyzes the consequences of temporary changes in the conditional mean of productivity (Kydland and Prescott, 1982).
 - ② Monetary models are focused on the effects of temporary changes in the conditional mean of innovations to the nominal interest rates (Woodford, 2003, or Christiano, Eichenbaum, and Evans, 2005).
 - International devotes time to understand temporary changes in the conditional mean of the real interest rate (Mendoza, 1991 or Neumeyer and Perri, 2005) or the terms of trade (Mendoza, 1995).

...and a continuation

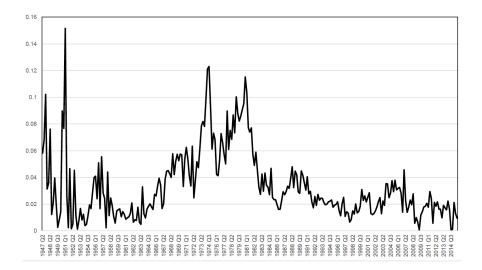
- More recently, applied macroeconomists have started moving their attention towards situations where shocks are characterized by temporary changes in the conditional second moments of the stochastic processes.
- In particular, time-varying standard deviations.
- A first motivation for this move comes from the realization that time series have a strong time-varying variance component.
- Perhaps the most famous of those episodes was "the great moderation" of aggregate fluctuations that the U.S. economy.


GDP growth

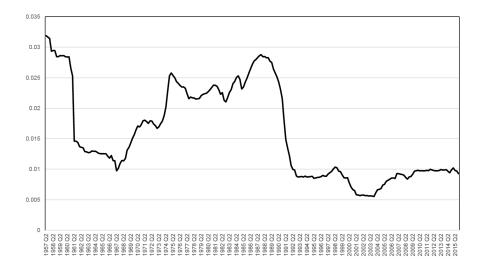

Jesús Fernández-Villaverde (PENN)

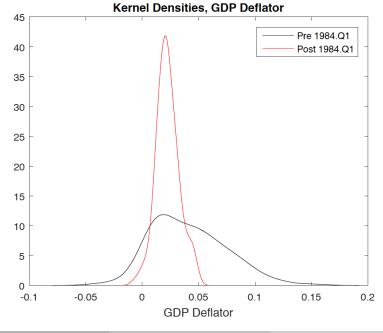
Empirical Evidence

GDP volatility

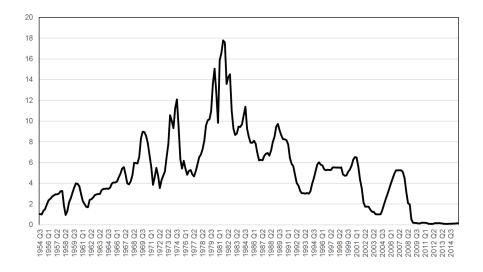


Jesús Fernández-Villaverde (PENN)

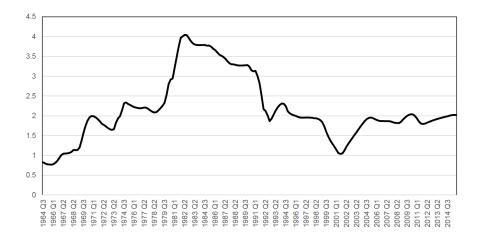


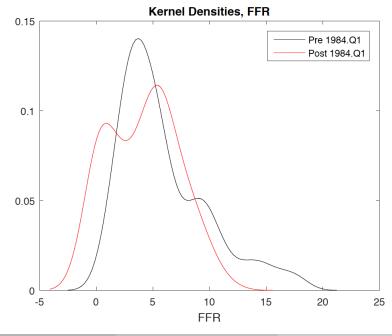

Jesús Fernández-Villaverde (PENN)

GDP deflator



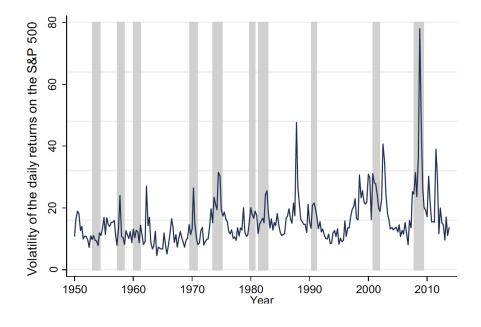
GDP deflator volatility



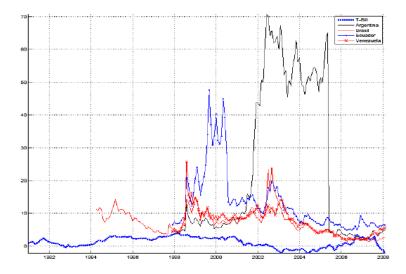


FFR

FFR volatility


Jesús Fernández-Villaverde (PENN)

