Monte Carlo Methods

Jesús Fernández-Villaverde
University of Pennsylvania

Why Monte Carlo?

- From previous chapter, we want to compute:

1. Posterior distribution:

$$
\pi\left(\theta \mid Y^{T}, i\right)=\frac{f\left(Y^{T} \mid \theta, i\right) \pi(\theta \mid i)}{\int_{\Theta_{i}} f\left(Y^{T} \mid \theta, i\right) \pi(\theta \mid i) d \theta}
$$

2. Marginal likelihood:

$$
P\left(Y^{T} \mid i\right)=\int_{\Theta_{i}} f\left(Y^{T} \mid \theta, i\right) \pi(\theta \mid i) d \theta
$$

- Difficult to asses analytically or even to approximate (Phillips, 1996).
- Resort to simulation.

A Bit of Historical Background and Intuition

- Metropolis and Ulam (1949) and Von Neuman (1951).
- Why the name "Monte Carlo"?
- Two silly examples:

1. Probability of getting a total of six points when rolling two (fair) dices.
2. Throwing darts at a graph.

Classical Monte Carlo Integration

- Assume we know how to generate draws from $\pi\left(\theta \mid Y^{T}, i\right)$.
- What does it mean to draw from $\pi\left(\theta \mid Y^{T}, i\right)$?
- Two Basic Questions:

1. Why do we want to do it?
2. How do we do it?

Why Do We Do It?

- Basic intuition: Glivenko-Cantelli's Theorem.
- Let X_{1}, \ldots, X_{n} be iid as X with distribution function F. Let ω be the outcome and $F_{n}(x, \omega)$ be the empirical distribution function based on observations $X_{1}(\omega), \ldots, X_{n}(\omega)$. Then, as $n \rightarrow \infty$,

$$
\sup _{-\infty<x<\infty}\left|F_{n}(x, \omega)-F(x)\right| \xrightarrow{\text { a.s. }} 0,
$$

- It can be generalized to include dependence: A.W. Van der Vaart and J.A. Wellner, Weak Convergence and Empirical Processes, SpringerVerlag, 1997.

Basic Result

- Let $h(\theta)$ be a function of interest: indicator, moment, etc...
- By the Law of Large Numbers:

$$
E_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)]=\int_{\Theta_{i}} h(\theta) \pi\left(\theta \mid Y^{T}, i\right) d \theta \simeq h_{m}=\frac{1}{m} \sum_{j=1}^{m} h\left(\theta_{j}\right)
$$

- If $\operatorname{Var}_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)]<\infty$, by the Central Limit Theorem:

$$
\operatorname{Var}_{\pi\left(\cdot \mid Y^{T}, i\right)}\left[h_{m}\right] \simeq \frac{1}{m} \sum_{j=1}^{m}\left(h\left(\theta_{j}\right)-h_{m}\right)^{2}
$$

- Large literature.
- Two good surveys:

1. Luc Devroye: Non-Uniform Random Variate Generation, SpringerVerlag, 1986. Available for free at http://jeff.cs.mcgill.ca/~luc/rnbookindex.html.
2. Christian Robert and George Casella, Monte Carlo Statistical Methods, 2nd ed, Springer-Verlag, 2004.

Random Draws?

- Natural sources of randomness. Difficult to use.
- A computer...
- ...but a computer is a deterministic machine!
- Von Neumann (1951):
"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin."

Was Von Neumann Right?

- Let's us do a simple experiment.
- Let's us start MATLAB, type format long, type rand.
- Did we get 0.95012928514718 ?
- This does not look terribly random.
- Why is this number appearing?

Basic Building Block

- MATLAB uses highly non-linear iterative algorithms that "look like" random.
- That is why sometimes we talk of pseudo-random number generators.
- We will concentrate on draws from a uniform distribution.
- Other (standard and nonstandard) distributions come from manipulations of the uniform.

Goal

Derive algorithms that, starting from some initial value and applying iterative methods, produce a sequence that: (Lehmer, 1951):

1. It is unpredictable for the uninitiated (relation with Chaotic dynamical systems).
2. It passes a battery of standard statistical tests of randomness (like Kolmogorov-Smirnov test, ARMA(p,q), etc).

