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Why Monte Carlo?

• From previous chapter, we want to compute:

1. Posterior distribution:

π
³
θ|Y T , i

´
=

f(Y T |θ, i)π (θ|i)R
Θi
f(Y T |θ, i)π (θ|i) dθ

2. Marginal likelihood:

P
³
Y T |i

´
=
Z
Θi
f(Y T |θ, i)π (θ|i) dθ

• Difficult to asses analytically or even to approximate (Phillips, 1996).

• Resort to simulation.
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A Bit of Historical Background and Intuition

• Metropolis and Ulam (1949) and Von Neuman (1951).

• Why the name “Monte Carlo”?

• Two silly examples:

1. Probability of getting a total of six points when rolling two (fair)

dices.

2. Throwing darts at a graph.
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Classical Monte Carlo Integration

• Assume we know how to generate draws from π
³
θ|Y T , i

´
.

• What does it mean to draw from π
³
θ|Y T , i

´
?

• Two Basic Questions:

1. Why do we want to do it?

2. How do we do it?
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Why Do We Do It?

• Basic intuition: Glivenko-Cantelli’s Theorem.

• Let X1, . . . ,Xn be iid as X with distribution function F . Let ω be the

outcome and Fn(x,ω) be the empirical distribution function based on

observations X1(ω), . . . ,Xn(ω). Then, as n→∞,
sup

−∞<x<∞
|Fn(x,ω)− F (x)| a.s.→ 0,

• It can be generalized to include dependence: A.W. Van der Vaart and
J.A. Wellner, Weak Convergence and Empirical Processes, Springer-

Verlag, 1997.
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Basic Result

• Let h (θ) be a function of interest: indicator, moment, etc...

• By the Law of Large Numbers:

Eπ(·|Y T ,i) [h (θ)] =
Z
Θi
h (θ)π

³
θ|Y T , i

´
dθ ' hm = 1

m

mX
j=1

h
³
θj
´

• If V arπ(·|Y T ,i) [h (θ)] <∞, by the Central Limit Theorem:

V arπ(·|Y T ,i) [hm] '
1

m

mX
j=1

³
h
³
θj
´
− hm

´2
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How Do We Do It?

• Large literature.

• Two good surveys:

1. Luc Devroye: Non-Uniform Random Variate Generation, Springer-

Verlag, 1986. Available for free at

http://jeff.cs.mcgill.ca/~luc/rnbookindex.html.

2. Christian Robert and George Casella,Monte Carlo Statistical Meth-

ods, 2nd ed, Springer-Verlag, 2004.
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Random Draws?

• Natural sources of randomness. Difficult to use.

• A computer...

• ...but a computer is a deterministic machine!

• Von Neumann (1951):

“Anyone who considers arithmetical methods of producing

random digits is, of course, in a state of sin.”
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Was Von Neumann Right?

• Let’s us do a simple experiment.

• Let’s us start MATLAB, type format long, type rand.

• Did we get 0.95012928514718?

• This does not look terribly random.

• Why is this number appearing?
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Basic Building Block

• MATLAB uses highly non-linear iterative algorithms that “look like”
random.

• That is why sometimes we talk of pseudo-random number generators.

• We will concentrate on draws from a uniform distribution.

• Other (standard and nonstandard) distributions come from manipula-

tions of the uniform.
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Goal

Derive algorithms that, starting from some initial value and applying iter-

ative methods, produce a sequence that: (Lehmer, 1951):

1. It is unpredictable for the uninitiated (relation with Chaotic dynamical

systems).

2. It passes a battery of standard statistical tests of randomness (like

Kolmogorov-Smirnov test, ARMA(p,q), etc).
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Basic Component

• Multiplicative Congruential Generator:
xi = (axi−1 + b)mod (M + 1)

• xi takes values on {0, 1, ...,M} .

• Transformation into a generator on [0, 1] with:

x∗i =
axi−1 + b
M + 1

• x0 is called the seed.
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Choices of Parameters

• Period and performance depends crucially on a, b, and M .

• Pick a = 13, c = 0, M = 31, and x0 = 1.

• Let us run badrandom.m.

• Historical bad examples: IBM RND from the 1960’s.
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A Good Choice

• A traditional choice: a = 75 = 16807, c = 0, m = 231 − 1.

• Period bounded by M. 32 bits versus 64 bits hardware.

• You may want to be aware that there is something called IEEE standard
for floating point arithmetic.

• Problems and alternatives.

