State Space Models and Filtering

Jesús Fernández-Villaverde University of Pennsylvania State Space Form

- What is a state space representation?
- States versus observables.
- Why is it useful?
- Relation with filtering.
- Relation with optimal control.
- Linear versus nonlinear, Gaussian versus nongaussian.

State Space Representation

• Let the following system:

- Transition equation

$$x_{t+1} = Fx_t + G\omega_{t+1}, \ \omega_{t+1} \sim \mathcal{N}(\mathbf{0}, Q)$$

- Measurement equation

$$z_t = H' x_t + v_t, \ v_t \sim \mathcal{N}(\mathbf{0}, R)$$

- where x_t are the states and z_t are the observables.

• Assume we want to write the likelihood function of $z^T = \{z_t\}_{t=1}^T$.

The State Space Representation is Not Unique

- Take the previous state space representation.
- Let B be a non-singular squared matrix conforming with F.
- Then, if $x_t^* = Bx_t$, $F^* = BFB^{-1}$, $G^* = BG$, and $H^* = (H'B)'$, we can write a new, equivalent, representation:

– Transition equation

$$x_{t+1}^* = F^* x_t^* + G^* \omega_{t+1}, \ \omega_{t+1} \sim \mathcal{N}(0, Q)$$

- Measurement equation

$$z_t = H^{*'} x_t^* + v_t, \ v_t \sim \mathcal{N}(0, R)$$

Example I

• Assume the following AR(2) process:

$$z_t = \rho_1 z_{t-1} + \rho_2 z_{t-2} + \upsilon_t, \ \upsilon_t \sim \mathcal{N}\left(\mathbf{0}, \sigma_{\upsilon}^2\right)$$

- Model is not apparently not Markovian.
- Can we write this model in different state space forms?
- Yes!

State Space Representation I

• Transition equation:

$$x_t = \begin{bmatrix} \rho_1 & 1\\ \rho_2 & 0 \end{bmatrix} x_{t-1} + \begin{bmatrix} 1\\ 0 \end{bmatrix} v_t$$
 where $x_t = \begin{bmatrix} y_t & \rho_2 y_{t-1} \end{bmatrix}'$

• Measurement equation:

$$z_t = \left[egin{array}{cc} 1 & 0 \end{array}
ight] x_t$$

State Space Representation II

• Transition equation:

$$x_t = \left[\begin{array}{cc} \rho_1 & \rho_2 \\ 1 & 0 \end{array} \right] x_{t-1} + \left[\begin{array}{cc} 1 \\ 0 \end{array} \right] \upsilon_t$$
 where $x_t = \left[\begin{array}{cc} y_t & y_{t-1} \end{array} \right]'$

• Measurement equation:

$$z_t = \left[egin{array}{cc} 1 & 0 \end{array}
ight] x_t$$

• Try $B = \begin{bmatrix} 1 & 0 \\ 0 & \rho_2 \end{bmatrix}$ on the second system to get the first system.

Example II

• Assume the following MA(1) process:

$$z_t = v_t + \theta v_{t-1}, \ v_t \sim \mathcal{N}\left(0, \sigma_v^2\right)$$
, and $Ev_t v_s = 0$ for $s \neq t$.

- Again, we have a more complicated structure than a simple Markovian process.
- However, it will again be straightforward to write a state space representation.

State Space Representation I

• Transition equation:

$$x_t = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] x_{t-1} + \left[\begin{array}{c} 1 \\ \theta \end{array} \right] \upsilon_t$$

where $x_t = \left[egin{array}{cc} y_t & heta archi_t \end{array}
ight]'$

• Measurement equation:

$$z_t = \left[egin{array}{cc} 1 & 0 \end{array}
ight] x_t$$

State Space Representation II

• Transition equation:

$$x_t = v_{t-1}$$

- where $x_t = [v_{t-1}]'$
- Measurement equation:

$$z_t = \theta x_t + \upsilon_t$$

• Again both representations are equivalent!

Example III

• Assume the following random walk plus drift process:

$$z_t = z_{t-1} + \beta + v_t, \ v_t \sim \mathcal{N}\left(0, \sigma_v^2\right)$$

- This is even more interesting.
- We have a unit root.
- We have a constant parameter (the drift).

State Space Representation

• Transition equation:

$$x_t = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_{t-1} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} v_t$$

where $x_t = \begin{bmatrix} y_t & \beta \end{bmatrix}'$

• Measurement equation:

$$z_t = \left[egin{array}{cc} 1 & 0 \end{array}
ight] x_t$$

Some Conditions on the State Space Representation

- We only consider Stable Systems.
- A system is stable if for any initial state x_0 , the vector of states, x_t , converges to some unique x^* .
- A necessary and sufficient condition for the system to be stable is that:

$$\left|\lambda_{i}\left(F
ight)
ight|<1$$

for all *i*, where $\lambda_i(F)$ stands for eigenvalue of *F*.

Introducing the Kalman Filter

- Developed by Kalman and Bucy.
- Wide application in science.
- Basic idea.
- Prediction, smoothing, and control.
- Why the name "filter"?

Some Definitions

- Let $x_{t|t-1} = E(x_t|z^{t-1})$ be the best linear predictor of x_t given the history of observables until t-1, i.e. z^{t-1} .
- Let $z_{t|t-1} = E(z_t|z^{t-1}) = H'x_{t|t-1}$ be the best linear predictor of z_t given the history of observables until t-1, i.e. z^{t-1} .
- Let $x_{t|t} = E(x_t|z^t)$ be the best linear predictor of x_t given the history of observables until t, i.e. z^t .

What is the Kalman Filter trying to do?

- Let assume we have $x_{t|t-1}$ and $z_{t|t-1}$.
- We observe a new z_t .
- We need to obtain $x_{t|t}$.
- Note that $x_{t+1|t} = Fx_{t|t}$ and $z_{t+1|t} = H'x_{t+1|t}$, so we can go back to the first step and wait for z_{t+1} .
- Therefore, the key question is how to obtain $x_{t|t}$ from $x_{t|t-1}$ and z_t .

A Minimization Approach to the Kalman Filter I

• Assume we use the following equation to get $x_{t|t}$ from z_t and $x_{t|t-1}$:

$$x_{t|t} = x_{t|t-1} + K_t \left(z_t - z_{t|t-1} \right) = x_{t|t-1} + K_t \left(z_t - H' x_{t|t-1} \right)$$

- This formula will have some probabilistic justification (to follow).
- What is K_t ?

A Minimization Approach to the Kalman Filter II

- K_t is called the Kalman filter gain and it measures how much we update $x_{t|t-1}$ as a function in our error in predicting z_t .
- The question is how to find the optimal K_t .
- The Kalman filter is about how to build K_t such that optimally update $x_{t|t}$ from $x_{t|t-1}$ and z_t .
- How do we find the optimal K_t ?

Some Additional Definitions

- Let $\Sigma_{t|t-1} \equiv E\left(\left(x_t x_{t|t-1}\right)\left(x_t x_{t|t-1}\right)'|z^{t-1}\right)$ be the predicting error variance covariance matrix of x_t given the history of observables until t-1, i.e. z^{t-1} .
- Let $\Omega_{t|t-1} \equiv E\left(\left(z_t z_{t|t-1}\right)\left(z_t z_{t|t-1}\right)'|z^{t-1}\right)$ be the predicting error variance covariance matrix of z_t given the history of observables until t-1, i.e. z^{t-1} .
- Let $\Sigma_{t|t} \equiv E\left(\left(x_t x_{t|t}\right)\left(x_t x_{t|t}\right)'|z^t\right)$ be the predicting error variance covariance matrix of x_t given the history of observables until t-1, i.e. z^t .