Basic Component

- Multiplicative Congruential Generator:

$$
x_{i}=\left(a x_{i-1}+b\right) \bmod (M+1)
$$

- x_{i} takes values on $\{0,1, \ldots, M\}$.
- Transformation into a generator on $[0,1]$ with:

$$
x_{i}^{*}=\frac{a x_{i-1}+b}{M+1}
$$

- x_{0} is called the seed.

Choices of Parameters

- Period and performance depends crucially on a, b, and M.
- Pick $a=13, c=0, M=31$, and $x_{0}=1$.
- Let us run badrandom.m.
- Historical bad examples: IBM RND from the 1960's.

A Good Choice

- A traditional choice: $a=7^{5}=16807, c=0, m=2^{31}-1$.
- Period bounded by M. 32 bits versus 64 bits hardware.
- You may want to be aware that there is something called IEEE standard for floating point arithmetic.
- Problems and alternatives.

Real Life

- You do not want to code your own random number generator.
- Matlab implements the state of the art: KISS by Marsaglia and Zaman (1991).
- What about a compiler in Fortran or $\mathrm{C}++$?
- http://stat.fsu.edu/pub/diehard/

Nonuniform Distributions

- In general we need something different from the uniform distribution.
- How do we move from a uniform draw to other distributions?
- Simple transformations for standard distributions.
- Foundations of commercial software.

Two Basic Approaches

1. Use transformations.
2. Use inverse method.

Why are those approaches attractive?

An Example of Transformations I: Normal Distributions

- Box and Muller (1958).
- Let U_{1} and U_{2} two uniform variables, then:

$$
\begin{aligned}
& x=\cos 2 \pi U_{1}\left(-2 \log U_{2}\right)^{0.5} \\
& y=\sin 2 \pi U_{1}\left(-2 \log U_{2}\right)^{0.5}
\end{aligned}
$$

are independent normal variables.

- Problem: x and y fall in a spiral.

An Example of Transformations II: Multivariate Normal Distributions

- If $x \sim \mathcal{N}(0, I)$, then

$$
y=\mu+\Sigma x
$$

is distributed as $\mathcal{N}\left(\mu, \Sigma^{\prime} \Sigma\right)$.

- Σ can be the Cholesky decomposition of the matrix of variancescovariances.

An Example of Transformations III: Discrete Uniform

- We want to draw from $x \sim \mathcal{U}\{1, N\}$.
- Find $1 / N$.
- Draw from $U \sim \mathcal{U}[0.1]$.
- If $u \in[0,1 / N] \Rightarrow x=1$, if $u \in[1 / N, 2 / N] \Rightarrow x=3$, and so on.

Inverse Method

- Conceptually general procedure for random variables on \Re.
- For a non-decreasionf function F on \Re, the generalized inverse of F, F^{-}, is the function

$$
F^{-}(u)=\inf \{x: F(x) \geq u\}
$$

- Lemma: If $U \sim \mathcal{U}[0.1]$, then the random variable $F^{-}(U)$ has the distribution F.

Proof:

For $\forall u \in[0.1]$ and $\forall x \in F^{-}([0.1])$, we satisfy:

$$
F\left(F^{-}(u)\right) \geq u \text { and } F^{-}(F(x)) \leq x
$$

Therefore

$$
\left\{(u, x): F^{-}(u) \leq x\right\}=\{(u, x): F(x) \leq u\}
$$

and

$$
P\left(F^{-}(U) \leq x\right)=P(U \leq F(x))=F(x)
$$

An Example of the Inverse Method

- Exponential distribution: $x \sim \operatorname{Exp}(1)$.
- $F(x)=1-e^{-x}$.
- $x=-\log (1-u)$.
- Thus, $X=-\log U$ is exponential if U is uniform.

Problems

- Algebraic tricks and the inverse method are difficult to generalize.
- Why? Complicated, multivariate distributions.
- Often, we only have a numerical procedure to evaluate the distribution we want to sample from.
- We need more general methods.