14



Real Life

• You do not want to code your own random number generator.

• Matlab implements the state of the art: KISS by Marsaglia and Zaman
(1991).

• What about a compiler in Fortran or C++?

• http://stat.fsu.edu/pub/diehard/
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Nonuniform Distributions

• In general we need something different from the uniform distribution.

• How do we move from a uniform draw to other distributions?

• Simple transformations for standard distributions.

• Foundations of commercial software.
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Two Basic Approaches

1. Use transformations.

2. Use inverse method.

Why are those approaches attractive?
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An Example of Transformations I: Normal Distributions

• Box and Muller (1958).

• Let U1 and U2 two uniform variables, then:

x = cos 2πU1 (−2 logU2)0.5
y = sin 2πU1 (−2 logU2)0.5

are independent normal variables.

• Problem: x and y fall in a spiral.
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An Example of Transformations II: Multivariate Normal Distributions

• If x ∼ N (0, I), then

y = µ+Σx

is distributed as N ¡
µ,Σ0Σ

¢
.

• Σ can be the Cholesky decomposition of the matrix of variances-

covariances.
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An Example of Transformations III: Discrete Uniform

• We want to draw from x ∼ U {1, N}.

• Find 1/N.

• Draw from U ∼ U [0.1] .

• If u ∈ [0, 1/N ]⇒ x = 1, if u ∈ [1/N, 2/N ]⇒ x = 3, and so on.
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Inverse Method

• Conceptually general procedure for random variables on <.

• For a non-decreasionf function F on <, the generalized inverse of F,
F−, is the function

F− (u) = inf {x : F (x) ≥ u}

• Lemma: If U ∼ U [0.1], then the random variable F− (U) has the
distribution F .
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Proof:

For ∀u ∈ [0.1] and ∀x ∈ F− ([0.1]), we satisfy:
F
³
F− (u)

´
≥ u and F− (F (x)) ≤ x

Therefore n
(u, x) : F− (u) ≤ x

o
= {(u, x) : F (x) ≤ u}

and

P
³
F− (U) ≤ x

´
= P (U ≤ F (x)) = F (x)
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An Example of the Inverse Method

• Exponential distribution: x ∼ Exp(1).

• F (x) = 1− e−x.

• x = − log (1− u) .

• Thus, X = − logU is exponential if U is uniform.
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Problems

• Algebraic tricks and the inverse method are difficult to generalize.

• Why? Complicated, multivariate distributions.

• Often, we only have a numerical procedure to evaluate the distribution
we want to sample from.

• We need more general methods.
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Acceptance Sampling

• θ ∼ π
³
θ|Y T , i

´
with support C. π

³
θ|Y T , i

´
is called the target den-

sity.

• z ∼ g (z) with support C0 ⊇ C. g is called the source density.

• We require:

1. We know how to draw from g.

2. Condition:

sup
θ∈C

π
³
θ|Y T , i

´
g (θ)

= a <∞
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Acceptance Sampling Algorithm

Steps:

1. u ∼ U(0, 1).

2. θ∗ ∼ g.

3. If u >
π
¡
θ∗|Y T ,i¢
ag(θ∗) return to step 1.

4. Set θm = θ∗.
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Why Does Acceptance Sampling Work?

• Unconditional probability of moving from step 3 to 4:Z
C0

π
³
θ|Y T , i

´
ag(θ)

g (θ) dθ =
Z
C0

π
³
θ|Y T , i

´
a

dθ =
1

a

• Unconditional probability of moving from step 3 to 4 when θ ∈ A:Z
A

π
³
θ|Y T , i

´
ag(θ)

g (θ) dθ =
Z
A

π
³
θ|Y T , i

´
a

dθ =
1

a

Z
A
π
³
θ|Y T , i

´
dθ

• Dividing both expressions:
1
a

R
A π

³
θ|Y T , i

´
dθ

1
a

=
Z
A
π
³
θ|Y T , i

´
dθ
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An Example

• Target density:

π
³
θ|Y T , i

´
∝ min

"
exp

Ã
−θ2

2

!³
sin (6θ)2 + 3 cos (θ)2 sin (4θ)2 + 1

´
, 0

#

• Source density:

g (θ) ∝ 1

(2π)0.5
exp

Ã
−θ2

2

!

• Let’s take a look: acceptance.m.
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Problems of Acceptance Sampling

• Two issues:

1. We disregard a lot of draws. We want to minimize a. How?

2. We need to check π/g is bounded. Necessary condition: g has

thicker tails than those of f.