Finding the optimal K_t

- We want K_t such that min $\Sigma_{t|t}$.
- It can be shown that, if that is the case:

$$K_t = \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1}$$

• with the optimal update of $x_{t|t}$ given z_t and $x_{t|t-1}$ being:

$$x_{t|t} = x_{t|t-1} + K_t \left(z_t - H' x_{t|t-1} \right)$$

• We will provide some intuition later.

Example I

Assume the following model in State Space form:

• Transition equation

$$x_t = \mu + \upsilon_t, \ \upsilon_t \sim N\left(\mathbf{0}, \sigma_v^2\right)$$

• Measurement equation

$$z_t = x_t + \xi_t$$
, $\xi_t \sim N\left(\mathbf{0}, \sigma_{\xi}^2\right)$

• Let
$$\sigma_{\xi}^2 = q \sigma_{\upsilon}^2$$
.

Example II

- Then, if $\Sigma_{1|0} = \sigma_v^2$, what it means that x_1 was drawn from the ergodic distribution of x_t .
- We have:

$$K_1 = \sigma_v^2 rac{1}{1+q} \propto rac{1}{1+q}.$$

• Therefore, the bigger σ_{ξ}^2 relative to σ_{ψ}^2 (the bigger q) the lower K_1 and the less we trust z_1 .

The Kalman Filter Algorithm I

Given $\Sigma_{t|t-1}$, z_t , and $x_{t|t-1}$, we can now set the Kalman filter algorithm.

Let $\Sigma_{t|t-1}$, then we compute:

$$\begin{split} \Omega_{t|t-1} &\equiv E\left(\left(z_{t}-z_{t|t-1}\right)\left(z_{t}-z_{t|t-1}\right)'|z^{t-1}\right) \\ &= E\left(\begin{array}{c} H'\left(x_{t}-x_{t|t-1}\right)\left(x_{t}-x_{t|t-1}\right)'H+\\ \upsilon_{t}\left(x_{t}-x_{t|t-1}\right)'H+H'\left(x_{t}-x_{t|t-1}\right)\upsilon'_{t}+\\ \upsilon_{t}\upsilon'_{t}|z^{t-1} \end{array}\right) \\ &= H'\Sigma_{t|t-1}H+R \end{split}$$

The Kalman Filter Algorithm II

Let $\Sigma_{t|t-1}$, then we compute:

$$E\left(\left(z_{t}-z_{t|t-1}\right)\left(x_{t}-x_{t|t-1}\right)'|z^{t-1}\right) = \\ E\left(H'\left(x_{t}-x_{t|t-1}\right)\left(x_{t}-x_{t|t-1}\right)'+\upsilon_{t}\left(x_{t}-x_{t|t-1}\right)'|z^{t-1}\right) = H'\Sigma_{t|t-1}$$

Let $\Sigma_{t|t-1}$, then we compute:

$$K_t = \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1}$$

Let $\Sigma_{t|t-1}$, $x_{t|t-1}$, K_t , and z_t then we compute:

$$x_{t|t} = x_{t|t-1} + K_t \left(z_t - H' x_{t|t-1} \right)$$

The Kalman Filter Algorithm III

Let $\Sigma_{t|t-1}$, $x_{t|t-1}$, K_t , and z_t , then we compute:

$$\begin{split} \boldsymbol{\Sigma}_{t|t} &\equiv E\left(\left(x_{t} - x_{t|t}\right)\left(x_{t} - x_{t|t}\right)'|z^{t}\right) = \\ \left(\begin{array}{c} \left(x_{t} - x_{t|t-1}\right)\left(x_{t} - x_{t|t-1}\right)' - \\ \left(x_{t} - x_{t|t-1}\right)\left(z_{t} - H'x_{t|t-1}\right)'K'_{t} - \\ K_{t}\left(z_{t} - H'x_{t|t-1}\right)\left(x_{t} - x_{t|t-1}\right)' + \\ K_{t}\left(z_{t} - H'x_{t|t-1}\right)\left(z_{t} - H'x_{t|t-1}\right)'K'_{t}|z^{t} \end{split}\right) = \boldsymbol{\Sigma}_{t|t-1} - K_{t}H'\boldsymbol{\Sigma}_{t|t-1} \end{split}$$

where, you have to notice that $x_t - x_{t|t} = x_t - x_{t|t-1} - K_t \left(z_t - H' x_{t|t-1} \right)$.

The Kalman Filter Algorithm IV

Let $\Sigma_{t|t-1}$, $x_{t|t-1}$, K_t , and z_t , then we compute:

$$\boldsymbol{\Sigma}_{t+1|t} = F \boldsymbol{\Sigma}_{t|t} F' + G Q G'$$

Let $x_{t|t}$, then we compute:

1.
$$x_{t+1|t} = Fx_{t|t}$$

2.
$$z_{t+1|t} = H' x_{t+1|t}$$

Therefore, from $x_{t|t-1}$, $\Sigma_{t|t-1}$, and z_t we compute $x_{t|t}$ and $\Sigma_{t|t}$.

The Kalman Filter Algorithm V

We also compute $z_{t|t-1}$ and $\Omega_{t|t-1}$.

Why?

To calculate the likelihood function of $z^T = \{z_t\}_{t=1}^T$ (to follow).

The Kalman Filter Algorithm: A Review

We start with $x_{t|t-1}$ and $\Sigma_{t|t-1}$.

The, we observe z_t and:

•
$$\Omega_{t|t-1} = H' \Sigma_{t|t-1} H + R$$

•
$$z_{t|t-1} = H' x_{t|t-1}$$

•
$$K_t = \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1}$$

•
$$\Sigma_{t|t} = \Sigma_{t|t-1} - K_t H' \Sigma_{t|t-1}$$

•
$$x_{t|t} = x_{t|t-1} + K_t \left(z_t - H' x_{t|t-1} \right)$$

•
$$\Sigma_{t+1|t} = F\Sigma_{t|t}F' + GQG'$$

•
$$x_{t+1|t} = Fx_{t|t}$$

We finish with $x_{t+1|t}$ and $\Sigma_{t+1|t}$.

Some Intuition about the optimal K_t

• Remember:
$$K_t = \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1}$$

• Notice that we can rewrite K_t in the following way:

$$K_t = \Sigma_{t|t-1} H \Omega_{t|t-1}^{-1}$$

- If we did a big mistake forecasting $x_{t|t-1}$ using past information ($\Sigma_{t|t-1}$ large) we give a lot of weight to the new information (K_t large).
- If the new information is noise (*R* large) we give a lot of weight to the old prediction (*K_t* small).

