Markov Chain Monte Carlo Methods

Jesús Fernández-Villaverde
University of Pennsylvania

"Bayesianism has obviously come a long way. It used to be that could tell a Bayesian by his tendency to hold meetings in isolated parts of Spain and his obsession with coherence, self-interrogations, and other manifestations of paranoia. Things have changed..."

Peter Clifford, 1993

Our Goal

- We have a distribution:

$$
X \sim f(X)
$$

such that $f>0$ and $\int f(x) d x<\infty$.

- How do we draw from it?
- We could use Important Sampling...
- ...but we need to find a good source density.

Five Problems

1. A Multinomial Probit Model.
2. A Markov-Switching Model
3. A Stochastic Volatility Model.
4. A Drifting-Parameters VAR Model.
5. A DSGE Model.

A Multinomial Probit Model (MNP)

- MNP goes back to Thurstone (1927) and Bock and Jones (1968).
- An individual i gets utility $U_{i j}$ from choice $j, j \in\{0,1, \ldots, J\}$.
- Utility is given by $U_{i j}=x_{i j} \beta+\varepsilon_{i j}$ where $\varepsilon_{i j}$ are multivariate normal.
- Examples: car demand, educational choice, voting,...

Problem with MNP

- Under utility maximization, the individual will choose j with probability:

$$
\begin{aligned}
& P\left(U_{i j}>U_{i k}, \text { for all } k \neq j\right) \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{U_{i j}} \cdots \int_{-\infty}^{U_{i j}} f\left(U_{\left.i 1, \ldots, U_{i J}\right) d U_{i 1, \ldots}, d U_{i J}}\right.
\end{aligned}
$$

where f is the J-dimensional normal density.

- Two problems:

1. We need to evaluate a multidimensional normal integral.
2. Conditional on an evaluation of the integral, we need to draw from the posterior or maximize the likelihood.

First Problem: Multidimensional Integral

- Lerman and Manski (1981): Acceptance Sampling.
- GHK (Geweke-Hajivassiliou-Keane) simulator.

Second Problem: Manipulating the Likelihood

- Do we have good importance sampling densities to do so?
- Relation with MSM (McFadden, 1989).

Markov-Switching Model

- Hamilton (1979), Kim and Nelson (1999).
- Regression:

$$
z_{t}=\rho_{s_{t}} z_{t-1}+e^{\sigma_{s}} \varepsilon_{t} \text { where } \varepsilon_{t} \sim \mathcal{N}(0,1)
$$

where

$$
\begin{aligned}
\rho_{s_{t}} & =\rho_{0} S_{t}+\rho_{1}\left(1-S_{t}\right) \\
\sigma_{s_{t}} & =\sigma_{0} S_{t}+\sigma_{1}\left(1-S_{t}\right)
\end{aligned}
$$

and transition matrix for $S_{t}=\{0,1\}$

$$
\left(\begin{array}{ll}
\theta & 1-\theta \\
1-\lambda & \lambda
\end{array}\right)
$$

Stochastic Volatility Model

- Changing volatility clustered over time: Kim, Shephard, and Chib (1997).
- We have an autoregressive process:

$$
z_{t}=\rho z_{t-1}+e^{\sigma_{t}} \varepsilon_{t} \text { where } \varepsilon_{t} \sim \mathcal{N}(0,1)
$$

1. and

$$
\sigma_{t}=(1-\lambda) \sigma_{\text {mean }}+\lambda \sigma_{t-1}+\tau \eta_{t} \text { where } \eta_{t} \sim \mathcal{N}(0,1)
$$

- How do we write the likelihood? Comparison with $\operatorname{GARCH}(p, q)$ (Engle, 1982, and Bollerslev, 1986).

Drifting-Parameters VAR

- We have a VAR of the form:

$$
Y_{t}=B_{t} Y_{t-1}+\varepsilon_{t} \text { where } \varepsilon_{t} \sim \mathcal{N}(0, \Sigma)
$$

- The parameters B_{t} drift over time:

$$
B_{t}=B_{t-1}+\omega_{t} \text { where } \omega_{t} \sim \mathcal{N}(0, V)
$$

- Cogley and Sargent (2001) and (2002): inflation dynamics in the U.S.