3. We need to evaluate bound a. Difficult to do.

• Can we do better? Yes, through importance sampling.
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Importance Sampling I

• Similar framework than in acceptance sampling:

1. θ ∼ π
³
θ|Y T , i

´
with support C. π

³
θ|Y T , i

´
is called the target

density.

2. z ∼ g (z) with support C0 ⊇ C. g is called the source density.

• Note that we can write:

Eπ(·|Y T ,i) [h (θ)] =
Z
Θi
h (θ)π

³
θ|Y T , i

´
dθ =

Z
Θi
h (θ)

π
³
θ|Y T , i

´
g (θ)

g (θ) dθ
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Importance Sampling II

• If Eπ(·|Y T ,i) [h (θ)] exists, a Law of Large Numbers holds:

Z
Θi
h (θ)

π
³
θ|Y T , i

´
g (θ)

g (θ) dθ ' hIm =
1

m

mX
j=1

h
³
θj
´ π ³θj|Y T , i´

g
³
θj
´

• and
Eπ(·|Y T ,i) [h (θ)] ' hIm

where
n
θj
om
j=1

are draws from g (θ) and
π
¡
θj|Y T ,i

¢
g(θj)

are the important

sampling weights.
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Importance Sampling III

• If Eπ(θ|Y T ,i)
·
π
¡
θ|Y T ,i¢
g(θ)

¸
exists, a Central Limit Theorem applies (see

Geweke, 1989) and:

m1/2
µ
hIm −Eπ(·|Y T ,i) [h (θ)]

¶
→ N

³
0,σ2

´

σ2 ' 1

m

mX
j=1

³
h
³
θj
´
− hIm

´2π
³
θj|Y T , i

´
g
³
θj
´

2

• Where, again,
n
θj
om
j=1

are draws from g (θ).
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Importance Sampling IV

• Notice that:

σ2 ' 1

m

mX
j=1

³
h
³
θj
´
− hIm

´2π
³
θj|Y T , i

´
g
³
θj
´

2

• Therefore, we want π
¡
θ|Y T ,i¢
g(θ)

to be almost flat.
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Importance Sampling V

• Intuition: σ2 is minimized when π
³
θ|Y T , i

´
= g (θ) .,i.e. we are

drawing from π
³
θj|Y T , i

´
.

• Hint: we can use as g (θ) the first terms of a Taylor approximation to
π
³
θ|Y T , i

´
.

• How do we compute the Taylor approximation?
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Conditions for the existence of Eπ(θ|Y T ,i)
·
π
¡
θ|Y T ,i¢
g(θ)

¸

• This has to be checked analytically.

• A simple condition: π
¡
θ|Y T ,i¢
g(θ)

has to be bounded.

• Some times, we label ω
³
θ|Y T , i

´
=

π
¡
θ|Y T ,i¢
g(θ)

.
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Normalizing Factor I

• Assume we do not know the normalizing constant for π
³
θ|Y T , i

´
and

g (θ).

• Let’s call the unnormalized densities: eπ ³θ|Y T , i´ and eg (θ) .
• Then:

Eπ(·|Y T ,i) [h (θ)] =
R
Θi
h (θ) eπ ³θ|Y T , i´ dθR
Θi
eπ ³θ|Y T , i´ dθ =

R
Θi
h (θ)

eπ¡θ|Y T ,i¢eg(θ) eg (θ) dθR
Θi

eπ¡θ|Y T ,i¢eg(θ) eg (θ) dθ
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Normalizing Factor II

• Consequently:

hIm =

1
m

Pm
j=1 h

³
θj
´ π
¡
θj|Y T ,i

¢
g(θj)

1
m

Pm
j=1

π
¡
θj|Y T ,i

¢
g(θj)

=

Pm
j=1 h

³
θj
´
ω
³
θj|Y T , i

´
Pm
j=1 ω

³
θj|Y T , i

´

• and:

σ2 '
m
Pm
j=1

³
h
³
θj
´
− hIm

´2 ³
ω
³
θj|Y T , i

´´2
³Pm

j=1ω
³
θj|Y T , i

´´2
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The Importance of the Behavior of ω
³
θj|Y T , i

´
: Example I

• Assume that we know π
³
θj|Y T , i

´
= tν.

• But we do not know how to draw from it.

• Instead we draw from N (0, 1).

• Why?

• Let’s run normalt.m
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• Evaluate the mean of tv.

• Draw
n
θj
om
j=1

from N (0, 1).