Acceptance Sampling

- $\theta \sim \pi\left(\theta \mid Y^{T}, i\right)$ with support C. $\pi\left(\theta \mid Y^{T}, i\right)$ is called the target density.
- $z \sim g(z)$ with support $C^{\prime} \supseteq C . g$ is called the source density.
- We require:

1. We know how to draw from g.
2. Condition:

$$
\sup _{\theta \in C} \frac{\pi\left(\theta \mid Y^{T}, i\right)}{g(\theta)}=a<\infty
$$

Acceptance Sampling Algorithm

Steps:

1. $u \sim U(0,1)$.
2. $\theta^{*} \sim g$.
3. If $u>\frac{\pi\left(\theta^{*} \mid Y^{T}, i\right)}{a g\left(\theta^{*}\right)}$ return to step 1 .
4. Set $\theta^{m}=\theta^{*}$.

Why Does Acceptance Sampling Work?

- Unconditional probability of moving from step 3 to 4:

$$
\int_{C^{\prime}} \frac{\pi\left(\theta \mid Y^{T}, i\right)}{a g(\theta)} g(\theta) d \theta=\int_{C^{\prime}} \frac{\pi\left(\theta \mid Y^{T}, i\right)}{a} d \theta=\frac{1}{a}
$$

- Unconditional probability of moving from step 3 to 4 when $\theta \in A$:

$$
\int_{A} \frac{\pi\left(\theta \mid Y^{T}, i\right)}{a g(\theta)} g(\theta) d \theta=\int_{A} \frac{\pi\left(\theta \mid Y^{T}, i\right)}{a} d \theta=\frac{1}{a} \int_{A} \pi\left(\theta \mid Y^{T}, i\right) d \theta
$$

- Dividing both expressions:

$$
\frac{\frac{1}{a} \int_{A} \pi\left(\theta \mid Y^{T}, i\right) d \theta}{\frac{1}{a}}=\int_{A} \pi\left(\theta \mid Y^{T}, i\right) d \theta
$$

An Example

- Target density:

$$
\pi\left(\theta \mid Y^{T}, i\right) \propto \min \left[\exp \left(-\frac{\theta^{2}}{2}\right)\left(\sin (6 \theta)^{2}+3 \cos (\theta)^{2} \sin (4 \theta)^{2}+1\right), 0\right]
$$

- Source density:

$$
g(\theta) \propto \frac{1}{(2 \pi)^{0.5}} \exp \left(-\frac{\theta^{2}}{2}\right)
$$

- Let's take a look: acceptance.m.

Problems of Acceptance Sampling

- Two issues:

1. We disregard a lot of draws. We want to minimize a. How?
2. We need to check π / g is bounded. Necessary condition: g has thicker tails than those of f.
3. We need to evaluate bound a. Difficult to do.

- Can we do better? Yes, through importance sampling.

Importance Sampling I

- Similar framework than in acceptance sampling:

1. $\theta \sim \pi\left(\theta \mid Y^{T}, i\right)$ with support $C . \pi\left(\theta \mid Y^{T}, i\right)$ is called the target density.
2. $z \sim g(z)$ with support $C^{\prime} \supseteq C . g$ is called the source density.

- Note that we can write:

$$
E_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)]=\int_{\Theta_{i}} h(\theta) \pi\left(\theta \mid Y^{T}, i\right) d \theta=\int_{\Theta_{i}} h(\theta) \frac{\pi\left(\theta \mid Y^{T}, i\right)}{g(\theta)} g(\theta) d \theta
$$

Importance Sampling II

- If $E_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)]$ exists, a Law of Large Numbers holds:

$$
\int_{\Theta_{i}} h(\theta) \frac{\pi\left(\theta \mid Y^{T}, i\right)}{g(\theta)} g(\theta) d \theta \simeq h_{m}^{I}=\frac{1}{m} \sum_{j=1}^{m} h\left(\theta_{j}\right) \frac{\pi\left(\theta_{j} \mid Y^{T}, i\right)}{g\left(\theta_{j}\right)}
$$

- and

$$
E_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)] \simeq h_{m}^{I}
$$

where $\left\{\theta_{j}\right\}_{j=1}^{m}$ are draws from $g(\theta)$ and $\frac{\pi\left(\theta_{j} \mid Y^{T}, i\right)}{g\left(\theta_{j}\right)}$ are the important sampling weights.

