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Why Monte Carlo?

e From previous chapter, we want to compute:

1. Posterior distribution:

r oy fT16, i) (0)
w (O1) = 3 5T iy 0

2. Marginal likelihood:

P(YT}i) = /@ F(vT10, i) (0]3) d6

e Difficult to asses analytically or even to approximate (Phillips, 1996).

e Resort to simulation.



A Bit of Historical Background and Intuition

e Metropolis and Ulam (1949) and Von Neuman (1951).

e Why the name “Monte Carlo”?

e Two silly examples:

1. Probability of getting a total of six points when rolling two (fair)
dices.

2. Throwing darts at a graph.



Classical Monte Carlo Integration

e Assume we know how to generate draws from 7 <9|YT, z) :

e What does it mean to draw from 7 (9|YT,2')?

e Two Basic Questions:
1. Why do we want to do it?

2. How do we do it?



Why Do We Do It?
e Basic intuition: Glivenko-Cantelli’'s Theorem.

o Let Xq,...,Xy beiid as X with distribution function F'. Let w be the
outcome and Fj,(z,w) be the empirical distribution function based on
observations Xq(w), ..., Xn(w). Then, as n — oo,

sup_ [ F(z,w) — F(z)| =50,

—o0< <00

e It can be generalized to include dependence: A.W. Van der Vaart and
J.A. Wellner, Weak Convergence and Empirical Processes, Springer-
Verlag, 1997.



Basic Result
e Let h(0) be a function of interest: indicator, moment, etc...

e By the Law of Large Numbers:

By (O] = [

o h(0)m (6YT,i)d ~ by = — > h (6)

o If Varw(.’YT7i) [h (0)] < oo, by the Central Limit Theorem:

L5 (1 (0)) ~ )

Va’rw(-|YT,i) [hm] ~ 1
j:



How Do We Do It?

e Large literature.

e Two good surveys:

1. Luc Devroye: Non-Uniform Random Variate Generation, Springer-
Verlag, 1986. Available for free at

http://jeff.cs.mcgill.ca/"luc/rnbookindex.html.

2. Christian Robert and George Casella, Monte Carlo Statistical Meth-
ods, 2nd ed, Springer-Verlag, 2004.



Random Draws?

e Natural sources of randomness. Difficult to use.

e A computer...

e ...but a computer is a deterministic machine!

e Von Neumann (1951):

“Anyone who considers arithmetical methods of producing

random digits is, of course, in a state of sin.”
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Was Von Neumann Right?

e Let's us do a simple experiment.

e Let's us start MATLAB, type format long, type rand.

e Did we get 0.950129285147187

e This does not look terribly random.

e Why is this number appearing?



Basic Building Block

e MATLAB uses highly non-linear iterative algorithms that “look like"

random.

e That is why sometimes we talk of pseudo-random number generators.

e \We will concentrate on draws from a uniform distribution.

e Other (standard and nonstandard) distributions come from manipula-
tions of the uniform.

10



Goal

Derive algorithms that, starting from some initial value and applying iter-
ative methods, produce a sequence that: (Lehmer, 1951):

1. It is unpredictable for the uninitiated (relation with Chaotic dynamical
systems).

2. It passes a battery of standard statistical tests of randomness (like
Kolmogorov-Smirnov test, ARMA(p,q), etc).
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Basic Component

e Multiplicative Congruential Generator:

x; = (ax;_1+b)mod (M + 1)
e x; takes values on {0,1,..., M}.

e Transformation into a generator on [0, 1] with:

« _axi—1+b

Ly
M+1

e x( is called the seed.
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Choices of Parameters

e Period and performance depends crucially on a, b, and M.

e Picka=13,¢=0, M =31, and zg = 1.

e Let us run badrandom.m.

e Historical bad examples: IBM RND from the 1960'’s.
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A Good Choice

e A traditional choice: a = 7°> = 16807, c =0, m = 231 — 1.

e Period bounded by M. 32 bits versus 64 bits hardware.

e You may want to be aware that there is something called /EEE standard
for floating point arithmetic.

e Problems and alternatives.

14



Real Life

e You do not want to code your own random number generator.

e Matlab implements the state of the art: KISS by Marsaglia and Zaman
(1991).

e What about a compiler in Fortran or C++47

e http://stat.fsu.edu/pub/diehard/
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Nonuniform Distributions

e In general we need something different from the uniform distribution.

e How do we move from a uniform draw to other distributions?

e Simple transformations for standard distributions.

e Foundations of commercial software.