A Probabilistic Approach to the Kalman Filter

• Assume:

$$Z|w = [X'|w \ Y'|w]' \sim N\left(\left[\begin{array}{c}x^*\\y^*\end{array}\right], \left[\begin{array}{cc}\Sigma_{xx} & \Sigma_{xy}\\\Sigma_{yx} & \Sigma_{yy}\end{array}\right]\right)$$

• then:

$$X|y,w \sim N\left(x^* + \Sigma_{xy}\Sigma_{yy}^{-1}\left(y - y^*\right), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

• Also
$$x_{t|t-1} \equiv E\left(x_t|z^{t-1}\right)$$
 and:
 $\Sigma_{t|t-1} \equiv E\left(\left(x_t - x_{t|t-1}\right)\left(x_t - x_{t|t-1}\right)'|z^{t-1}\right)$

Some Derivations I

If $z_t | z^{t-1}$ is the random variable z_t (observable) conditional on z^{t-1} , then:

• Let
$$z_{t|t-1} \equiv E\left(z_t|z^{t-1}\right) = E\left(H'x_t + v_t|z^{t-1}\right) = H'x_{t|t-1}$$

• Let

$$\begin{split} \Omega_{t|t-1} &\equiv E\left(\left(z_t - z_{t|t-1}\right)\left(z_t - z_{t|t-1}\right)'|z^{t-1}\right) = \\ E\left(\begin{array}{c} H'\left(x_t - x_{t|t-1}\right)\left(x_t - x_{t|t-1}\right)'H + \\ & \upsilon_t\left(x_t - x_{t|t-1}\right)'H + \\ & H'\left(x_t - x_{t|t-1}\right)\upsilon_t' + \\ & \upsilon_t\upsilon_t'|z^{t-1} \end{array}\right) = H'\Sigma_{t|t-1}H + R \end{split}$$

Some Derivations II

Finally, let

$$E\left(\left(z_{t} - z_{t|t-1}\right)\left(x_{t} - x_{t|t-1}\right)'|z^{t-1}\right) = \\E\left(H'\left(x_{t} - x_{t|t-1}\right)\left(x_{t} - x_{t|t-1}\right)' + \upsilon_{t}\left(x_{t} - x_{t|t-1}\right)'|z^{t-1}\right) = \\= H'\Sigma_{t|t-1}$$

The Kalman Filter First Iteration I

- Assume we know $x_{1|0}$ and $\Sigma_{1|0}$, then

$$\begin{pmatrix} x_1 \\ z_1 \end{pmatrix} N \left(\begin{bmatrix} x_{1|0} \\ H'x_{1|0} \end{bmatrix}, \begin{bmatrix} \Sigma_{1|0} & \Sigma_{1|0}H \\ H'\Sigma_{1|0} & H'\Sigma_{1|0}H + R \end{bmatrix} \right)$$

• Remember that:

$$X|y, w \sim N\left(x^* + \Sigma_{xy}\Sigma_{yy}^{-1}\left(y - y^*\right), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

The Kalman Filter First Iteration II

Then, we can write:

$$x_1|z_1, z^0 = x_1|z^1 \sim N\left(x_{1|1}, \Sigma_{1|1}\right)$$

where

$$x_{1|1} = x_{1|0} + \Sigma_{1|0} H \left(H' \Sigma_{1|0} H + R \right)^{-1} \left(z_1 - H' x_{1|0} \right)$$

 and

$$\Sigma_{1|1} = \Sigma_{1|0} - \Sigma_{1|0} H \left(H' \Sigma_{1|0} H + R \right)^{-1} H' \Sigma_{1|0}$$

• Therefore, we have that:

$$- z_{1|0} = H' x_{1|0}$$

- $\Omega_{1|0} = H' \Sigma_{1|0} H + R$
- $x_{1|1} = x_{1|0} + \Sigma_{1|0} H (H' \Sigma_{1|0} H + R)^{-1} (z_1 - H' x_{1|0})$
- $\Sigma_{1|1} = \Sigma_{1|0} - \Sigma_{1|0} H (H' \Sigma_{1|0} H + R)^{-1} H' \Sigma_{1|0}$

• Also, since $x_{2|1} = Fx_{1|1} + G\omega_{2|1}$ and $z_{2|1} = H'x_{2|1} + v_{2|1}$:

$$- x_{2|1} = F x_{1|1}$$
$$- \Sigma_{2|1} = F \Sigma_{1|1} F' + G Q G'$$
The Kalman Filter th Iteration I

- Assume we know $x_{t|t-1}$ and $\Sigma_{t|t-1}$, then

$$\begin{pmatrix} x_t \\ z_t \end{pmatrix} N \left(\begin{bmatrix} x_{t|t-1} \\ H'x_{t|t-1} \end{bmatrix}, \begin{bmatrix} \Sigma_{t|t-1} & \Sigma_{t|t-1}H \\ H'\Sigma_{t|t-1} & H'\Sigma_{t|t-1}H + R \end{bmatrix} \right)$$

• Remember that:

$$X|y, w \sim N\left(x^* + \Sigma_{xy}\Sigma_{yy}^{-1}\left(y - y^*\right), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

The Kalman Filter th Iteration II

Then, we can write:

$$x_t|z_t, z^{t-1} = x_t|z^t \sim N\left(x_{t|t}, \boldsymbol{\Sigma}_{t|t}\right)$$

where

$$x_{t|t} = x_{t|t-1} + \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1} \left(z_t - H' x_{t|t-1} \right)$$
 and

$$\boldsymbol{\Sigma}_{t|t} = \boldsymbol{\Sigma}_{t|t-1} - \boldsymbol{\Sigma}_{t|t-1} H \left(H' \boldsymbol{\Sigma}_{t|t-1} H + R \right)^{-1} H' \boldsymbol{\Sigma}_{t|t-1}$$

The Kalman Filter Algorithm

Given $x_{t|t-1}$, $\mathbf{\Sigma}_{t|t-1}$ and observation z_t

•
$$\Omega_{t|t-1} = H' \Sigma_{t|t-1} H + R$$

•
$$z_{t|t-1} = H' x_{t|t-1}$$

•
$$\Sigma_{t|t} = \Sigma_{t|t-1} - \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1} H' \Sigma_{t|t-1}$$

•
$$x_{t|t} = x_{t|t-1} + \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1} \left(z_t - H' x_{t|t-1} \right)'$$

•
$$\Sigma_{t+1|t} = F\Sigma_{t|t}F' + GQG_{t|t-1}$$

•
$$x_{t+1|t} = Fx_{t|t-1}$$

Putting the Minimization and the Probabilistic Approaches Together

• From the Minimization Approach we know that:

$$x_{t|t} = x_{t|t-1} + K_t \left(z_t - H' x_{t|t-1} \right)$$

• From the Probability Approach we know that:

$$x_{t|t} = x_{t|t-1} + \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1} \left(z_t - H' x_{t|t-1} \right)$$

• But since:

$$K_t = \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1}$$

• We can also write in the probabilistic approach:

$$\begin{split} x_{t|t} &= x_{t|t-1} + \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1} \left(z_t - H' x_{t|t-1} \right) = \\ &= x_{t|t-1} + K_t \left(z_t - H' x_{t|t-1} \right) \end{split}$$

• Therefore, both approaches are equivalent.

Writing the Likelihood Function

We want to write the likelihood function of $z^T = \{z_t\}_{t=1}^T$:

$$\begin{split} \log \ell \left(z^T | F, G, H, Q, R \right) = \\ \sum_{t=1}^T \log \ell \left(z_t | z^{t-1} F, G, H, Q, R \right) = \\ - \sum_{t=1}^T \left[\frac{N}{2} \log 2\pi + \frac{1}{2} \log \left| \Omega_{t|t-1} \right| + \frac{1}{2} \sum_{t=1}^T v_t' \Omega_{t|t-1}^{-1} v_t \right] \end{split}$$

$$v_t = z_t - z_{t|t-1} = z_t - H' x_{t|t-1}$$

$$\Omega_{t|t-1} = H_t' \Sigma_{t|t-1} H_t + R$$

Initial conditions for the Kalman Filter

- An important step in the Kalman Fitler is to set the initial conditions.
- Initial conditions:
 - 1. $x_{1|0}$
 - 2. Σ_{1|0}
- Where do they come from?

Since we only consider stable system, the standard approach is to set:

•
$$x_{1|0} = x^*$$

•
$$\Sigma_{1|0} = \Sigma^*$$

where x solves

$$x^* = Fx^*$$

$$\Sigma^* = F\Sigma^*F' + GQG'$$

How do we find Σ^* ?

$$\Sigma^* = [I - F \otimes F]^{-1} \operatorname{vec}(GQG')$$

Initial conditions for the Kalman Filter II

Under the following conditions:

- 1. The system is stable, i.e. all eigenvalues of F are strictly less than one in absolute value.
- 2. GQG' and R are p.s.d. symmetric
- 3. $\Sigma_{1|0}$ is p.s.d. symmetric

Then $\Sigma_{t+1|t} \rightarrow \Sigma^*$.

