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“Bayesianism has obviously come a long way. It used to be that could tell

a Bayesian by his tendency to hold meetings in isolated parts of Spain

and his obsession with coherence, self-interrogations, and other

manifestations of paranoia. Things have changed...”

Peter Clifford, 1993
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Our Goal

• We have a distribution:
X ∼ f(X)

such that f > 0 and
R
f(x)dx <∞.

• How do we draw from it?

• We could use Important Sampling...

• ...but we need to find a good source density.
3



Five Problems

1. A Multinomial Probit Model.

2. A Markov-Switching Model

3. A Stochastic Volatility Model.

4. A Drifting-Parameters VAR Model.

5. A DSGE Model.
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A Multinomial Probit Model (MNP)

• MNP goes back to Thurstone (1927) and Bock and Jones (1968).

• An individual i gets utility Uij from choice j, j ∈ {0, 1, ..., J} .

• Utility is given by Uij = xijβ + εij where εij are multivariate normal.

• Examples: car demand, educational choice, voting,...

5



Problem with MNP

• Under utility maximization, the individual will choose j with probabil-
ity:

P
³
Uij > Uik, for all k 6= j

´
=

Z ∞
−∞

Z Uij
−∞

...
Z Uij
−∞

f
³
Ui1,..., UiJ

´
dUi1,...dUiJ

where f is the J−dimensional normal density.

• Two problems:

1. We need to evaluate a multidimensional normal integral.

2. Conditional on an evaluation of the integral, we need to draw from
the posterior or maximize the likelihood.
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First Problem: Multidimensional Integral

• Lerman and Manski (1981): Acceptance Sampling.

• GHK (Geweke-Hajivassiliou-Keane) simulator.

Second Problem: Manipulating the Likelihood

• Do we have good importance sampling densities to do so?

• Relation with MSM (McFadden, 1989).
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Markov-Switching Model

• Hamilton (1979), Kim and Nelson (1999).

• Regression:
zt = ρstzt−1 + e

σstεt where εt ∼ N (0, 1)

where

ρst = ρ0St + ρ1 (1− St)
σst = σ0St + σ1 (1− St)

and transition matrix for St = {0, 1}Ã
θ 1− θ
1− λ λ

!
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Stochastic Volatility Model

• Changing volatility clustered over time: Kim, Shephard, and Chib
(1997).

• We have an autoregressive process:
zt = ρzt−1 + eσtεt where εt ∼ N (0, 1)

1. and

σt = (1− λ)σmean + λσt−1 + τηt where ηt ∼ N (0, 1)

• How do we write the likelihood? Comparison with GARCH(p,q) (En-
gle, 1982, and Bollerslev, 1986).
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Drifting-Parameters VAR

• We have a VAR of the form:
Yt = BtYt−1 + εt where εt ∼ N (0,Σ)

• The parameters Bt drift over time:
Bt = Bt−1 + ωt where ωt ∼ N (0, V )

• Cogley and Sargent (2001) and (2002): inflation dynamics in the U.S.
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DGSE Models

• We have a likelihood f
³
Y T |θ

´
that does not belong to any known

parametric family.

• In fact, usually we cannot even write it: only obtain a (possibly sto-
chastic) evaluation.

• Example: basic RBC model.
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Transition Kernels I

• The function P (x,A) is a transition kernel for x ∈ X and A ∈ B (X )
(a Borel σ−field on X ) such that:

1. For all x ∈ X , P (x, ·) is a probability measure.

2. For all A ∈ B (X ), P (·, A) is measurable.

• When X is discrete, the kernel is a transition matrix with elements:

Pxy = P (Xn = y|Xn−1 = x) x, y ∈ X

• When X is continuous, the kernel is also the conditional density:

P (X ∈ A|x) =
Z
A
P
³
x, x0

´
dx0
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Transition Kernels II

• Clearly:
P (x,X ) = 1

• Also, we allow:
P (x,X ) 6= 0

• Examples in economics: capital accumulation, job search, prices in
financial market,...
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Transition Kernels III

Define:

P (x, dy) = p (x, y) dy + r (x) δx (dy)

where

1. p (x, y) ≥ 0, p (x, x) = 0

2. δx (dy) is the dirac function in dy,

3. P (x, x) , the probability that the chain remains at x, is:

r (x) = 1−
Z
X
p (x, y) dy
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Markov Chain

• Given a transition kernel P , a sequence X0,X1, ...,Xn, ... of random
variables is a Markov Chain, denoted by (Xn), if for any t