Changes in Volatility of U.S. Aggregate Variables


	Means		
	Inflation	Output	FFR
		Growth	
All sample	3.2427	3.2375	5.0157
Pre 1984.Q1	4.1082	3.6742	5.9683
After 1984.Q1	2.2488	2.7359	4.1449
Post-1984.Q1/pre-1984.Q1	0.5474	0.7446	0.6945

Changes in Volatility of U.S. Aggregate Variables

	Standard Deviations		
	Inflation	Output	FFR
	Inflation	Growth	
All sample	2.6360	3.9327	3.5662
Pre 1984.Q1	3.2440	4.8338	3.8809
After 1984.Q1	1.016	2.4561	3.0128
Post-1984.Q1/pre-1984.Q1	0.3130	0.5081	0.7763

Interest rates

Stochastic volatility I

Stochastic volatility:

$$x_t = \rho x_{t-1} + \sigma_t \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1).$$

and

$$\log \sigma_t = (1 - \rho_\sigma) \log \sigma + \rho_\sigma \log \sigma_{t-1} + \left(1 - \rho_\sigma^2\right)^{\frac{1}{2}} \eta u_t, \ u_t \sim \mathcal{N}(0, 1).$$

- This can be a process for many observable *x_t*: productivity, taxes, asset returns.
- Level innovations vs. volatility innovations.
- Interpretation.
- Non-linear structure.
- Discrete time process. Alternative with diffusion processes in continuous time.

Jesús Fernández-Villaverde (PENN)

Stochastic volatility II

- Richer specifications:
 - 1 More lags and moving average components.
 - Additional regressors.
 - ③ VAR(MA)-SV.
 - ④ Non-Gaussian innovations.
 - 5 Correlation among innovations.
 - 6 Threshold effects.
 - Ø Asymmetries.

Other specifications I

• Markov-regime switching models:

$$\sigma_t \in [\sigma_1, ..., \sigma_n]$$

with transition matrix

$$P_{ij} = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & & \vdots \\ p_{n1} & \dots & p_{nn} \end{bmatrix}$$

• Advantages and disadvantages (econometric and theoretical).

Mixed-models.

Other specifications II

• GARCH(p,q):

$$x_t =
ho x_{t-1} + a_t$$

where

$$\mathbf{a}_t = \sigma_t \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$$

and

$$\sigma_t = \sqrt{\omega + \sum_{i=1}^p \alpha_i a_{t-i}^2 + \sum_{i=1}^q \beta_i \sigma_{t-i}^2}$$

- Advantages and disadvantages (econometric and theoretical).
- Dozens of possible variations.

A real life example

Decomposition of interest rates:

• $\varepsilon_{tb,t}$ and $\varepsilon_{r,t}$ follow:

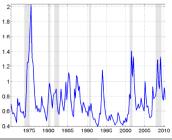
$$\varepsilon_{tb,t} = \rho_{tb}\varepsilon_{tb,t-1} + e^{\sigma_{tb,t}}u_{tb,t}, \ u_{tb,t} \sim \mathcal{N}(0,1)$$
$$\varepsilon_{r,t} = \rho_{r}\varepsilon_{r,t-1} + e^{\sigma_{r,t}}u_{r,t}, \ u_{r,t} \sim \mathcal{N}(0,1)$$

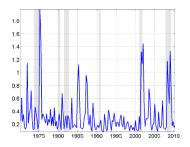
• $\sigma_{tb,t}$ and $\sigma_{r,t}$ follow:

$$\sigma_{tb,t} = \left(1 - \rho_{\sigma_{tb}}\right)\sigma_{tb} + \rho_{\sigma_{tb}}\sigma_{tb,t-1} + \eta_{tb}u_{\sigma_{tb},t}, \ u_{\sigma_{tb},t} \sim \mathcal{N}\left(0,1\right)$$