Remarks

- 1. There are more general theorems than the one just described.
- 2. Those theorems are based on non-stable systems.
- 3. Since we are going to work with stable system the former theorem is enough.
- 4. Last theorem gives us a way to find Σ as $\Sigma_{t+1|t} \to \Sigma$ for any $\Sigma_{1|0}$ we start with.

The Kalman Filter and DSGE models

• Basic Real Business Cycle model

$$egin{array}{lll} \max E_0 \sum\limits_{t=0}^\infty eta^t \left\{ \xi \log c_t + (1-\xi) \log \left(1-l_t
ight)
ight\} \ c_t + k_{t+1} &= k_t^lpha \, (e^{z_t} l_t)^{1-lpha} + (1-\delta) \, k \ z_t &=
ho z_{t-1} + arepsilon_t, \ arepsilon_t \sim \mathcal{N}(0,\sigma) \end{array}$$

• Parameters:
$$\gamma = \{ \alpha, \beta, \rho, \xi, \eta, \sigma \}$$

Equilibrium Conditions

$$\frac{1}{c_t} = \beta E_t \left\{ \frac{1}{c_{t+1}} \left(1 + \alpha e^{z_{t+1}} k_{t+1}^{\alpha - 1} l_{t+1}^{1 - \alpha} - \eta \right) \right\}$$
$$\frac{1 - \xi}{1 - l_t} = \frac{\xi}{c_t} (1 - \alpha) e^{z_t} k_t^{\alpha} l_t^{-\alpha}$$
$$c_t + k_{t+1} = e^{z_t} k_t^{\alpha} l_t^{1 - \alpha} + (1 - \eta) k_t$$
$$z_t = \rho z_{t-1} + \varepsilon_t$$

A Special Case

- We set, unrealistically but rather useful for our point, $\eta = 1$.
- In this case, the model has two important and useful features:
 - 1. First, the income and the substitution effect from a productivity shock to labor supply exactly cancel each other. Consequently, l_t is constant and equal to:

$$l_t = l = rac{(1-lpha)\,\xi}{(1-lpha)\,\xi + (1-\xi)\,(1-lphaeta)}$$

2. Second, the policy function for capital is $k_{t+1} = \alpha \beta e^{z_t} k_t^{\alpha} l^{1-\alpha}$.

A Special Case II

- The definition of k_{t+1} implies that $c_t = (1 \alpha \beta) e^{z_t} k_t^{\alpha} l^{1-\alpha}$.
- Let us try if the Euler Equation holds:

$$\frac{1}{c_t} = \beta E_t \left\{ \frac{1}{c_{t+1}} \left(\alpha e^{z_{t+1}} k_{t+1}^{\alpha - 1} l_{t+1}^{1 - \alpha} \right) \right\}$$
$$\frac{1}{(1 - \alpha\beta) e^{z_t} k_t^{\alpha} l^{1 - \alpha}} = \beta E_t \left\{ \frac{1}{(1 - \alpha\beta) e^{z_t + 1} k_{t+1}^{\alpha} l^{1 - \alpha}} \left(\alpha e^{z_{t+1}} k_{t+1}^{\alpha - 1} l_{t+1}^{1 - \alpha} \right) \right\}$$
$$\frac{1}{(1 - \alpha\beta) e^{z_t} k_t^{\alpha} l^{1 - \alpha}} = \beta E_t \left\{ \frac{\alpha}{(1 - \alpha\beta) k_{t+1}} \right\}$$
$$\frac{\alpha\beta}{(1 - \alpha\beta)} = \frac{\beta\alpha}{(1 - \alpha\beta)}$$

• Let us try if the Intratemporal condition holds

$$\begin{aligned} \frac{1-\xi}{1-l} &= \frac{\xi}{\left(1-\alpha\beta\right)e^{z_{t}}k_{t}^{\alpha}l^{1-\alpha}}\left(1-\alpha\right)e^{z_{t}}k_{t}^{\alpha}l^{-\alpha}}\\ \frac{1-\xi}{1-l} &= \frac{\xi}{\left(1-\alpha\beta\right)}\frac{\left(1-\alpha\right)}{l}\\ \left(1-\alpha\beta\right)\left(1-\xi\right)l &= \xi\left(1-\alpha\right)\left(1-l\right)\\ \left(\left(1-\alpha\beta\right)\left(1-\xi\right)+\left(1-\alpha\right)\xi\right)l &= \left(1-\alpha\right)\xi\end{aligned}$$

• Finally, the budget constraint holds because of the definition of c_t .

Transition Equation

• Since this policy function is linear in logs, we have the transition equation for the model:

$$\begin{pmatrix} 1\\ \log k_{t+1}\\ z_t \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ \log \alpha \beta \lambda l^{1-\alpha} & \alpha & \rho\\ 0 & 0 & \rho \end{pmatrix} \begin{pmatrix} 1\\ \log k_t\\ z_{t-1} \end{pmatrix} + \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix} \epsilon_t.$$

- Note constant.
- Alternative formulations.

Measurement Equation

- As observables, we assume $\log y_t$ and $\log i_t$ subject to a linearly additive measurement error $V_t = (\begin{array}{cc} v_{1,t} & v_{2,t} \end{array})'$.
- Let $V_t \sim N(0, \Lambda)$, where Λ is a diagonal matrix with σ_1^2 and σ_2^2 , as diagonal elements.
- Why measurement error? Stochastic singularity.
- Then:

$$\left(egin{array}{c} \log y_t \ \log i_t \end{array}
ight) = \left(egin{array}{ccc} -\log lpha eta \lambda l^{1-lpha} & 1 & 0 \ 0 & 1 & 0 \end{array}
ight) \left(egin{array}{c} 1 \ \log k_{t+1} \ z_t \end{array}
ight) + \left(egin{array}{c} v_{1,t} \ v_{2,t} \end{array}
ight).$$

The Solution to the Model in State Space Form

$$\begin{aligned} x_t &= \begin{pmatrix} 1\\ \log k_t\\ z_{t-1} \end{pmatrix}, z_t = \begin{pmatrix} \log y_t\\ \log i_t \end{pmatrix} \\ F &= \begin{pmatrix} 1 & 0 & 0\\ \log \alpha \beta \lambda l^{1-\alpha} & \alpha & \rho\\ 0 & 0 & \rho \end{pmatrix}, G &= \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}, Q &= \sigma^2 \\ H' &= \begin{pmatrix} -\log \alpha \beta \lambda l^{1-\alpha} & 1 & 0\\ 0 & 1 & 0 \end{pmatrix}, R &= \Lambda \end{aligned}$$

The Solution to the Model in State Space Form III

- Now, using z^T, F, G, H, Q , and R as defined in the last slide...
- ...we can use the Ricatti equations to compute the likelihood function of the model:

$$\log \ell\left(z^T | F, G, H, Q, R\right)$$

- Croos-equations restrictions implied by equilibrium solution.
- With the likelihood, we can do inference!

What do we Do if $\eta \neq 1$?

We have two options:

- First, we could linearize or log-linearize the model and apply the Kalman filter.
- Second, we could compute the likelihood function of the model using a non-linear filter (particle filter).
- Advantages and disadvantages.
- Fernández-Villaverde, Rubio-Ramírez, and Santos (2005).