16



Two Basic Approaches

1. Use transformations.

2. Use inverse method.

Why are those approaches attractive?
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An Example of Transformations |I: Normal Distributions
e Box and Muller (1958).

e Let U; and U two uniform variables, then:

x = cos2mlUy (—2|ogU2)0‘5
y = sin2wUy (—2log Up)2>

are independent normal variables.

e Problem: x and y fall in a spiral.
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An Example of Transformations Il: Multivariate Normal Distributions

o If x ~N(0,I), then
y=p+2x
is distributed as N (u, ¥'Y) .

e > can be the Cholesky decomposition of the matrix of variances-
covariances.
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An Example of Transformations Ill: Discrete Uniform

We want to draw from =z ~ U/ {1, N}.

Find 1/N.

Draw from U ~ U/ [0.1].

If ue[0,1/N]=xz=1,ifue[l/N,2/N] = x =3, and so on.
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Inverse Method

e Conceptually general procedure for random variables on R.

e For a non-decreasionf function F' on R, the generalized inverse of F,
F—, is the function

F~(u)=inf{z: F(x) > u}

e Lemma: If U ~ U [0.1], then the random variable '~ (U) has the
distribution F.
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Proof:

For Vu € [0.1] and Vx € F~ ([0.1]), we satisfy:
F(F~ (u)) >wand F~ (F(z)) <2

Therefore

{(u,a:) : F7 (u) Saz} ={(u,z): F(x) < u}

and

P(F~(U)<z)=P(U < F(z)) =F ()
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An Example of the Inverse Method

e Exponential distribution: z ~ Exzp(1).

o '(x) =1—¢e"%.

o x = —log(l—u).

e Thus, X = —logU is exponential if U is uniform.
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Problems

e Algebraic tricks and the inverse method are difficult to generalize.

e Why? Complicated, multivariate distributions.

e Often, we only have a numerical procedure to evaluate the distribution
we want to sample from.

e We need more general methods.

24



Acceptance Sampling

o O~ (Q\YT,i) with support C. =« (0|YT, z) is called the target den-
sity.

e 2 ~ g(z) with support C' D C. g is called the source density.

e We require:
1. We know how to draw from g.

2. Condition:

T -
s T (0|Y ,z>

=a <o
o0cC 9(9)
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Acceptance Sampling Algorithm

Steps:
1. u~U(0,1).

2. 0% ~g.

7T(9*|YT,Z')
3. Ifu> PG return to step 1.

4. Set 0™ = @*.
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Why Does Acceptance Sampling Work?

e Unconditional probability of moving from step 3 to 4:

7 (9|YT, z) 7 (9|YT,7Z) 1
/C” ag(6) 9(6)db = /C’ a 40 = a

e Unconditional probability of moving from step 3 to 4 when 0 € A:

m(0]Y7T, m(0]Y7T,i 1 .
/i (ag(e) )g(e)de_/A (a )de_;/A”(H'YT’Z)d@

e Dividing both expressions:

1 T
awa(9|1Y ,z) dez/Aw(HD/T,i) »

a
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An Example

e Target density:

iy (6|YT, z) o< min [exp (—%) (sin (60)? + 3 cos (6)? sin (46)? + 1) ,O]

e Source density:
1 6°
9 _
90 s S p( 2)

e Let's take a look: acceptance.m.
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Problems of Acceptance Sampling

e Two issues:
1. We disregard a lot of draws. We want to minimize a. How?

2. We need to check 7/g is bounded. Necessary condition: g has
thicker tails than those of f.

3. We need to evaluate bound a. Difficult to do.

e Can we do better? Yes, through importance sampling.
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Importance Sampling |

e Similar framework than in acceptance sampling:

1. 0 ~ 7 (9|YT,Z'> with support C. = (0|YT,73) is called the target
density.

2. z ~ g(z) with support C' D C. g is called the source density.

e Note that we can write:

E h(O) = | h(O)x(0|YT, i)do = heﬁ(myT’i) 0) do
(v @1 = [ RO (075 do = [ h(6)— g ()
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Importance Sampling 1l

o If Ew(-|YT,z') [h (0)] exists, a Law of Large Numbers holds:

7T(9|YT,7Z> 1z | 7T(9j|YT,i)
/@_h(e) 0 g(@)de_hm—aj;h@» , )

1

e and
Byt (O] = Ay,
m m(0;]Y 1) .
where {ej}j—l are draws from g () and gj(e_) are the important
= j

sampling weights.
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Importance Sampling Il

7T(9|YT,’i)
* FEr(avTi) |~ om)
Geweke, 1989) and:

ml/2 (h£n ~ By g (@)]) — N (0,0?)

5 vt0) - (550

exists, a Central Limit Theorem applies (see

e Where, again, {Qj}, , are draws from g (0).
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Importance Sampling IV

e Notice that:

e [ herefore, we want

W(@\YT,i)

g(9)

to be almost flat.
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Importance Sampling V

e Intuition: o2 is minimized when w(0|YT,i) = g(0).,j.e. we are

drawing from 7 (9j|YT, z> :

e Hint: we can use as g () the first terms of a Taylor approximation to
iy (9|YT, z)

e How do we compute the Taylor approximation?
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W(H\YT,Z')
g9(0)

Conditions for the existence of Ew(9|YT,i)

e This has to be checked analytically.

