
Metropolis-Hasting Algorithm
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Building our McMc

Our previous chapter showed that we need to find a transition Kernel

P (x,A) such that:

1. It is time reversible.

2. It is irreducible.

3. It is aperiodic.

4. (Bonus Points) It is Harris-recurrent and Geometrically Ergodic.
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History of Metropolis-Hastings

• Original contribution: Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953).

• Generalized by Hastings (1970).

• Ignored for a long time: Hastings did not get tenure!

• Rediscovered by Tanner and Wong (1987) and Gelfand and Smith
(1990).

3



Metropolis-Hastings Transition Kernel

Let:

PMH (x, dy) = pMH (x, y) dy + rMH (x) δx (dy)

where:

pMH (x, y) = q (x, y)α (x, y)

α (x, y) = min

(
f (y) q (y, x)

f (x) q (x, y)
, 1

)
and q (x, y) is a candidate-generating density that is irreducible and aperi-

odic.
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LemmaR
A f (y) dy =

R
X PMH (x,A) f (x) dx.

Proof: We only need to show that

f (x) pMH (x, y) = f (y) pMH (y, x)

Assume without loss of generality that:

α (x, y) < 1⇒ α (y, x) = 1

Then:

f (x) pMH (x, y) = f (x) q (x, y)α (x, y)

= f (x) q (x, y)min

(
f (y) q (y, x)

f (x) q (x, y)
, 1

)
= f (x) p (x, y)

f (y) q (y, x)

f (x) q (x, y)

= f (y) q (y, x) = f (y) pMH (y, x)
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Remark

• Why do we need the min operator?

• In general
f (x) q (x, y) 6= f (y) q (y, x)

If, for example f (x) q (x, y) > f (y) q (y, x) , the process moves from

x to y too often and from y to x too rarely.

• We correct this problem with the probability α (·, ·) .

• Now we have reduced the number of moves from x to y.
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Symmetric Candidate-Generating Densities

• We can take a candidate-generating density q (x, y) = q (x, y) (for
example a Random walk). Then:

α (x, y) = min

(
f (y)

f (x)
, 1

)

• Then, if the jump is “uphill” (f (y) /f (x) > 1) , we always accept:
α (x, y) = 1⇒ pMH (x, y) = q (x, y)⇒ rMH (x) = 0

• If the jump is “downhill” (f (y) /f (x) < 1) , we accept with nonzero
probability:

α (x, y) < 1⇒ pMH (x, y) < p (x, y)⇒ rMH (x) > 0
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Pseudo-Code

1. Initialize the algorithm with an arbitrary value x0 and M .

2. Set j = 1.

3. Generate x∗j from q
³
xj−1, x∗j

´
and u from U [0, 1].

4. If u ≤ α
³
xj−1, x∗j

´
then xj = x∗j , if u > α

³
xj−1, x∗j

´
then xj =

xj−1.

5. If j ≤M then j Ã j + 1 and got to 3.
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Remarks on Metropolis-Hasting

• Metropolis-Hasting Algorithm is defined by q (x, y). Alternatives?

• We need to able to evaluate a function g (x) ∝ f (x). Since we only

need to compute the ratio f (y) /f (x), the proportionality constant is

irrelevant.

• Similarly, we only care about q (·) up to a constant.

• If the candidate is rejected, the current value is taken as the next value
in the sequence. Note difference with acceptance sampling.
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Choosing q (x, y) I

• A popular choice for q (x, y) is a random walk:

y = x+ ε where ε ∼ N (0,Σ)

• It is known as a Random-Walk M-H.

• Random walk satisfies all conditions of a good transition kernel.

• Good default option.

• How do we determine Σ? Hessian of distribution of interest.
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Choosing q (x, y) II

• Another popular choice is the Independent M-H.

• We just make q (x, y) = g (y) .

• Note similarity with acceptance sampling.

• However, the independent M-H accepts more often.

• If f (x) ≤ ag (x), then the independent M-H will accept at least 1/a

of the proposals.
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Theoretical Properties

• We built time reversibility on our definition of the M-H transition

kernel. What about other requirements?

• If q (x, y) is positive and continuous and X is connected, we have a

Law of Large Numbers.

• If q (x, y) is not reversible (general case), we have an aperiodic chain,
which delivers convergence.

• If invariant distribution is bounded, we will also have a Central Limit
Theorem.
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Example I (t metropolis.m)

• We revisit our problem of drawing from a t distribution.

• Remember how difficult it was to use, for example, a normal distribu-
tion to sample as an envelope?

• Basically, because dealing with tails with difficult.

• Now, we will see that with a Metropolis-Hastings the problem is quite

simple.
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Example I

• Use MH to provide a numerical approximation to t (x, 3), a t distrib-
ution with 3 degrees of freedom, evaluated at x.