The Kalman Filter and linearized DSGE Models

- We linearize (or loglinerize) around the steady state.
- We assume that we have data on log output (log yt), log hours (log lt), and log investment (log ct) subject to a linearly additive measurement error Vt = (v1,t v2,t v3,t)'.
- We need to write the model in state space form. Remember that

$$\hat{k}_{t+1} = P\hat{k}_t + Qz_t$$

and

$$\hat{l}_t = R\hat{k}_t + Sz_t$$

Writing the Likelihood Function I

• The transitions Equation:

$$egin{pmatrix} 1 \ \widehat{k}_{t+1} \ z_{t+1} \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ 0 & P & Q \ 0 & 0 &
ho \end{pmatrix} egin{pmatrix} 1 \ \widehat{k}_t \ z_t \end{pmatrix} + egin{pmatrix} 0 \ 0 \ 1 \ 1 \end{pmatrix} \epsilon_t.$$

• The Measurement Equation requires some care.

Writing the Likelihood Function II

• Notice that
$$\widehat{y}_t = z_t + \alpha \widehat{k}_t + (1 - \alpha) \widehat{l}_t$$

• Therefore, using
$$\widehat{l}_t = R\widehat{k}_t + Sz_t$$

$$\widehat{y}_t = z_t + \alpha \widehat{k}_t + (1 - \alpha)(R\widehat{k}_t + Sz_t) = (\alpha + (1 - \alpha)R)\widehat{k}_t + (1 + (1 - \alpha)S)z_t$$

• Also since $\hat{c}_t = -\alpha_5 \hat{l}_t + z_t + \alpha \hat{k}_t$ and using again $\hat{l}_t = R \hat{k}_t + S z_t$

$$\widehat{c}_t = z_t + \alpha \widehat{k}_t - \alpha_5 (R \widehat{k}_t + S z_t) = (\alpha - \alpha_5 R) \widehat{k}_t + (1 - \alpha_5 S) z_t$$

Writing the Likelihood Function III

Therefore the measurement equation is:

$$\begin{pmatrix} \log y_t \\ \log l_t \\ \log c_t \end{pmatrix} = \begin{pmatrix} \log y & \alpha + (1 - \alpha)R & 1 + (1 - \alpha)S \\ \log l & R & S \\ \log c & \alpha - \alpha_5R & 1 - \alpha_5S \end{pmatrix} \begin{pmatrix} 1 \\ \hat{k}_t \\ z_t \end{pmatrix}$$
$$+ \begin{pmatrix} v_{1,t} \\ v_{2,t} \\ v_{3,t} \end{pmatrix}.$$

The Likelihood Function of a General Dynamic Equilibrium Economy

• Transition equation:

$$S_t = f(S_{t-1}, W_t; \gamma)$$

• Measurement equation:

$$Y_t = g\left(S_t, V_t; \gamma\right)$$

• Interpretation.

Some Assumptions

- 1. We can partition $\{W_t\}$ into two independent sequences $\{W_{1,t}\}$ and $\{W_{2,t}\}$, s.t. $W_t = (W_{1,t}, W_{2,t})$ and dim $(W_{2,t})$ +dim $(V_t) \ge \dim (Y_t)$.
- 2. We can always evaluate the conditional densities $p(y_t|W_1^t, y^{t-1}, S_0; \gamma)$. Lubick and Schorfheide (2003).
- 3. The model assigns positive probability to the data.

Our Goal: Likelihood Function

• Evaluate the likelihood function of the a sequence of realizations of the observable y^T at a particular parameter value γ :

$$p\left(y^{T};\gamma
ight)$$

• We factorize it as:

$$p\left(y^{T};\gamma\right) = \prod_{t=1}^{T} p\left(y_{t}|y^{t-1};\gamma\right)$$
$$= \prod_{t=1}^{T} \int \int p\left(y_{t}|W_{1}^{t}, y^{t-1}, S_{0};\gamma\right) p\left(W_{1}^{t}, S_{0}|y^{t-1};\gamma\right) dW_{1}^{t} dS_{0}$$

A Law of Large Numbers

If
$$\left\{ \left\{ s_0^{t|t-1,i}, w_1^{t|t-1,i} \right\}_{i=1}^N \right\}_{t=1}^T N$$
 i.i.d. draws from $\left\{ p\left(W_1^t, S_0 | y^{t-1}; \gamma\right) \right\}_{t=1}^T$, then:

$$p(y^{T};\gamma) \simeq \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} p(y_{t}|w_{1}^{t|t-1,i}, y^{t-1}, s_{0}^{t|t-1,i}; \gamma)$$

...thus

The problem of evaluating the likelihood is equivalent to the problem of drawing from

$$\left\{ p\left(W_{1}^{t}, S_{0} | y^{t-1}; \gamma \right) \right\}_{t=1}^{T}$$

Introducing Particles

•
$$\left\{s_0^{t-1,i}, w_1^{t-1,i}\right\}_{i=1}^N N$$
 i.i.d. draws from $p\left(W_1^{t-1}, S_0 | y^{t-1}; \gamma\right)$.

• Each
$$s_0^{t-1,i}, w_1^{t-1,i}$$
 is a particle and $\left\{s_0^{t-1,i}, w_1^{t-1,i}\right\}_{i=1}^N$ a swarm of particles.

•
$$\left\{s_{0}^{t|t-1,i}, w_{1}^{t|t-1,i}\right\}_{i=1}^{N} N$$
 i.i.d. draws from $p\left(W_{1}^{t}, S_{0}|y^{t-1}; \gamma\right)$.

• Each $s_0^{t|t-1,i}, w_1^{t|t-1,i}$ is a proposed particle and $\left\{s_0^{t|t-1,i}, w_1^{t|t-1,i}\right\}_{i=1}^N$ a swarm of proposed particles.

... and Weights

$$q_t^i = \frac{p\left(y_t | w_1^{t|t-1,i}, y^{t-1}, s_0^{t|t-1,i}; \gamma\right)}{\sum_{i=1}^N p\left(y_t | w_1^{t|t-1,i}, y^{t-1}, s_0^{t|t-1,i}; \gamma\right)}$$

A Proposition

Let
$$\left\{\widetilde{s}_{0}^{i}, \widetilde{w}_{1}^{i}\right\}_{i=1}^{N}$$
 be a draw with replacement from $\left\{s_{0}^{t|t-1,i}, w_{1}^{t|t-1,i}\right\}_{i=1}^{N}$
and probabilities q_{t}^{i} . Then $\left\{\widetilde{s}_{0}^{i}, \widetilde{w}_{1}^{i}\right\}_{i=1}^{N}$ is a draw from $p\left(W_{1}^{t}, S_{0}|y^{t}; \gamma\right)$.

Importance of the Proposition

1. It shows how a draw
$$\left\{s_0^{t|t-1,i}, w_1^{t|t-1,i}\right\}_{i=1}^N$$
 from $p\left(W_1^t, S_0|y^{t-1}; \gamma\right)$ can be used to draw $\left\{s_0^{t,i}, w_1^{t,i}\right\}_{i=1}^N$ from $p\left(W_1^t, S_0|y^t; \gamma\right)$.

2. With a draw
$$\left\{s_0^{t,i}, w_1^{t,i}\right\}_{i=1}^N$$
 from $p\left(W_1^t, S_0 | y^t; \gamma\right)$ we can use $p\left(W_{1,t+1}; \gamma\right)$ to get a draw $\left\{s_0^{t+1|t,i}, w_1^{t+1|t,i}\right\}_{i=1}^N$ and iterate the procedure.

Sequential Monte Carlo I: Filtering

Step 0, Initialization: Set $t \rightsquigarrow 1$ and initialize $p(W_1^{t-1}, S_0 | y^{t-1}; \gamma) = p(S_0; \gamma)$.