T .
e A simple condition: W<eg|(§;) ) has to be bounded.

T .
e Some times, we label w (9|YT,7J> — W(QJ(YH) )
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Normalizing Factor |

e Assume we do not know the normalizing constant for w (9|YT, z) and
g(9).

e Let's call the unnormalized densities: 7 (9|YT,7Z> and g (0) .

e Then:
0 Ty h(6 %(Q,V‘YT’i)N 0) do
Eﬁ(-|YT,z') [h(0)] = f@i h(?) (Q‘TY. ’ )d@ _ f@z (~)9 Y?F(?) g(9)
Jo, 7 (01YT, i) 6 f@iﬂé"(@) )5 () do

36



Normalizing Factor Il

e Consequently:

1 5m N\ (051" ) T .
o Sk (65) () _ m b (8;)w (6;1YT, i)
1 m(0;1Y" i) m w (0:YT, i
ngnzl 9(9]‘) J=1 («7| )
e and:

e (h(6) ~ W) (o (0,7, 9)°
(e (0Y7,0)

37



The Importance of the Behavior of w (Qj\YT,z'): Example |

e Assume that we know 7 (9j|YT, z) = tu.
e But we do not know how to draw from it.
e Instead we draw from A (0, 1).

e Why?

e Let's run normalt.m
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Evaluate the mean of ¢,.

Draw {Qj};,nz

to(6;) _
Let W = w

Evaluate

(65).

, from N (0,1).

mean —

m
J=1

0w (0;)
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e Evaluate the variance of the estimated mean of ¢,.

e Compute:

;nzl (Qj — mean)zw (Hj)z

var_est_mean =
m

e Note: difference between:
1. The variance of a function of interest.

2. The variance of the computed mean of the function of interest.
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Estimation of the Mean of ty: importancenormal.m

v 3 4 10 100
Est. Mean 0.1026 0.0738 0.0198 | 0.0000
Est. of Var. of Est. Mean | 684.5160 | 365.6558 | 36.8224 | 3.5881
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The Importance of the Behavior of w (9j|YT,i): Example I
e Opposite case than before.
e Assume that we know 7 (9j|YT, z) = N (0,1).
e But we do not know how to draw from it.

e Instead we draw from t¢,.
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Estimation of the Mean of A/ (0,1): importancet.m

ty 3 4 10 100
Est. Mean -0.0104 | -0.0075 | 0.0035 | -0.0029
Est. of Var. of Est. Mean | 2.0404 | 2.1200 | 2.2477 | 2.7444
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A Procedure to Check How Good is the Important Sampling Function
e This procedure is due to Geweke.
e It is called Relative Numerical Efficiency (RNE).

e First notice that if g(0) =7 (H\YT,Z'>, we have that:

Ny 2
02 N i m 1 (0. h£n2<7T(9j|YT’Z)> _
3 ((0) =) (2
= 0 3 (00 = hh) =V 0N
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A Procedure of Checking how Good is the important Sampling Function I

e Therefore, for a given g (0), the RNE:
Var,jyr o [ (6)]

o2

RNE =

e If RN FE closed to 1 the important sampling procedure is working prop-
erly.

e If RNFE is very low, closed to 0, the procedure is not working as
properly.
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Estimation of the Mean of ¢,

ty

3

4

10

100

RNE

0.0134

0.0200

0.0788

0.2910

Estimation of the Mean of NV (0,1)

ty

10

100

RNE

0.4777

0.4697

0.4304

0.3471
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Important Sampling and Robustness of Priors
e Priors are researcher specific.

e Imagine researchers 1 and 2 are working with the same model, i.e.
with the same likelihood function, f(y|6,1) = f(y1|6,2). (Now 1
and 2 do not imply different models but different researchers)

e But they have different priors 7 (6|1) #£ m (6|2).

e Imagine that researcher 1 has draws from the her posterior distribution
N
. N T
{ej}j:]_ 7 (9|Y : 1).
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A Simple Manipulation

e If researcher 2 wants to compute

/@ih(e)w (61Y'T,2) db

for any £(6), he does not need to recompute everything.

e Note that
m (0]YT,2)
s (9\YT, 1>

fo, 1 (6) L2 (01y T 1) do  fo, 1 (0) 22 (6T, 1) do

/@ih(G)w(GIYTg) de:/eih(e) W(@|yT’1) 10 —

f(y*10,1)m(6]1)

T T (6|2
o R ) e 007 )
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Importance Sampling

e Then:
oy b (6 )ZEZ?B _ Sy h (6 )ZEZ;B
PR e R
Jo h(e)”(mz) (0]Y7,1) do

_ /@ih(ﬁ)w (01YT,2) do

Jo, mg (9|YT 1) do

e Simple computation.

e Increased variance.

49