• We need to get a random draw
n
xj
oN
j=1

from t(3) using the MH.

• Implemented in my code t metropolis.m.
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Pseudocode

1. Initialize the algorithm with x0 = 0 and M . Set j = 1.

2. Generate x∗j = xj−1 +N (0, 3.4).

3. Then α
³
xj−1, x∗j

´
= min

n
f3
³
x∗j
´
/f3

³
xj−1

´
, 1
o
.

4. Generate u ∼ U [0, 1].

5. If u ≤ α
³
xj−1, x∗j

´
then xj = x

∗
j , otherwise xj = xj−1.

6. If j ≤M then j Ã j + 1 and go to 3.
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Output

• Output is a random draw
n
xj
oM
j=1

.

• With simulation, we can compute CDF:

Φ (t) ' 1

M

MX
i=1

δ{xi:xi<t} (xi)

• Some times, researchers report a smoothed version of the density (for
example with a Kernel estimator).

• Similarly, we can compute the integral of any function of interest and
Numerical errors.
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Rate of Convergence

At which speed does the Chain converge? How long the Chain should run?

Three important things to do:

• Run a set of different Chains with different initial values and compare
within and between Chains variation.

• Check serial correlation of the draws.

• Make M an increasing function of the serial correlation of the draws.

• Run N different chains of length M with random initial values and

take the last value of each chain.
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Diagnosis of Convergence

• Can we check convergence of our estimates?

• Different procedures. See Robert and Casella (2004) chapter 12.

• My experience with formal convergence criteria is not a happy one:
they accept convergence too quickly.

• Graphical alternatives: time series and recursive means.
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More on Convergence

• Often, convergence takes longer than what you think.

• Case of bi-modal distributions.

• Play it safe: just let the computer run a few more times.

• Use acceleration methos or Rao-Blacwellization
var (E (h (X|Y ))) ≤ varh (X)

.
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One Chain versus Many Chains

• Should we use one long chain or many different chains?

• The answer is clear: only one long chain.

• Fortunately, the old approach of many short chains is disappearing.

• This does not mean that you should not do many runs while you are
tuning your software!
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Burn-in

• Should we burn-in the first simulations?

• Common practice.

• However, link with theory is tenuous at best.

• Just a way to determine an initial value of the parameter.

• There are better ways to proceed.
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Acceptance Ratio

• If the candidate is rejected, the current value is taken as the next value
in the sequence.

• Choosing the acceptance ratio is important for a good numerical per-
formance of the algorithm.

• Acceptance rate should be (Roberts, Gelman and Gilks, 1994):

1. 45% for unidimensional problems.

2. 23% in the limit.

3. 25% for 6 dimensions.
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Example II (metropolis.m)

• Simulate 200 observations from the following model

yt = φ1yt−1 + φ2yt−2 + ²t = w0tΦ+ ²t
where φ1 = 1, φ2 = −0.5, ²t ∼ N (0, 1), wt = (yt−1, yt−2)0 and
Φ = (φ1,φ2)

0.

• Let S = {Φ : φ1 + φ2 < 1,−φ1 + φ2 < 1,φ2 > −1} define the sta-
tionary restrictions of the AR(2) process.
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Example II

• Write the likelihood function of Y = (y3, y4, ..., y100) conditional on

y1 and y2.

` (Y |Φ,σ, y2, y1) =
³
σ2
´−49

exp

− 1

2σ2

100X
t=3

³
yt − w0tΦ

´

• Priors are:

— Φ ∈ S

— σ ∈ T = {σ : σ > 0}
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Example II

• Posterior:

π (Φ,σ|Y, y2, y1) ∝
³
σ2
´−49

exp

− 1

2σ2

100X
t=3

³
yt − w0tΦ

´ΥS (Φ)ΥT (σ)

• Let

pMH
³
Φ,σ,Φ0,σ0

´
=


φ01 = φ1 + U [−0.04, 0.04]
φ02 = φ2 + U [−0.04, 0.04]
σ = σ + U [−0.004, 0.004]
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Pseudocode I

1. Initialize Φ0,σ0, and M to some fixed value and set j = 1.

2. Set

φ∗i,j = φi,j−1 + U [−0.04, 0.04]
for = 1, 2 and

σ∗j = σj−1 + U [−0.004, 0.004]

3. Then

α
³
Φj−1,σj−1,Φ∗j ,σ∗j

´
= min

 π
³
Φ∗j ,σ∗j |Y, y2, y1

´
π
³
Φj−1,σj−1|Y, y2, y1

´, 1
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Pseudocode II

4. Generate u ∼ U [0, 1].

5. If u ≤ α
³
Φj−1,σj−1,Φ∗j ,σ∗j

´
then Φj = Φ∗j and σj = σ∗j , if u >

α
³
Φj−1,σj−1,Φ∗j ,σ∗j

´
then Φj = Φj−1 and σj = σj−1.