Step 1, Prediction: Sample N values $\left\{s_0^{t|t-1,i}, w_1^{t|t-1,i}\right\}_{i=1}^N$ from the density $p\left(W_1^t, S_0|y^{t-1}; \gamma\right) = p\left(W_{1,t}; \gamma\right) p\left(W_1^{t-1}, S_0|y^{t-1}; \gamma\right)$.

Step 2, Weighting: Assign to each draw $s_0^{t|t-1,i}, w_1^{t|t-1,i}$ the weight q_t^i .

Step 3, Sampling: Draw $\{s_0^{t,i}, w_1^{t,i}\}_{i=1}^N$ with rep. from $\{s_0^{t|t-1,i}, w_1^{t|t-1,i}\}_{i=1}^N$ with probabilities $\{q_t^i\}_{i=1}^N$. If t < T set $t \rightsquigarrow t+1$ and go to step 1. Otherwise stop.

Sequential Monte Carlo II: Likelihood

Use
$$\left\{ \left\{ s_0^{t|t-1,i}, w_1^{t|t-1,i} \right\}_{i=1}^N \right\}_{t=1}^T$$
 to compute:

$$p\left(y^{T};\gamma\right) \simeq \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} p\left(y_{t} | w_{1}^{t|t-1,i}, y^{t-1}, s_{0}^{t|t-1,i};\gamma\right)$$
A "Trivial" Application

How do we evaluate the likelihood function $p(y^T | \alpha, \beta, \sigma)$ of the nonlinear, nonnormal process:

$$s_t = \alpha + \beta \frac{s_{t-1}}{1 + s_{t-1}} + w_t$$
$$y_t = s_t + v_t$$

where $w_t \sim \mathcal{N}(0, \sigma)$ and $v_t \sim t(2)$ given some observables $y^T = \{y_t\}_{t=1}^T$ and s_0 .

1. Let
$$s_0^{0,i} = s_0$$
 for all *i*.

2. Generate N i.i.d. draws
$$\left\{s_0^{1|0,i}, w^{1|0,i}\right\}_{i=1}^N$$
 from $\mathcal{N}(0,\sigma)$.

3. Evaluate
$$p\left(y_1|w_1^{1|0,i}, y^0, s_0^{1|0,i}\right) = p_{t(2)}\left(y_1 - \left(\alpha + \beta \frac{s_0^{1|0,i}}{1 + s_0^{1|0,i}} + w^{1|0,i}\right)\right).$$

$$\text{4. Evaluate the relative weights } q_1^i = \frac{p_{t(2)} \left(y_1 - \left(\alpha + \beta \frac{s_0^{1|0,i}}{1 + s_0^{1|0,i}} + w^{1|0,i} \right) \right)}{\sum_{i=1}^N p_{t(2)} \left(y_1 - \left(\alpha + \beta \frac{s_0^{1|0,i}}{1 + s_0^{1|0,i}} + w^{1|0,i} \right) \right)}.$$

- 5. Resample with replacement N values of $\left\{s_0^{1|0,i}, w^{1|0,i}\right\}_{i=1}^N$ with relative weights q_1^i . Call those sampled values $\left\{s_0^{1,i}, w^{1,i}\right\}_{i=1}^N$.
- 6. Go to step 1, and iterate 1-4 until the end of the sample.

A Law of Large Numbers

A law of the large numbers delivers:

$$p(y_1|y^0, \alpha, \beta, \sigma) \simeq \frac{1}{N} \sum_{i=1}^{N} p(y_1|w_1^{1|0,i}, y^0, s_0^{1|0,i})$$

_ _

and consequently:

$$p\left(y^{T} \mid \alpha, \beta, \sigma\right) \simeq \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} p\left(y_{t} \mid w_{1}^{t \mid t-1, i}, y^{t-1}, s_{0}^{t \mid t-1, i}\right)$$

Comparison with Alternative Schemes

• Deterministic algorithms: Extended Kalman Filter and derivations (Jazwinski, 1973), Gaussian Sum approximations (Alspach and Sorenson, 1972), grid-based filters (Bucy and Senne, 1974), Jacobian of the transform (Miranda and Rui, 1997).

Tanizaki (1996).

• Simulation algorithms: Kitagawa (1987), Gordon, Salmond and Smith (1993), Mariano and Tanizaki (1995) and Geweke and Tanizaki (1999).

- A "Real" Application: the Stochastic Neoclassical Growth Model
 - Standard model.
 - Isn't the model nearly linear?
 - Yes, but:
 - 1. Better to begin with something easy.
 - 2. We will learn something nevertheless.

The Model

• Representative agent with utility function $U = E_0 \sum_{t=0}^{\infty} \beta^t \frac{\left(c_t^{\theta} (1-l_t)^{1-\theta}\right)^{1-\tau}}{1-\tau}$.

- One good produced according to $y_t = e^{z_t} A k_t^{\alpha} l_t^{1-\alpha}$ with $\alpha \in (0,1)$.
- Productivity evolves $z_t = \rho z_{t-1} + \epsilon_t$, $|\rho| < 1$ and $\epsilon_t \sim \mathcal{N}(0, \sigma_\epsilon)$.
- Law of motion for capital $k_{t+1} = i_t + (1 \delta)k_t$.
- Resource constrain $c_t + i_t = y_t$.

- Solve for $c(\cdot, \cdot)$ and $l(\cdot, \cdot)$ given initial conditions.
- Characterized by:

$$egin{split} U_c(t) &= eta E_t \left[U_c(t+1) \left(1 + lpha A e^{z_t+1} k_{t+1}^{lpha-1} l(k_{t+1}, z_{t+1})^lpha - \delta
ight)
ight] \ & rac{1- heta}{ heta} rac{c(k_t, z_t)}{1-l(k_t, z_t)} = (1-lpha) \, e^{z_t} A k_t^lpha l(k_t, z_t)^{-lpha} \end{split}$$

• A system of functional equations with no known analytical solution.

Solving the Model

- We need to use a numerical method to solve it.
- Different nonlinear approximations: value function iteration, perturbation, projection methods.
- We use a Finite Element Method. Why? Aruoba, Fernández-Villaverde and Rubio-Ramírez (2003):
 - 1. Speed: sparse system.
 - 2. Accuracy: flexible grid generation.
 - 3. Scalable.

Building the Likelihood Function

- Time series:
 - 1. Quarterly real output, hours worked and investment.
 - 2. Main series from the model and keep dimensionality low.
- Measurement error. Why?

•
$$\gamma = (\theta, \rho, \tau, \alpha, \delta, \beta, \sigma_{\epsilon}, \sigma_{1}, \sigma_{2}, \sigma_{3})$$

State Space Representation

$$\begin{aligned} k_{t} &= f_{1}(S_{t-1}, W_{t}; \gamma) = e^{\tanh^{-1}(\lambda_{t-1})} k_{t-1}^{\alpha} l\left(k_{t-1}, \tanh^{-1}(\lambda_{t-1}); \gamma\right)^{1-\alpha} * \\ &\left(1 - \frac{\theta}{1-\theta} (1-\alpha) \frac{\left(1 - l\left(k_{t-1}, \tanh^{-1}(\lambda_{t-1}); \gamma\right)\right)}{l\left(k_{t-1}, \tanh^{-1}(\lambda_{t-1}); \gamma\right)}\right) + (1-\delta) k_{t-1} \right) \\ \lambda_{t} &= f_{2}(S_{t-1}, W_{t}; \gamma) = \tanh(\rho \tanh^{-1}(\lambda_{t-1}) + \epsilon_{t}) \\ gdp_{t} &= g_{1}(S_{t}, V_{t}; \gamma) = e^{\tanh^{-1}(\lambda_{t})} k_{t}^{\alpha} l\left(k_{t}, \tanh^{-1}(\lambda_{t}); \gamma\right)^{1-\alpha} + V_{1,t} \\ hours_{t} &= g_{2}(S_{t}, V_{t}; \gamma) = l\left(k_{t}, \tanh^{-1}(\lambda_{t}); \gamma\right) + V_{2,t} \\ inv_{t} &= g_{3}(S_{t}, V_{t}; \gamma) = e^{\tanh^{-1}(\lambda_{t})} k_{t}^{\alpha} l\left(k_{t}, \tanh^{-1}(\lambda_{t}); \gamma\right)^{1-\alpha} * \\ &\left(1 - \frac{\theta}{1-\theta} (1-\alpha) \frac{\left(1 - l\left(k_{t}, \tanh^{-1}(\lambda_{t}); \gamma\right)\right)}{l\left(k_{t}, \tanh^{-1}(\lambda_{t}); \gamma\right)}\right) + V_{3,t} \end{aligned}$$