• Let tv(θj)
φ(θj)

= ω
³
θj
´
.

• Evaluate

mean =

Pm
j=1 θjω

³
θj
´

m
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• Evaluate the variance of the estimated mean of tv.

• Compute:

var est mean =

Pm
j=1

³
θj −mean

´2
ω
³
θj
´2

m

• Note: difference between:

1. The variance of a function of interest.

2. The variance of the computed mean of the function of interest.
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Estimation of the Mean of tv: importancenormal.m

υ 3 4 10 100
Est. Mean 0.1026 0.0738 0.0198 0.0000
Est. of Var. of Est. Mean 684.5160 365.6558 36.8224 3.5881

41



The Importance of the Behavior of ω
³
θj|Y T , i

´
: Example II

• Opposite case than before.

• Assume that we know π
³
θj|Y T , i

´
= N (0, 1).

• But we do not know how to draw from it.

• Instead we draw from tv.
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Estimation of the Mean of N (0, 1): importancet.m

tν 3 4 10 100
Est. Mean -0.0104 -0.0075 0.0035 -0.0029
Est. of Var. of Est. Mean 2.0404 2.1200 2.2477 2.7444
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A Procedure to Check How Good is the Important Sampling Function

• This procedure is due to Geweke.

• It is called Relative Numerical Efficiency (RNE).

• First notice that if g (θ) = π
³
θ|Y T , i

´
, we have that:

σ2 ' 1

m

mX
j=1

³
h
³
θj
´
− hIm

´2π
³
θj|Y T , i

´
g
³
θj
´

2 =
=

1

m

mX
j=1

³
h
³
θj
´
− hIm

´2 ' V arπ(·|Y T ,i) [h (θ)]
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A Procedure of Checking how Good is the important Sampling Function II

• Therefore, for a given g (θ), the RNE :

RNE =
V arπ(·|Y T ,i) [h (θ)]

σ2

• If RNE closed to 1 the important sampling procedure is working prop-
erly.

• If RNE is very low, closed to 0, the procedure is not working as

properly.
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Estimation of the Mean of tv

tν 3 4 10 100
RNE 0.0134 0.0200 0.0788 0.2910

Estimation of the Mean of N (0, 1)

tν 3 4 10 100
RNE 0.4777 0.4697 0.4304 0.3471
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Important Sampling and Robustness of Priors

• Priors are researcher specific.

• Imagine researchers 1 and 2 are working with the same model, i.e.
with the same likelihood function, f(yT |θ, 1) = f(yT |θ, 2). (Now 1

and 2 do not imply different models but different researchers)

• But they have different priors π (θ|1) 6= π (θ|2).

• Imagine that researcher 1 has draws from the her posterior distributionn
θj
oN
j=1

∼ π
³
θ|Y T , 1

´
.
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A Simple Manipulation

• If researcher 2 wants to computeZ
Θi
h (θ)π

³
θ|Y T , 2

´
dθ

for any ` (θ), he does not need to recompute everything.

• Note thatZ
Θi
h (θ)π

³
θ|Y T , 2

´
dθ =

Z
Θi
h (θ)

π
³
θ|Y T , 2

´
π
³
θ|Y T , 1

´π ³θ|Y T , 1´ dθ =
R
Θi
h (θ) f(y

T |θ,2)π(θ|2)
f(yT |θ,1)π(θ|1)π

³
θ|Y T , 1

´
dθR

Θi
f(yT |θ,2)π(θ|1)
f(yT |θ,1)π(θ|1)π

³
θ|Y T , 1

´
dθ

=

R
Θi
h (θ)

π(θ|2)
π(θ|1)π

³
θ|Y T , 1

´
dθR

Θi
π(θ|2)
π(θ|1)π

³
θ|Y T , 1

´
dθ
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Importance Sampling

• Then:
1
m

Pm
j=1 h

³
θj
´ π(θj|2)
π(θj|1)

1
m

Pm
j=1

π(θj|2)
π(θj|1)

=

Pm
j=1 h

³
θj
´ π(θj|2)
π(θj|1)Pm

j=1
π(θj|2)
π(θj|1)

→

R
Θi
h (θ) π(θ|2)

π(θ|1)π
³
θ|Y T , 1

´
dθR

Θi
π(θ|2)
π(θ|1)π

³
θ|Y T , 1

´
dθ

=
Z
Θi
h (θ)π

³
θ|Y T , 2

´
dθ

• Simple computation.

• Increased variance.
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