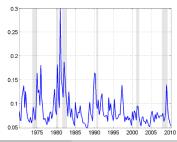
$$\sigma_{r,t} = \left(1 - \rho_{\sigma_{r}}\right)\sigma_{r} + \rho_{\sigma_{r}}\sigma_{r,t-1} + \eta_{r}u_{\sigma_{r},t}, \ u_{\sigma_{r},t} \sim \mathcal{N}\left(0,1\right)$$

An alternative motivation

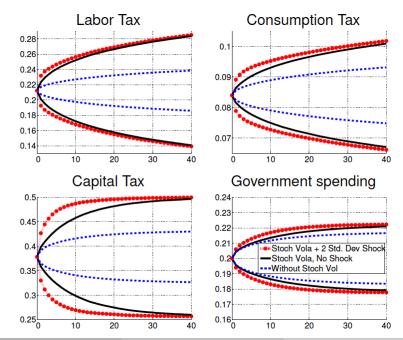

- A second motivation for this move is that temporary changes in the conditional standard deviation of shocks can capture the spreading out of distributions of events in the future.
- For example, an increase in the variance of future paths of fiscal policy can be captured by a temporary increase in the standard deviation of the innovations to some fiscal policy rules.
- Similarly, the higher volatility of sovereign debt markets as the one currently observed can be included in our models as a temporary increase in the standard deviation in the innovations to a country-specific spread.


Government spending

Labor Tax

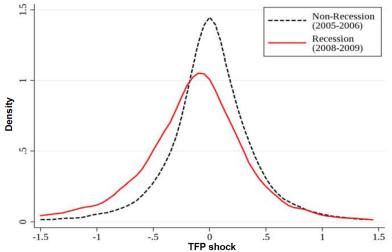


Capital Tax


Consumption Tax

Jesús Fernández-Villaverde (PENN)

Empirical Evidence


March 7, 2016 30 / 52

Jesús Fernández-Villaverde (PENN)

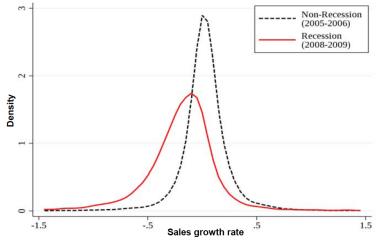

March 7, 2016 31 / 52

Figure 1: The variance of establishment-level TFP shocks increased by 76% in the Great Recession

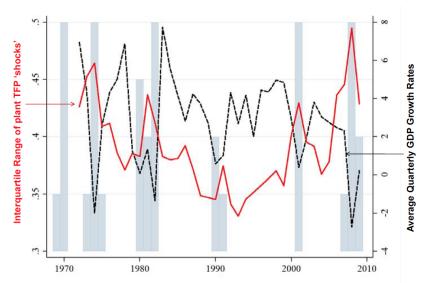
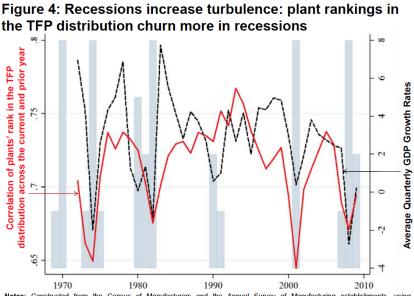
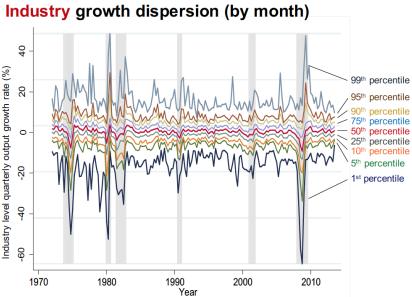
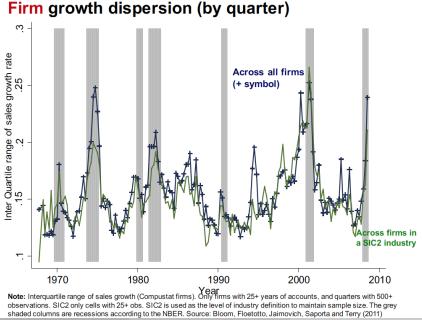

Notes: Constructed from the Census of Manufactures and the Annual Survey of Manufactures using a balanced panel of 15,752 establishments active in 2005-06 and 2008-09. Moments of the distribution for non-recession (recession) years are: mean 0 (-0.166), variance 0.198 (0.349), coefficient of skewness -1.060 (-1.340) and kurtosis 15.01 (11.96). The year 2007 is omitted because according to the NBER the recession began in December 2007, so 2007 is not a clean "before" or "during" recession year.