6. If j ≤M then j Ã j + 1 and got to 3.
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Example III (fisher mcmc.m)

• Our first real example of how to estimate a DSGE model.

• Model with investment-specific technological change.

• Based on Greenwood, Hercowitz, and Krusell (1997) and Fisher (2004).

• Why investment-specific technological change?
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Model I

• Representative household.

• Preferences:
E0

∞X
t=0

βt (logCt + ψ log((1− Lt))

• Resource constraint:
Ct +Xt = AtK

α
t L

1−α
t

• Law of motion for capital:
Kt+1 = (1− δ)Kt + VtXt,
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Model II

• Technology evolution:
At = eγ+εatAt−1, γ ≥ 0 and εat ∼ N (0,σa)

Vt = eυ+ευtVt−1, υ ≥ 0 and ευt ∼ N (0,συ)

• Note:

1. Two unit roots.

2. Different drifts.

3. Cointegration relations among nominal variables but not among

real ones.
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Model III

• Technology evolution:
At = eγ+εatAt−1, γ ≥ 0 and εat ∼ N (0,σa)

Vt = eυ+ευtVt−1, υ ≥ 0 and ευt ∼ N (0,συ)

• Note:

1. Two unit roots.

2. Different drifts.

3. Cointegration relations among nominal variables but not among

real ones.
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Transforming Model I

• The previous model is nonstationary because of the presence of two
unit roots.

• We need to transform the model into a stationary problem.

• We select a predetermined scaling variable that is fully known before
the current period shocks are realized.
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Transforming Model II

• We begin with the resource constraint and the law of motion for cap-
ital:

Ct +Xt = AtK
α
t L

1−α
t

Kt+1
Vt

= (1− δ)
Kt

Vt
+Xt.

• If we divide both equations by Zt = A
1
1−α
t−1V

α
1−α
t−1 =

³
At−1V α

t−1
´ 1
1−α ,

we find:

Ct

Zt
+
Xt

Zt
=

AtV
α
t−1

Z1−αt

Ã
Kt

ZtVt−1

!α
L1−αt

Kt+1
Zt+1Vt

Zt+1
Zt

= (1− δ)
Kt

ZtVt−1
Vt−1
Vt

+
Xt

Zt
.
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Transforming Model III

First, note that since:

Zt+1 = A
1
1−α
t V

α
1−α
t = A

1
1−α
t−1V

α
1−α
t−1 e

γ+αυ+εat+αευt
1−α ,

we have that:

Zt+1
Zt

=
A

1
1−α
t−1V

α
1−α
t−1 e

γ+αυ+εat+αευt
1−α

A
1
1−α
t−1V

α
1−α
t−1

= e
γ+αυ+εat+αευt

1−α .

Also
AtV

α
t−1

Z1−αt

= eγ+εat,
Vt−1
Vt

= e−υ−ευt, and ZtVt−1 = A
1
1−α
t−1V

1
1−α
t−1 .

34



Transforming Model IV

Define eCt = Ct
Zt
, fXt = Xt

Zt
and fKt = Kt

ZtVt−1. Then:eCt + fXt = eγ+εatfKα
t L

1−α
t

e
γ+αυ+εat+αευt

1−α fKt+1 = (1− δ) e−υ−ευtfKt + fXt
or, summing both expressions:

eCt + eγ+αυ+εat+αευt1−α fKt+1 = eγ+εatfKα
t L

1−α
t + (1− δ) e−υ−ευtfKt
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New Model

E0

∞X
t=0

βt
³
log eCt + ψ log(1− Lt)

´
.

such that

eCt + eγ+αυ+εat+αευt1−α fKt+1 = eγ+εatfKα
t L

1−α
t + (1− δ) e−υ−ευtfKt

with first order conditions:

e
γ+αυ+εat+αευt

1−αeCt = βEt
1eCt+1

³
αeγ+εat+1fKα

t+1L
1−α
t+1 + (1− δ) e−υ−ευt+1

´
ψ

eCt
1− Lt

= (1− α) eγ+εatfKα
t L
−α
t
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Observables

• Certain degree of arbitrariness.

• Use of educated economic intuition.

• First differences of output and hours.
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Four Remarks

• Other transformation methods? Prefiltering. Hansen and Sargent

(1993).

• Relation with stochastic singularity. Measurement errors. Advantages
and disadvantages of measurement errors.

• Initialization of the filter. Alternatives to first differences.

• What happened with our cointegration relations?
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Multiple-block Metropolis-Hastings

• Often we can group different variables of the vector x ∼ f (x) in one
block.

• Why? Increases efficiency, especially in large spaces.