Likelihood Function

Since our measurement equation implies that

$$p\left(y_t|S_t;\gamma
ight) = (2\pi)^{-rac{3}{2}} |\Sigma|^{-rac{1}{2}} e^{-rac{\omega(S_t;\gamma)}{2}}$$

where $\omega(S_t;\gamma) = (y_t - x(S_t;\gamma)))' \Sigma^{-1} \left(y_t - x(S_t;\gamma)\right) \, orall t$, we have

$$p\left(y^{T};\gamma\right) =$$

$$(2\pi)^{-\frac{3T}{2}} |\mathbf{\Sigma}|^{\frac{-T}{2}} \int \left(\prod_{t=1}^{T} \int e^{-\frac{\omega(S_{t};\gamma)}{2}} p\left(S_{t}|y^{t-1}, S_{0};\gamma\right) dS_{t}\right) p\left(S_{0};\gamma\right) dS_{1}$$

$$\simeq (2\pi)^{-\frac{3T}{2}} |\mathbf{\Sigma}|^{\frac{-T}{2}} \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} e^{-\frac{\omega(S_{t}^{i};\gamma)}{2}}$$

Priors for the Parameters

Priors for the Parameters of the Model				
Parameters	Distribution	Hyperparameters		
θ	Uniform	0,1		
ho	Uniform	0,1		
au	Uniform	0,100		
lpha	Uniform	0,1		
δ	Uniform	0,0.05		
eta	Uniform	0.75,1		
σ_ϵ	Uniform	0,0.1		
σ_1	Uniform	0,0.1		
σ_2	Uniform	0,0.1		
σ_3	Uniform	0,0.1		

Likelihood-Based Inference I: a Bayesian Perspective

- Define priors over parameters: truncated uniforms.
- Use a Random-walk Metropolis-Hastings to draw from the posterior.
- Find the Marginal Likelihood.

Likelihood-Based Inference II: a Maximum Likelihood Perspective

- We only need to maximize the likelihood.
- Difficulties to maximize with Newton type schemes.
- Common problem in dynamic equilibrium economies.
- We use a simulated annealing scheme.

An Exercise with Artificial Data

- First simulate data with our model and use that data as sample.
- Pick "true" parameter values. Benchmark calibration values for the stochastic neoclassical growth model (Cooley and Prescott, 1995).

Parameter	θ	ρ	au	α	δ
Value	0.357	0.95	2.0	0.4	0.02
Parameter	β	σ_{ϵ}	σ_1	σ_2	σ_3
Value	0.99	0.007	$1.58*10^{-4}$	0.0011	$8.66*10^{-4}$

Calibrated Parameters

• Sensitivity: $\tau = 50$ and $\sigma_{\epsilon} = 0.035$.

Figure 5.1: Likelihood Function Benchmark Calibration

Figure 5.3: Likelihood Function Extreme Calibration

Figure 5.6: Posterior Distribution Real Data

Figure 6.1: Likelihood Function

Posterior Distributions Benchmark Calibration						
Parameters	Mean	s.d.				
θ	0.357	6.72×10^{-5}				
ho	0.950	3.40×10^{-4}				
au	2.000	$6.78 imes 10^{-4}$				
lpha	0.400	$8.60 imes 10^{-5}$				
δ	0.020	$1.34{ imes}10^{-5}$				
eta	0.989	$1.54{ imes}10^{-5}$				
σ_ϵ	0.007	9.29×10^{-6}				
σ_1	1.58×10^{-4}	5.75×10^{-8}				
σ_2	$1.12{ imes}10^{-2}$	6.44×10^{-7}				
σ_3	8.64×10^{-4}	$6.49 imes 10^{-7}$				

Maximum Likelihood Estimates Benchmark Calibration						
Parameters	MLE	s.d.				
θ	0.357	8.19×10^{-6}				
ρ	0.950	0.001				
au	2.000	0.020				
lpha	0.400	2.02×10^{-6}				
δ	0.002	2.07×10^{-5}				
eta	0.990	1.00×10^{-6}				
σ_ϵ	0.007	0.004				
σ_1	$1.58{ imes}10^{-4}$	0.007				
σ_2	$1.12{ imes}10^{-3}$	0.007				
σ3	8.63×10^{-4}	0.005				

Posterior Distributions Extreme Calibration						
Parameters	Mean	s.d.				
θ	0.357	7.19×10^{-4}				
ho	0.950	1.88×10^{-4}				
au	50.00	7.12×10^{-3}				
lpha	0.400	$4.80 imes 10^{-5}$				
δ	0.020	3.52×10^{-6}				
eta	0.989	$8.69{ imes}10^{-6}$				
σ_ϵ	0.035	4.47×10^{-6}				
σ_1	1.58×10^{-4}	1.87×10^{-8}				
σ_2	$1.12{ imes}10^{-2}$	2.14×10^{-7}				
σ_3	8.65×10^{-4}	2.33×10^{-7}				

Maximum Likelihood Estimates Extreme Calibration						
Parameters	MLE	s.d.				
θ	0.357	2.42×10^{-6}				
ho	0.950	6.12×10^{-3}				
au	50.000	0.022				
lpha	0.400	3.62×10^{-7}				
δ	0.019	7.43×10^{-6}				
eta	0.990	$1.00 { imes} 10^{-5}$				
σ_ϵ	0.035	0.015				
σ_1	$1.58 { imes} 10^{-4}$	0.017				
σ_2	$1.12{ imes}10^{-3}$	0.014				
σ3	8.66×10^{-4}	0.023				

Convergence on Number of Particles

Convergence Real Data					
Mean	s.d.				
014.558	0.3296				
014.600	0.2595				
014.653	0.1829				
014.666	0.1604				
014.688	0.1465				
014.664	0.1347				
	ence Real D Mean 014.558 014.600 014.653 014.666 014.688 014.664				

Posterior Distributions Real Data						
Parameters	Mean	s.d.				
θ	0.323	$7.976 imes 10^{-4}$				
ho	0.969	0.008				
au	1.825	0.011				
lpha	0.388	0.001				
δ	0.006	$3.557 imes10^{-5}$				
eta	0.997	$9.221 imes10^{-5}$				
σ_ϵ	0.023	$2.702 imes10^{-4}$				
σ_1	0.039	$5.346 imes10^{-4}$				
σ_2	0.018	$4.723 imes10^{-4}$				
σ_3	0.034	$6.300 imes10^{-4}$				

Maximum Likelihood Estimates Real Data						
Parameters	MLE	s.d.				
θ	0.390	0.044				
ho	0.987	0.708				
au	1.781	1.398				
lpha	0.324	0.019				
δ	0.006	0.160				
eta	0.997	8.67×10^{-3}				
σ_ϵ	0.023	0.224				
σ_1	0.038	0.060				
σ_2	0.016	0.061				
σ_3	0.035	0.076				

Logmarginal Likelihood Difference: Nonlinear-Linear

р	Benchmark Calibration	Extreme Calibration	Real Data
0.1	73.631	117.608	93.65
0.5	73.627	117.592	93.55
0.9	73.603	117.564	93.55

Nonlinear versus Linear Moments Real Data								
	Real	Data	N	onlinear ((SMC filter)	Linear (Ka	lman filter)	
	Mean	s.d	-	Mean	s.d	Mean	s.d	
output	1.95	0.073	-	1.91	0.129	1.61	0.068	
hours	0.36	0.014		0.36	0.023	0.34	0.004	
inv	0.42	0.066		0.44	0.073	0.28	0.044	

A "Future" Application: Good Luck or Good Policy?