P
¡
Xk+1 ∈ A|x0, ..., xk

¢
= P

¡
Xk+1 ∈ A|xk

¢
=
Z
A
P (xk, dx)

• We will only deal with time homogeneous chains, i.e., the distrib-
ution of

³
Xt1, ...,Xtk

´
given x0 is the same as the distribution of³

Xt1−t0, ...,Xtk−t0
´
given x0 for every k and every (k + 1)−uplet

t0 ≤ ... ≤ tk.
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Chapman-Kolmogorov Equations

• For every (m,n) ∈ ℵ2, x ∈ X , A ∈ B (X )

Pm+n (x,A) =
Z
X
Pn (y,A)Pm (x, dy)

• When X is discrete, the previous equation is just a matrix product.

• When X is continuous, the kernel is interpreted as an operator on the

space of integrable functions:

Ph (x) =
Z
A
h (y)P (x, dy)

Then, we have a convolution formula: Pm+n = Pm ? Pn.
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Importance of Result

• More in general, we have an operator

Pπ (B) =
Z
A
P (x,B)π (dx) , for all A ∈ B (X )

where π is a probability distribution.

• We can search for a fixed point:
πs = Pπs

• We say that the distribution πs is invariant for the transition kernel

P (·, ·) .
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Relevant Questions

• Why do we care about a fixed point of the operator?

• Does it exist an invariant distribution?

• Do we converge to it?

• Meyn, S.P. and R.L. Tweedie (1993), Markov Chains and Stochastic
Stability. Springer-Verlag.
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Markov Chain Monte Carlo Methods

• A Markov Chain Monte Carlo (McMc) method for the simulation

of f (x) is any method producing an ergodic Markov Chain whose

invariant distribution is f (x).

• Looking for a Markovian Chain, such that if X1,X2, ...,Xt is a real-
ization from it

Xt→ X ∼ f (x)
as t goes to infinity.
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Turning the Theory Around

• Note twist we are giving to theory.

• Computing Equilibrium models: we know transition Kernel (from pol-

icy functions of the agents) and we compute the invariant distribution.

• McMc: we know invariant distribution and we search for transition

kernel that induces that invariant distribution.

• How do we find the transition kernel?
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A Trivial Example

• Imagine we want to draw from a binomial with parameter 0.5.

• The simplest way: draw a u ∼ U [0, 1]. If u ≤ 0.5, then x = 1,
otherwise x = 0.

• The Markov Chain way:

1. Simulate from transition matrixÃ
0.5 0.5
0.5 0.5

!
with initial state 1.

2. Every time the state is 1, make xt = 1. Otherwise x = 0.
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Roadmap

We search for a transition kernel that:

1. Induces an unique stationary distribution with density f (x).

2. Stays within stationary distribution.

3. Converges to the stationary distribution.

4. A Law of Large Number Applies.

5. A Central Limit Theorem Applies.
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Searching for a Transition Kernel P (x,A)

• Remember that P (x, dy) = p (x, y) dy + r (x) δx (dy).

• Let f (x) : X → R+ be a density.

• Theorem: If f (x) p (x, y) = f (y) p (y, x) , thenZ
A
f (y) dy =

Z
X
P (x,A) f (x) dx
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Proof Z
X
P (x,A) f (x) dx

=
Z
X

·Z
A
p (x, y) dy

¸
f (x) dx+

Z
X
r (x) δx (A) f (x) dx =

=
Z
A

·Z
X
p (x, y) f (x) dx

¸
dy +

Z
A
r (x) f (x) dx =

=
Z
A

·Z
X
p (y, x) f (y) dx

¸
dy +

Z
A
r (x) f (x) dx =

=
Z
A
(1− r (y)) f (y) dy +

Z
A
r (x) f (x) dx =

=
Z
A
f (y) dy
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Remarks

• Note that RA f (y) dy = R
X P (x,A) f (x) dx is an expression for the

invariant distribution. We will call that distribution πs.

• Explanation: if p (x, y) is time reversible, then f is the invariant dis-
tribution of P (x, ·) .

• Time reversibility is the key element we will search for in our McMc
algorithms.
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Convergence

• Note we have proved that the transition Kernel is a fixed point on the
space of densities.

• Can we prove convergence to that invariant distribution?