Importance Sampling III

- If $E_{\pi\left(\theta \mid Y^{T}, i\right)}\left[\frac{\pi\left(\theta \mid Y^{T}, i\right)}{g(\theta)}\right]$ exists, a Central Limit Theorem applies (see Geweke, 1989) and:

$$
\begin{aligned}
& m^{1 / 2}\left(h_{m}^{I}-E_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)]\right) \rightarrow \mathcal{N}\left(0, \sigma^{2}\right) \\
& \sigma^{2} \simeq \frac{1}{m} \sum_{j=1}^{m}\left(h\left(\theta_{j}\right)-h_{m}^{I}\right)^{2}\left(\frac{\pi\left(\theta_{j} \mid Y^{T}, i\right)}{g\left(\theta_{j}\right)}\right)^{2}
\end{aligned}
$$

- Where, again, $\left\{\theta_{j}\right\}_{j=1}^{m}$ are draws from $g(\theta)$.

Importance Sampling IV

- Notice that:

$$
\sigma^{2} \simeq \frac{1}{m} \sum_{j=1}^{m}\left(h\left(\theta_{j}\right)-h_{m}^{I}\right)^{2}\left(\frac{\pi\left(\theta_{j} \mid Y^{T}, i\right)}{g\left(\theta_{j}\right)}\right)^{2}
$$

- Therefore, we want $\frac{\pi\left(\theta \mid Y^{T}, i\right)}{g(\theta)}$ to be almost flat.

Importance Sampling V

- Intuition: σ^{2} is minimized when $\pi\left(\theta \mid Y^{T}, i\right)=g(\theta)$.,i.e. we are drawing from $\pi\left(\theta_{j} \mid Y^{T}, i\right)$.
- Hint: we can use as $g(\theta)$ the first terms of a Taylor approximation to $\pi\left(\theta \mid Y^{T}, i\right)$.
- How do we compute the Taylor approximation?

Conditions for the existence of $E_{\pi\left(\theta \mid Y^{T}, i\right)}\left[\frac{\pi\left(\theta \mid Y^{T}, i\right)}{g(\theta)}\right]$

- This has to be checked analytically.
- A simple condition: $\frac{\pi\left(\theta \mid Y^{T}, i\right)}{g(\theta)}$ has to be bounded.
- Some times, we label $\omega\left(\theta \mid Y^{T}, i\right)=\frac{\pi\left(\theta \mid Y^{T}, i\right)}{g(\theta)}$.

Normalizing Factor I

- Assume we do not know the normalizing constant for $\pi\left(\theta \mid Y^{T}, i\right)$ and $g(\theta)$.
- Let's call the unnormalized densities: $\widetilde{\pi}\left(\theta \mid Y^{T}, i\right)$ and $\widetilde{g}(\theta)$.
- Then:

$$
E_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)]=\frac{\int_{\Theta_{i}} h(\theta) \widetilde{\pi}\left(\theta \mid Y^{T}, i\right) d \theta}{\int_{\Theta_{i}} \widetilde{\pi}\left(\theta \mid Y^{T}, i\right) d \theta}=\frac{\int_{\Theta_{i}} h(\theta) \frac{\widetilde{\pi}\left(\theta \mid Y^{T}, i\right)}{\widetilde{g}(\theta)} \widetilde{g}(\theta) d \theta}{\int_{\Theta_{i}} \frac{\widetilde{\pi}\left(\theta \mid Y^{T}, i\right)}{\widetilde{g}(\theta)} \widetilde{g}(\theta) d \theta}
$$

Normalizing Factor II

- Consequently:

$$
h_{m}^{I}=\frac{\frac{1}{m} \sum_{j=1}^{m} h\left(\theta_{j}\right) \frac{\pi\left(\theta_{j} \mid Y^{T}, i\right)}{g\left(\theta_{j}\right)}}{\frac{1}{m} \sum_{j=1}^{m} \frac{\pi\left(\theta_{j} \mid Y^{T}, i\right)}{g\left(\theta_{j}\right)}}=\frac{\sum_{j=1}^{m} h\left(\theta_{j}\right) \omega\left(\theta_{j} \mid Y^{T}, i\right)}{\sum_{j=1}^{m} \omega\left(\theta_{j} \mid Y^{T}, i\right)}
$$