Figure 2: The variance of establishment-level sales growth rates increased by 152% in the Great Recession



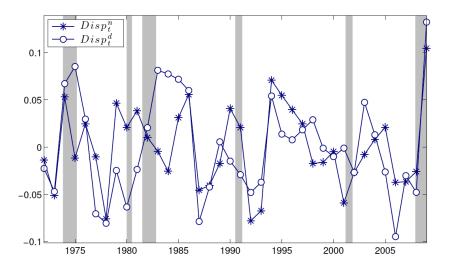
Notes: Constructed from the Census of Manufactures and the Annual Survey of Manufactures using a balanced panel of 15,752 establishments active in 2005-06 and 2008-09. Moments of the distribution for non-recession (recession) years are: mean 0.026 (-0.191), variance 0.052 (0.131), coefficient of skewness 0.164 (-0.330) and kurtosis 13.07 (7.66). The year 2007 is omitted because according to the NBER the recession began in December 2007, so 2007 is not a clean "before" or "during" recession year.


Figure 3: TFP 'shocks' are more dispersed in recessions

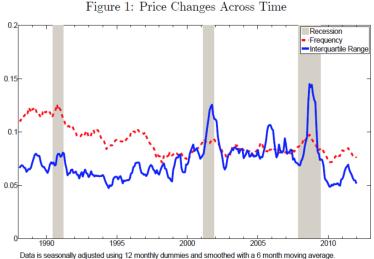

Notes: Constructed from the Census of Manufactures and the Annual Survey of Manufactures establishments, using establishments with 25+ years to address sample selection. Grey shaded columns are share of quarters in recession within a year.

Notes: Constructed from the Census of Manufacturers and the Annual Survey of Manufacturing establishments, using establishments with 25+ years to address sample selection. Grey shaded columns are share of quarters in recession within a year. Plants' rank in the TFP distribution is their decile within the industry and year TFP ranking.

Note: 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th percentiles of 3-month growth rates of industrial production within each quarter. All 196 manufacturing NAICS sectors in the Federal Reserve Board database. Source: Bloom, Floetotto and Jaimovich (2009)



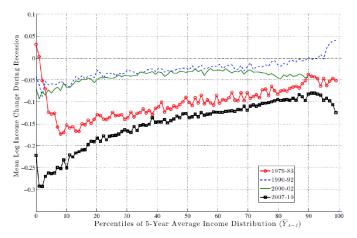
Jesús Fernández-Villaverde (PENN)


Empirical Evidence

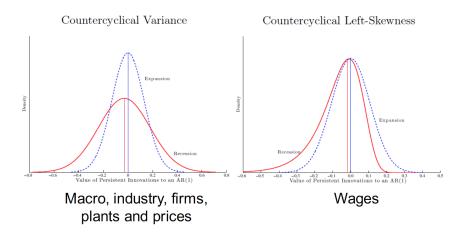
March 7, 2016 37 / 52

Figure 1: Dispersion in productivity levels

Product level price dispersion (by quarter)

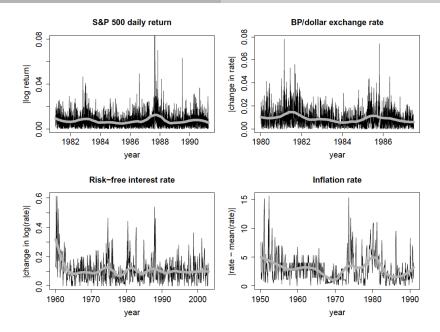

Frequency is the Median Frequency of Adjustment.