DGSE Models

- We have a likelihood $f\left(Y^{T} \mid \theta\right)$ that does not belong to any known parametric family.
- In fact, usually we cannot even write it: only obtain a (possibly stochastic) evaluation.
- Example: basic RBC model.

Transition Kernels I

- The function $P(x, A)$ is a transition kernel for $x \in \mathcal{X}$ and $A \in \mathcal{B}(\mathcal{X})$ (a Borel σ-field on \mathcal{X}) such that:

1. For all $x \in \mathcal{X}, P(x, \cdot)$ is a probability measure.
2. For all $A \in \mathcal{B}(\mathcal{X}), P(\cdot, A)$ is measurable.

- When \mathcal{X} is discrete, the kernel is a transition matrix with elements:

$$
P_{x y}=P\left(X_{n}=y \mid X_{n-1}=x\right) x, y \in \mathcal{X}
$$

- When \mathcal{X} is continuous, the kernel is also the conditional density:

$$
P(X \in A \mid x)=\int_{A} P\left(x, x^{\prime}\right) d x^{\prime}
$$

Transition Kernels II

- Clearly:

$$
P(x, \mathcal{X})=1
$$

- Also, we allow:

$$
P(x, \mathcal{X}) \neq 0
$$

- Examples in economics: capital accumulation, job search, prices in financial market,...

Transition Kernels III

Define:

$$
P(x, d y)=p(x, y) d y+r(x) \delta_{x}(d y)
$$

where

1. $p(x, y) \geq 0, p(x, x)=0$
2. $\delta_{x}(d y)$ is the dirac function in $d y$,
3. $P(x, x)$, the probability that the chain remains at x, is:

$$
r(x)=1-\int_{\mathcal{X}} p(x, y) d y
$$

Markov Chain

- Given a transition kernel P, a sequence $X_{0}, X_{1}, \ldots, X_{n}, \ldots$ of random variables is a Markov Chain, denoted by $\left(X_{n}\right)$, if for any t

$$
P\left(X_{k+1} \in A \mid x_{0}, \ldots, x_{k}\right)=P\left(X_{k+1} \in A \mid x_{k}\right)=\int_{A} P\left(x_{k}, d x\right)
$$

- We will only deal with time homogeneous chains, i.e., the distribution of $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$ given x_{0} is the same as the distribution of $\left(X_{t_{1}-t_{0}}, \ldots, X_{t_{k}-t_{0}}\right)$ given x_{0} for every k and every $(k+1)$-uplet $t_{0} \leq \ldots \leq t_{k}$.

Chapman-Kolmogorov Equations

- For every $(m, n) \in \aleph^{2}, x \in \mathcal{X}, A \in \mathcal{B}(\mathcal{X})$

$$
P^{m+n}(x, A)=\int_{\mathcal{X}} P^{n}(y, A) P^{m}(x, d y)
$$

- When \mathcal{X} is discrete, the previous equation is just a matrix product.
- When \mathcal{X} is continuous, the kernel is interpreted as an operator on the space of integrable functions:

$$
P h(x)=\int_{A} h(y) P(x, d y)
$$

Then, we have a convolution formula: $P^{m+n}=P^{m} \star P^{n}$.

Importance of Result

- More in general, we have an operator

$$
P \pi(B)=\int_{A} P(x, B) \pi(d x), \text { for all } A \in \mathcal{B}(\mathcal{X})
$$

where π is a probability distribution.

- We can search for a fixed point:

$$
\pi_{s}=P \pi_{s}
$$

- We say that the distribution π_{s} is invariant for the transition kernel $P(\cdot, \cdot)$.

Relevant Questions

- Why do we care about a fixed point of the operator?
- Does it exist an invariant distribution?
- Do we converge to it?
- Meyn, S.P. and R.L. Tweedie (1993), Markov Chains and Stochastic Stability. Springer-Verlag.

Markov Chain Monte Carlo Methods

- A Markov Chain Monte Carlo (McMc) method for the simulation of $f(x)$ is any method producing an ergodic Markov Chain whose invariant distribution is $f(x)$.
- Looking for a Markovian Chain, such that if $X^{1}, X^{2}, \ldots, X^{t}$ is a realization from it

$$
X^{t} \rightarrow X \sim f(x)
$$

as t goes to infinity.