- and:

$$
\sigma^{2} \simeq \frac{m \sum_{j=1}^{m}\left(h\left(\theta_{j}\right)-h_{m}^{I}\right)^{2}\left(\omega\left(\theta_{j} \mid Y^{T}, i\right)\right)^{2}}{\left(\sum_{j=1}^{m} \omega\left(\theta_{j} \mid Y^{T}, i\right)\right)^{2}}
$$

The Importance of the Behavior of $\omega\left(\theta_{j} \mid Y^{T}, i\right)$: Example I

- Assume that we know $\pi\left(\theta_{j} \mid Y^{T}, i\right)=t_{\nu}$.
- But we do not know how to draw from it.
- Instead we draw from $\mathcal{N}(0,1)$.
- Why?
- Let's run normalt.m
- Evaluate the mean of t_{v}.
- Draw $\left\{\theta_{j}\right\}_{j=1}^{m}$ from $\mathcal{N}(0,1)$.
- Let $\frac{t_{v}\left(\theta_{j}\right)}{\phi\left(\theta_{j}\right)}=\omega\left(\theta_{j}\right)$.
- Evaluate

$$
m e a n=\frac{\sum_{j=1}^{m} \theta_{j} \omega\left(\theta_{j}\right)}{m}
$$

- Evaluate the variance of the estimated mean of t_{v}.
- Compute:

$$
v a r _e s t _m e a n=\frac{\sum_{j=1}^{m}\left(\theta_{j}-m e a n\right)^{2} \omega\left(\theta_{j}\right)^{2}}{m}
$$

- Note: difference between:

1. The variance of a function of interest.
2. The variance of the computed mean of the function of interest.

Estimation of the Mean of t_{v} : importancenormal.m

v	3	4	10	100
Est. Mean	0.1026	0.0738	0.0198	0.0000
Est. of Var. of Est. Mean	684.5160	365.6558	36.8224	3.5881

The Importance of the Behavior of $\omega\left(\theta_{j} \mid Y^{T}, i\right)$: Example II

- Opposite case than before.
- Assume that we know $\pi\left(\theta_{j} \mid Y^{T}, i\right)=\mathcal{N}(0,1)$.
- But we do not know how to draw from it.
- Instead we draw from t_{v}.

Estimation of the Mean of $\mathcal{N}(0,1)$: importancet.m

t_{ν}	3	4	10	100
Est. Mean	-0.0104	-0.0075	0.0035	-0.0029
Est. of Var. of Est. Mean	2.0404	2.1200	2.2477	2.7444

A Procedure to Check How Good is the Important Sampling Function

- This procedure is due to Geweke.
- It is called Relative Numerical Efficiency (RNE).
- First notice that if $g(\theta)=\pi\left(\theta \mid Y^{T}, i\right)$, we have that:

$$
\begin{aligned}
\sigma^{2} & \simeq \frac{1}{m} \sum_{j=1}^{m}\left(h\left(\theta_{j}\right)-h_{m}^{I}\right)^{2}\left(\frac{\pi\left(\theta_{j} \mid Y^{T}, i\right)}{g\left(\theta_{j}\right)}\right)^{2}= \\
& =\frac{1}{m} \sum_{j=1}^{m}\left(h\left(\theta_{j}\right)-h_{m}^{I}\right)^{2} \simeq \operatorname{Var}_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)]
\end{aligned}
$$

A Procedure of Checking how Good is the important Sampling Function II

- Therefore, for a given $g(\theta)$, the RNE:

$$
R N E=\frac{\operatorname{Var}_{\pi\left(\cdot \mid Y^{T}, i\right)}[h(\theta)]}{\sigma^{2}}
$$

- If $R N E$ closed to 1 the important sampling procedure is working properly.
- If $R N E$ is very low, closed to 0 , the procedure is not working as properly.