• If {Pn (x,A)}mn=0 where Pn (x,A) =
R
X P (y,A)Pn−1 (x, dy) and

P 0 (x,A) = P (x,A) , when do we have that:

Pm (x,A)→ πs (A)

for πs−almost all x ∈ X as m→∞ in the total variance distance?
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Sufficient Conditions for Convergence

If P (x,A) is such that (1) holds, then the following two conditions about

P (x,A) are sufficient for Φm (x,A)→ πs (A) (Smith and Roberts, 1993):

• Irreducibility: if x ∈support(f)and A ∈ B (X ) , it should be possible
to get from x to A with positive probability in a finite number of steps.

• Aperiodicity: The Chain should not have periodic behavior.

Transient period (“burn-in”) in our simulations.

27



A Law of Large Numbers

If P (x,A) is irreducible with invariant distribution πs, then:

1. πs is unique.

2. For all πs−integrable real-valued functions:
1

M

MX
i=1

h (xi)→
Z
X
h (x)πs (dx)

or bh→ Eh

almost surely.

How do we use this result?
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A Central Limit Theorem

• A Central Limit Theorem is useful to study sample-path averages.

• Two conditions on P (x,A):

1. Positive Harris-Recurrent.

2. Geometrically Ergodic.
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Harris-Recurrence

• A set A is Harris-recurrent if Px (ηA =∞) = 1 for all x ∈ A.

• A Markov Chain is Harris-recurrent if it has an irreducible measure ψ
such that for every set A such that ψ (A) > 0, A is Harris-recurrent.

• Interpretation (Chan and Geyer, 1994): “Harris recurrence essentially
says that there is no measure-theoretic pathology...The main point

about Harris recurrence is that asymptotics do not depend on the

starting distribution...”
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Geometric Ergodicity

• An ergodic Markov chain with invariant distribution πs is geometrically
ergodic if there exist a non-negative real-valued functions bounded in

expectation under πs and a positive constant r < 1 such that:°°°PM (x,A)− πs (A)
°°° ≤ C (x) rn

for all x and all n and sets A.

• Geometric ergodicity ensures that the distance between the distribu-
tion we have and the invariant distribution decreases sufficiently fast.
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Chan and Geyer (1994)

If an ergodic Markov chain with invariant distribution πs is geometrically

ergodic, then for all L2 measurable functions h and any initial distribution

M0.5
³bh−Eh´→ N

³
0,σ2h

´
in probability, where:

σ2h = var
³
h
³
P 0 (x,A)

´´
+ 2

∞X
k=1

cov
n
h
³
P 0 (x,A)

´
h
³
P 0 (x,A)

´o

Note the covariance induced by the Markov Chain structure of our problem.
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Building our McMc

Previous arguments show that we need to find a transition Kernel P (x,A)
such that:

1. It is time reversible.

2. It is irreducible.

3. It is aperiodic.

4. (Bonus Points) It is Harris-recurrent and Geometrically Ergodic.

Note: 1)-4) are sufficient conditions!
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McMc and Metropolis-Hastings

• The Metropolis-Hastings algorithm is the ONLY known method of

McMc.

• Gibbs-Sampler is a particular form of Metropolis-Hastings.

• Many researchers have proposed almost-but-not-quite-so McMc. Be-
ware of them!.

• Where is the frontier? Perfect Sampling.
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On the Use of McMc

• We motivated McMc by the need to draw from a posterior distribution
of parameters.

• Up to a point the motivation is misleading.

• Why?

1. McMc helps to draw from a distribution. It does not need to be a

posterior. Think of the multivariate integral in the MNP model.

2. McMc explores a distribution. It can be used for classical estima-

tion.
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Difficult Problems for Classical Estimation

1. Censored Median Regression for Linear and Non-linear problems (Pow-

ell, 1994).

2. Nonlinear IV estimation (Berry, Levinsohn, and Pakes, 1995).

3. Instrumental Quantile Regression.

4. Continuous-updating GMM (Hansen, Heaton, and Yaron, 1996).

5. DSGE Models.
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McMc and Classical Estimation I

• Emphasized by Victor Chernozhukov and Han Hong (2003).

• Idea: Laplace-Type Estimators (LTE).

• Define similarly to Bayesian but use general statistical criterion func-
tion instead of the likelihood.

• Function Ln (θ) such that:
n−1Ln (θ)→M (θ)
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McMc and Classical Estimation II

• Define the transformation:

pn (θ) =
eLn(θ)π (θ)R
eLn(θ)π (θ) dθ

that induces a proper distribution.

• Then, the quasi-posterior mean is:
bθ = Z

θpn (θ) dθ

can be approximated by draws from a McMc:

bθ = 1

M

MX
i=1

θi
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