Turning the Theory Around

- Note twist we are giving to theory.
- Computing Equilibrium models: we know transition Kernel (from policy functions of the agents) and we compute the invariant distribution.
- McMc: we know invariant distribution and we search for transition kernel that induces that invariant distribution.
- How do we find the transition kernel?

A Trivial Example

- Imagine we want to draw from a binomial with parameter 0.5.
- The simplest way: draw a $u \sim U[0,1]$. If $u \leq 0.5$, then $x=1$, otherwise $x=0$.
- The Markov Chain way:

1. Simulate from transition matrix

$$
\left(\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right)
$$

with initial state 1.
2. Every time the state is 1 , make $x_{t}=1$. Otherwise $x=0$.

Roadmap

We search for a transition kernel that:

1. Induces an unique stationary distribution with density $f(x)$.
2. Stays within stationary distribution.
3. Converges to the stationary distribution.
4. A Law of Large Number Applies.
5. A Central Limit Theorem Applies.

Searching for a Transition Kernel $P(x, A)$

- Remember that $P(x, d y)=p(x, y) d y+r(x) \delta_{x}(d y)$.
- Let $f(x): \mathcal{X} \rightarrow R^{+}$be a density.
- Theorem: If $f(x) p(x, y)=f(y) p(y, x)$, then

$$
\int_{A} f(y) d y=\int_{\mathcal{X}} P(x, A) f(x) d x
$$

Proof

$$
\begin{gathered}
\int_{\mathcal{X}} P(x, A) f(x) d x \\
=\int_{\mathcal{X}}\left[\int_{A} p(x, y) d y\right] f(x) d x+\int_{\mathcal{X}} r(x) \delta_{x}(A) f(x) d x= \\
=\int_{A}\left[\int_{\mathcal{X}} p(x, y) f(x) d x\right] d y+\int_{A} r(x) f(x) d x= \\
=\int_{A}\left[\int_{\mathcal{X}} p(y, x) f(y) d x\right] d y+\int_{A} r(x) f(x) d x= \\
=\int_{A}(1-r(y)) f(y) d y+\int_{A} r(x) f(x) d x= \\
=\int_{A} f(y) d y
\end{gathered}
$$

Remarks

- Note that $\int_{A} f(y) d y=\int_{\mathcal{X}} P(x, A) f(x) d x$ is an expression for the invariant distribution. We will call that distribution π_{s}.
- Explanation: if $p(x, y)$ is time reversible, then f is the invariant distribution of $P(x, \cdot)$.
- Time reversibility is the key element we will search for in our McMc algorithms.

Convergence

- Note we have proved that the transition Kernel is a fixed point on the space of densities.
- Can we prove convergence to that invariant distribution?
- If $\left\{P^{n}(x, A)\right\}_{n=0}^{m}$ where $P^{n}(x, A)=\int_{\mathcal{X}} P(y, A) P^{n-1}(x, d y)$ and $P^{0}(x, A)=P(x, A)$, when do we have that:

$$
P^{m}(x, A) \rightarrow \pi_{s}(A)
$$

for π_{s}-almost all $x \in \mathcal{X}$ as $m \rightarrow \infty$ in the total variance distance?

Sufficient Conditions for Convergence

If $P(x, A)$ is such that (1) holds, then the following two conditions about $P(x, A)$ are sufficient for $\Phi^{m}(x, A) \rightarrow \pi_{s}(A)$ (Smith and Roberts, 1993):

- Irreducibility: if $x \in \operatorname{support}(f)$ and $A \in \mathcal{B}(\mathcal{X})$, it should be possible to get from x to A with positive probability in a finite number of steps.
- Aperiodicity: The Chain should not have periodic behavior.

Transient period ("burn-in") in our simulations.

A Law of Large Numbers
If $P(x, A)$ is irreducible with invariant distribution π_{s}, then:

1. π_{s} is unique.
2. For all π_{s}-integrable real-valued functions:

$$
\frac{1}{M} \sum_{i=1}^{M} h\left(x_{i}\right) \rightarrow \int_{\mathcal{X}} h(x) \pi_{s}(d x)
$$

or

$$
\widehat{h} \rightarrow E h
$$

almost surely.