Estimation of the Mean of t_{v}

t_{ν}	3	4	10	100
RNE	0.0134	0.0200	0.0788	0.2910

Estimation of the Mean of $\mathcal{N}(0,1)$

t_{ν}	3	4	10	100
RNE	0.4777	0.4697	0.4304	0.3471

Important Sampling and Robustness of Priors

- Priors are researcher specific.
- Imagine researchers 1 and 2 are working with the same model, i.e. with the same likelihood function, $f\left(y^{T} \mid \theta, 1\right)=f\left(y^{T} \mid \theta, 2\right)$. (Now 1 and 2 do not imply different models but different researchers)
- But they have different priors $\pi(\theta \mid 1) \neq \pi(\theta \mid 2)$.
- Imagine that researcher 1 has draws from the her posterior distribution $\left\{\theta_{j}\right\}_{j=1}^{N} \sim \pi\left(\theta \mid Y^{T}, 1\right)$.

A Simple Manipulation

- If researcher 2 wants to compute

$$
\int_{\Theta_{i}} h(\theta) \pi\left(\theta \mid Y^{T}, 2\right) d \theta
$$

for any $\ell(\theta)$, he does not need to recompute everything.

- Note that

$$
\begin{gathered}
\int_{\Theta_{i}} h(\theta) \pi\left(\theta \mid Y^{T}, 2\right) d \theta=\int_{\Theta_{i}} h(\theta) \frac{\pi\left(\theta \mid Y^{T}, 2\right)}{\pi\left(\theta \mid Y^{T}, 1\right)} \pi\left(\theta \mid Y^{T}, 1\right) d \theta= \\
\frac{\int_{\Theta_{i}} h(\theta) \frac{f\left(y^{T} \mid \theta, 2\right) \pi(\theta \mid 2)}{f\left(y^{T} \mid \theta, 1\right) \pi(\theta \mid 1)} \pi\left(\theta \mid Y^{T}, 1\right) d \theta}{\int_{\Theta_{i}} \frac{f\left(y^{T} \mid \theta, 2\right) \pi(\theta \mid 1)}{f\left(y^{T} \mid \theta, 1\right) \pi(\theta \mid 1)} \pi\left(\theta \mid Y^{T}, 1\right) d \theta}=\frac{\int_{\Theta_{i}} h(\theta) \frac{\pi(\theta \mid 2)}{\pi(\theta \mid 1)} \pi\left(\theta \mid Y^{T}, 1\right) d \theta}{\int_{\Theta_{i}} \frac{\pi(\theta \mid 2)}{\pi(\theta \mid 1)} \pi\left(\theta \mid Y^{T}, 1\right) d \theta}
\end{gathered}
$$

Importance Sampling

- Then:

$$
\begin{aligned}
\frac{\frac{1}{m} \sum_{j=1}^{m} h\left(\theta_{j}\right) \frac{\pi\left(\theta_{j} \mid 2\right)}{\pi\left(\theta_{j} \mid 1\right)}}{\frac{1}{m} \sum_{j=1}^{m} \frac{\pi\left(\theta_{j} \mid 2\right)}{\pi\left(\theta_{j} \mid 1\right)}} & =\frac{\sum_{j=1}^{m} h\left(\theta_{j}\right) \frac{\pi\left(\theta_{j} \mid 2\right)}{\pi\left(\theta_{j} \mid 1\right)}}{\sum_{j=1}^{m} \frac{\pi\left(\theta_{j} \mid 2\right)}{\pi\left(\theta_{j} \mid 1\right)}} \rightarrow \\
\frac{\int_{\Theta_{i}} h(\theta) \frac{\pi(\theta \mid 2)}{\pi(\theta \mid 1)} \pi\left(\theta \mid Y^{T}, 1\right) d \theta}{\int_{\Theta_{i}} \frac{\pi(\theta \mid 2)}{\pi(\theta \mid 1)} \pi\left(\theta \mid Y^{T}, 1\right) d \theta} & =\int_{\Theta_{i}} h(\theta) \pi\left(\theta \mid Y^{T}, 2\right) d \theta
\end{aligned}
$$

- Simple computation.
- Increased variance.