• Furthermore, we will see that the Gibbs Sampler is a case of Multiple-
block Metropolis-Hastings.
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Partitions

• Partition x into x = {x1, ..., xp} .

• Define: x−k to be all the blocks excluding xk.

• Define f ¡xk, x−k¢ to be the joint density of x regardless of where xk
appears in the list of blocks.

• Define ©qk ¡xk, yk|x−k¢ , k ≤ pª to be a family of candidate-generating
densities.
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Transition Densities

• Define

αk
¡
xk, yk|x−k

¢
= min

(
f
¡
yk, x−k

¢
qk
¡
yk, xk|x−k

¢
f
¡
xk, x−k

¢
qk
¡
xk, yk|x−k

¢, 1)
as the probability of moving within one block.

• The algorithm is a M-H where we do the update block by block.

• The update of xk is done in each step of the cycle.

• Why does it work? Local time reversibility.
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Monte Carlo Optimization

• We saw that, at the core of the M-H, there is an “up-hill” climber:

we always accept if we go up.

• But there is a great twist: sometimes we go down.

• Can we use this idea for optimization?

• Is there a theory behind this?

• Yes, Monte Carlo Optimization.
42



A Motivation Example

• Imagine we have the function:
h (x, y) = − (x sin (20y) + y sin (20x))2 cosh (sin (10x)x)

− (x cos (10y)− y sin (10x))2 cosh (cos (20y) y)

• Let’s take a look: crazy function.m

• Do you think we can maximize this function using a Newton-type
algorithm?

• Maybe with a stochastic gradient method. But, does not a stochastic
gradient motivate a different approach?
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Simulated Annealing

• Developed by Kirkpatrick, Gellat, and Vecchi (1983).

• They built on Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller
(1953)!

• Name comes from Metallurgy. By slowly cooling down an anneal,

we get a configuration of atoms with the lowest internal energy (the

kinetic energy of the molecules.

• Natural counterpart in optimization problems.
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Main Idea

• Given a parameter T > 0 (often called temperature), we draw x∗j+1
from:

exp
³
f
³
x∗j
´
/T
´

• Function f is the function to maximize.

• As T goes to zero, the values simulated from this distribution be-

come more concentrated around a narrower neighborhood of the local

maxima of f.
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Pseudocode

1. Initialize the algorithm with an arbitrary value x0 and M .

2. Set j = 1.

3. Generate x∗j from symmetric q
³
xj−1, x∗j

´
and u from U [0, 1].

4. If u ≤
n
exp

³
∆f

³
x∗j
´
/Tj

´
, 1
o
then xj = x

∗
j , otherwise xj = xj−1.

5. If j ≤M then j Ã j + 1, Tj Ã Tj+1, and go to 3.
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Intuition

• If we improve, we always move into the proposed direction.

• However, if we do not improve, we may be tempted to move anyway.

• Why? Because it avoids getting stuck in a local maxima.

• Example from nature: bees.
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Remarks

• Proof of why simulated annealing works is rather involved technically.
More general case: Andrieu and Doucet (2001).

• Main practical issue: how to select the sequence of temperatures to

go to zero at the right rate.

• Literature suggests rates of 1/ log t.
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Equivalence with Metropolis-Hastings

• From the pseudocode, we see a strong resemblance with M-H.

• Basically Simulated Annealing is a M-H with stationary distribution

exp
³
f
³
x∗j
´
/T
´
for a fixed T.

• For non-fixed, we need to work a bit more (we will be handling a
time-heterogeneous Markov Chain), but the idea is the same

• Think about Harris Recurrence!
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Practical Implementation I

• Use your M-H to draw from the posterior as you will otherwise do.

• Keep track of the highest value of the likelihood you have found so far
and the parameters that generated it.

• As the number of M-H simulations goes to infinity, you will pass a.s.
through the max of the likelihood.

• Simpler to see with uniform priors.

50



Practical Implementation II

• In practice this means you can do your ML and your Bayesian estima-
tion simultaneously.

• You can feed your max as the initial guess of a Newton-type algorithm

• Relation with the paper of Chernozhukov and Hong (2003) that we
have already seen.
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Genetic Algorithms I

• Before we used the example of bees.

• Nature seems to be good at optimizing.

• Idea behind evolution.

• Can we apply those insights? Genetic Algorithms.
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Genetic Algorithms II

• Developed by John Holland.

• Basic idea: genetic information is copied subject to mutations and
there is a survival of the fittest.

• Long tradition in economics: Malthus and Darwin.

• Example: traveling salesman problem.
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Remarks

• Solution implies “Punctuated Equilibria”.

• Something like this is observed in evolutionary landscapes (Stephen
Jay Gould).

• Implications for economics:

1. Technological change.

2. Learning environments.
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