Source: Joe Vavra (2014, QJE) "Inflation dynamics and time varying volatility"


Jesús Fernández-Villaverde (PENN)

Empirical Evidence

But SSA data on several million individuals shows rising 3rd moment but flat 2nd moment in recessions


Guvenen, Ozkan & Song, "The nature of countercyclical income risk" (2014, JPE) Notes: Uses about 5m obs per year from the US Social Security Administration earnings data

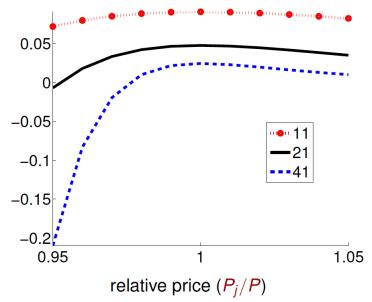
Literature I

- In one form or another, economists have talked for a long time about time-varying volatility.
- A breakthrough came with Engle's (1982) paper on autoregressive conditional heteroscedasticity, or ARCH.
- Engle postulated that the evolution of variance over time of time series x_t was an autoregressive process that is hit by the square of the (scaled) innovation on the level of x_t .
- The application in Engle's original paper was the estimation of an ARCH process for British inflation.
- Early indication that this was a central issue in macroeconomics.
- But it was not in macro where ARCH models came to reign: the true boom was in finance.

Jesús Fernández-Villaverde (PENN)

Literature II

- The situation changed after Kim and Nelson (1998), McConnell and Pérez-Quirós (2000), and Blanchard and Simon (2001).
- Documented that the volatility of U.S. aggregate fluctuations had changed over time. Stock and Watson (2002) named this phenomenon "the great moderation."
- Sims and Zha (2006) estimated a structural vector autoregression (SVAR) with Markov-regime switching both in the autoregressive coefficients and in the variances of the disturbances.
- They concluded that models with shocks that have time-varying volatilities are a key in applied macroeconomics.


Literature III

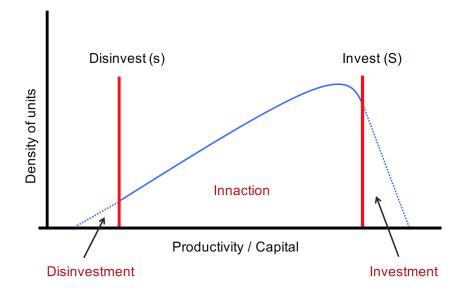
- Big boom, however, is after Bloom (2009).
- Many papers after it (including mine!).
- We will discuss some of them as we go along.
- There are:
 - 1 Methodological issues (solution, estimation).
 - Data.
 - 3 Conceptual: endogenous vs. exogenous uncertainty, beliefs vs. DGP.
 - ④ Economic intuition.

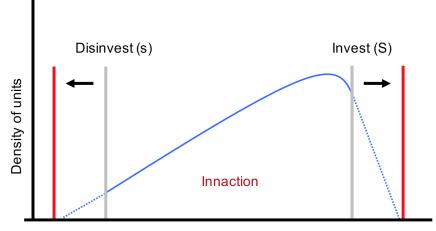
Mechanisms behind uncertainty shocks

- Utility function.
- Price decisions.
- ③ Oi-Hartman-Abel effect.
- ④ Option value effect.
- Ss-rules.
- In Non-conventional preferences, Gilboa and Schmeidler (1989).

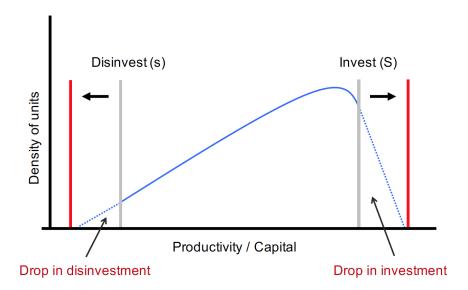
Period profits

Oi-Hartman-Abel effect


- Oi (1961), Hartman (1972) and Abel (1983).
- A higher variance of productivity increases investment, hiring, and output because the optimal capital and labor choices are convex in productivity.
- Example:


$$y = Ak^{\alpha}I^{\beta}$$

where $\alpha + \beta < 1$.


Then:

$$k^* = \mu_1 A^{\frac{1}{1-\alpha-\beta}}$$
$$l^* = \mu_2 A^{\frac{1}{1-\alpha-\beta}}$$

Productivity / Capital

Ambiguity aversion

- Agents do not know dispersion of shocks.
- Problem:

$$V(k, z) = \max_{c,l,k'} \left[u(c_t, l_t) + \beta \min_{\lambda \in [\underline{\sigma_t}, \overline{\sigma_t}]} \mathbb{E}_{k.z} V(k', z') \right]$$

s.t. $c + k' = e^z k^{\alpha} l^{1-\alpha} + (1-\delta)k$
 $z' = \lambda z + \sigma_t \varepsilon'$

Intuition.