How do we use this result?

A Central Limit Theorem

- A Central Limit Theorem is useful to study sample-path averages.
- Two conditions on $P(x, A)$:

1. Positive Harris-Recurrent.
2. Geometrically Ergodic.

Harris-Recurrence

- A set A is Harris-recurrent if $P_{x}\left(\eta_{A}=\infty\right)=1$ for all $x \in A$.
- A Markov Chain is Harris-recurrent if it has an irreducible measure ψ such that for every set A such that $\psi(A)>0, A$ is Harris-recurrent.
- Interpretation (Chan and Geyer, 1994): "Harris recurrence essentially says that there is no measure-theoretic pathology... The main point about Harris recurrence is that asymptotics do not depend on the starting distribution..."

Geometric Ergodicity

- An ergodic Markov chain with invariant distribution π_{s} is geometrically ergodic if there exist a non-negative real-valued functions bounded in expectation under π_{s} and a positive constant $r<1$ such that:

$$
\left\|P^{M}(x, A)-\pi_{s}(A)\right\| \leq C(x) r^{n}
$$

for all x and all n and sets A.

- Geometric ergodicity ensures that the distance between the distribution we have and the invariant distribution decreases sufficiently fast.

Chan and Geyer (1994)

If an ergodic Markov chain with invariant distribution π_{s} is geometrically ergodic, then for all L^{2} measurable functions h and any initial distribution

$$
M^{0.5}(\widehat{h}-E h) \rightarrow N\left(0, \sigma_{h}^{2}\right)
$$

in probability, where:

$$
\sigma_{h}^{2}=\operatorname{var}\left(h\left(P^{0}(x, A)\right)\right)+2 \sum_{k=1}^{\infty} \operatorname{cov}\left\{h\left(P^{0}(x, A)\right) h\left(P^{0}(x, A)\right)\right\}
$$

Note the covariance induced by the Markov Chain structure of our problem.

Building our McMc
Previous arguments show that we need to find a transition Kernel $P(x, A)$ such that:

1. It is time reversible.
2. It is irreducible.
3. It is aperiodic.
4. (Bonus Points) It is Harris-recurrent and Geometrically Ergodic.

Note: 1)-4) are sufficient conditions!

McMc and Metropolis-Hastings

- The Metropolis-Hastings algorithm is the ONLY known method of McMc.
- Gibbs-Sampler is a particular form of Metropolis-Hastings.
- Many researchers have proposed almost-but-not-quite-so McMc. Beware of them!.
- Where is the frontier? Perfect Sampling.

On the Use of McMc

- We motivated McMc by the need to draw from a posterior distribution of parameters.
- Up to a point the motivation is misleading.
- Why?

1. McMc helps to draw from a distribution. It does not need to be a posterior. Think of the multivariate integral in the MNP model.
2. McMc explores a distribution. It can be used for classical estimation.

Difficult Problems for Classical Estimation

1. Censored Median Regression for Linear and Non-linear problems (Powell, 1994).
2. Nonlinear IV estimation (Berry, Levinsohn, and Pakes, 1995).
3. Instrumental Quantile Regression.
4. Continuous-updating GMM (Hansen, Heaton, and Yaron, 1996).
5. DSGE Models.

McMc and Classical Estimation I

- Emphasized by Victor Chernozhukov and Han Hong (2003).
- Idea: Laplace-Type Estimators (LTE).
- Define similarly to Bayesian but use general statistical criterion function instead of the likelihood.
- Function $L_{n}(\theta)$ such that:

$$
n^{-1} L_{n}(\theta) \rightarrow M(\theta)
$$

McMc and Classical Estimation II

- Define the transformation:

$$
p_{n}(\theta)=\frac{e^{L_{n}(\theta)} \pi(\theta)}{\int e^{L_{n}(\theta)} \pi(\theta) d \theta}
$$

that induces a proper distribution.

- Then, the quasi-posterior mean is:

$$
\widehat{\theta}=\int \theta p_{n}(\theta) d \theta
$$

can be approximated by draws from a McMc:

$$
\widehat{\theta}=\frac{1}{M} \sum_{i=1}^{M} \theta_{i}
$$