- U.S. economy has become less volatile over the last 20 years (Stock and Watson, 2002).
- Why?
 - 1. Good luck: Sims (1999), Bernanke and Mihov (1998a and 1998b) and Stock and Watson (2002).
 - 2. Good policy: Clarida, Gertler and Galí (2000), Cogley and Sargent (2001 and 2003), De Long (1997) and Romer and Romer (2002).
 - 3. Long run trend: Blanchard and Simon (2001).
How Has the Literature Addressed this Question?

- So far: mostly with reduced form models (usually VARs).
- But:
 - 1. Results difficult to interpret.
 - 2. How to run counterfactuals?
 - 3. Welfare analysis.

Why Not a Dynamic Equilibrium Model?

- New generation equilibrium models: Christiano, Eichebaum and Evans (2003) and Smets and Wouters (2003).
- Linear and Normal.
- But we can do it!!!

Environment

- Discrete time t = 0, 1, ...
- Stochastic process $s \in S$ with history $s^t = (s_0, ..., s_t)$ and probability $\mu\left(s^t\right)$.

The Final Good Producer

• Perfectly Competitive Final Good Producer that solves

$$\max_{y_{i}\left(s^{t}\right)}\left(\int y_{i}\left(s^{t}\right)^{\theta}di\right)^{\frac{1}{\theta}}-\int p_{i}\left(s^{t}\right)y_{i}\left(s^{t}\right)di.$$

• Demand function for each input of the form

$$y_i\left(s^t\right) = \left(\frac{p_i\left(s^t\right)}{p\left(s^t\right)}\right)^{rac{1}{ heta-1}} y\left(s^t\right),$$

with price aggregator:

$$p\left(s^{t}\right) = \left(\int p_{i}\left(s^{t}\right)^{\frac{\theta}{\theta-1}}di\right)^{\frac{\theta-1}{\theta}}$$

٠

The Intermediate Good Producer

- Continuum of intermediate good producers, each of one behaving as monopolistic competitor.
- The producer of good *i* has access to the technology:

$$y_i\left(s^t\right) = \max\left\{e^{z\left(s^t\right)}k_i^{\alpha}\left(s^{t-1}\right)l_i^{1-\alpha}\left(s^t\right) - \phi, \mathbf{0}\right\}.$$

• Productivity
$$z\left(s^{t}\right) = \rho z\left(s^{t-1}\right) + \varepsilon_{z}\left(s^{t}\right)$$
.

• Calvo pricing with indexing. Probability of changing prices (before observing current period shocks) $1 - \zeta$.

Consumers Problem

$$E_{s^{t}}\sum_{t=0}^{\infty}\beta^{t}\left\{\varepsilon_{c}\left(s^{t}\right)\frac{\left(c\left(s^{t}\right)-dc\left(s^{t-1}\right)\right)^{\sigma_{c}}}{\sigma_{c}}-\varepsilon_{l}\left(s^{t}\right)\frac{l\left(s^{t}\right)^{\sigma_{l}}}{\sigma_{l}}+\varepsilon_{m}\left(s^{t}\right)\frac{m\left(s^{t}\right)^{\sigma_{m}}}{\sigma_{m}}\right\}$$

$$\begin{split} p\left(s^{t}\right)\left(c\left(s^{t}\right)+x\left(s^{t}\right)\right)+M\left(s^{t}\right)+\int_{s^{t+1}}q\left(s^{t+1}\right|s^{t}\right)B\left(s^{t+1}\right)ds_{t+1}=\\ p\left(s^{t}\right)\left(w\left(s^{t}\right)l\left(s^{t}\right)+r\left(s^{t}\right)k\left(s^{t-1}\right)\right)+M\left(s^{t-1}\right)+B\left(s^{t}\right)+\Pi\left(s^{t}\right)+T\left(s^{t}\right)\\ B\left(s^{t+1}\right)\geq B \end{split}$$

$$k\left(s^{t}\right) = (1 - \delta) k\left(s^{t-1}\right) - \phi\left(\frac{x\left(s^{t}\right)}{k\left(s^{t-1}\right)}\right) + x\left(s^{t}\right).$$

Government Policy

• Monetary Policy: Taylor rule

$$\begin{split} i\left(s^{t}\right) &= r_{g}\pi_{g}\left(s^{t}\right) \\ &+ a\left(s^{t}\right)\left(\pi\left(s^{t}\right) - \pi_{g}\left(s^{t}\right)\right) \\ &+ b\left(s^{t}\right)\left(y\left(s^{t}\right) - y_{g}\left(s^{t}\right)\right) + \varepsilon_{i}\left(s^{t}\right) \\ \pi_{g}\left(s^{t}\right) &= \pi_{g}\left(s^{t-1}\right) + \varepsilon_{\pi}\left(s^{t}\right) \\ a\left(s^{t}\right) &= a\left(s^{t-1}\right) + \varepsilon_{a}\left(s^{t}\right) \\ b\left(s^{t}\right) &= b\left(s^{t-1}\right) + \varepsilon_{b}\left(s^{t}\right) \end{split}$$

• Fiscal Policy.

Stochastic Volatility I

• We can stack all shocks in one vector:

$$\varepsilon\left(s^{t}\right) = \left(\varepsilon_{z}\left(s^{t}\right), \varepsilon_{c}\left(s^{t}\right), \varepsilon_{l}\left(s^{t}\right), \varepsilon_{m}\left(s^{t}\right), \varepsilon_{i}\left(s^{t}\right), \varepsilon_{\pi}\left(s^{t}\right), \varepsilon_{a}\left(s^{t}\right), \varepsilon_{b}\left(s^{t}\right)\right)'$$

• Stochastic volatility:

$$arepsilon\left(s^{t}
ight)=R\left(s^{t}
ight)^{0.5}artheta\left(s^{t}
ight).$$

• The matrix $R\left(s^{t}
ight)$ can be decomposed as:

$$R\left(s^{t}\right) = G\left(s^{t}\right)^{-1} H\left(s^{t}\right) G\left(s^{t}\right).$$

Stochastic Volatility II

• $H\left(s^{t}\right)$ (instantaneous shocks variances) is diagonal with nonzero elements $h_{i}\left(s^{t}\right)$ that evolve:

$$\log h_i\left(s^t\right) = \log h_i\left(s^{t-1}\right) + \varsigma_i \eta_i\left(s^t\right).$$

• $G(s^t)$ (loading matrix) is lower triangular, with unit entries in the diagonal and entries $\gamma_{ij}(s^t)$ that evolve:

$$\gamma_{ij}\left(s^{t}\right) = \gamma_{ij}\left(s^{t-1}\right) + \omega_{ij}\nu_{ij}\left(s^{t}\right).$$

Where Are We Now?

- Solving the model: problem with 45 state variables: physical capital, the aggregate price level, 7 shocks, 8 elements of matrix $H(s^t)$, and the 28 elements of the matrix $G(s^t)$.
- Perturbation.
- We are making good progress.