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Likelihood Inference

• We are going to focus in likelihood-based inference.

• Why?

1. Likelihood principle (Berger and Wolpert, 1988).

2. Attractive asymptotic properties and good small sample behavior
(White, 1994 and Fernández-Villaverde and Rubio-Raḿırez, 2004).

3. Estimates parameters needed for policy and welfare analysis.

4. Simple way to deal with misspecified models (Monfort, 1996).

5. Allow us to perform model comparison.
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Alternatives

• Empirical likelihood, non- and semi-parametric methods.

• Advantages and disadvantages.

• Basic theme in econometrics: robustness versus efficiency.

• One size does not fit all!
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The Likelihood Function (Fisher, 1921)

• We have observations x1, x2, ..., xT .

• We have a model that specifies that the observations are realization
of a random variable X.

• We deal with situations in which X has a parametric density fθ for all

values of θ ∈ Θ.

• The likelihood function is defined as lx (θ) = fθ (x), the density of X
evaluated at x as a function of θ.
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Some Definitions

Definition of Sufficient Statistic: When x ∼ fθ (x) , a function T of x (also
called a statistic) is said to be sufficient if the distribution of x condi-
tional upon T (x) does not depend on θ.

Remark: Under the factorization theorem, under measure theoretic regu-
larity conditions:

fθ (x) = g (T (x)| θ)h (x|T (x))
i.e., a sufficient statistic contains the whole information brought by x
about θ.

Definition of Ancillary Statistic: When x ∼ fθ (x) , a statistic S of x is
said to be ancillary if the distribution of S (x) does not depend on θ.
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Experiments and Evidence

Definition of Experiment: An experiment E is a triple (X, θ, {fθ}), where
the random variable X, taking values in Ω and having density fθ for

some θ ∈ Θ, is observed.

Definition of Evidence from an Experiment E : The outcome of an exper-

iment E is the data X = x. From E and x we can infer something

about θ. We define all possible evidence as Ev (E, x).
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The Likelihood Principle

The Likelihood Principle: Let two experiments E1 =
³
X1, θ,

n
f1θ

o´
and

E2 =
³
X2, θ,

n
f2θ

o´
, suppose that for some realizations x∗1 and x∗2, it

is the case that f1θ

³
x∗1
´
= cf2θ

³
x∗2
´
,then Ev

³
E1, x

∗
1

´
= Ev

³
E2, x

∗
2

´

Intrepretation: All the information about θ that we can obtain from an

experiment is contained in likelihood function for θ given the data.
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How do we derive the likelihood principle?

Sufficiency Principle: Let experiment E = (X, θ, {fθ}) and suppose T (X)
sufficient statistic for θ, then, if T (x1) = T (x2), Ev (E, x1) =

Ev (E, x2).

Conditionality Principle: Let two experiments E1 =
³
X1, θ,

n
f1θ

o´
and

E2 =
³
X2, θ,

n
f2θ

o´
. Consider the mixed experimentE∗ =

³
X∗, θ,

n
f∗θ
o´

where X∗ = (J,XJ) and f∗θ
³³
j, xj

´´
= 1
2f
j
θ

³
xj
´
.

Then Ev
³
E∗,

³
j, xj

´´
= Ev

³
Ej, xj

´
.
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Basic Equivalence Result

Theorem: The Conditionality and Sufficiency Principles are necessary and

sufficient for the Likelihood Principle (Birnbaum, 1962).

Remark A slightly stronger version of the Conditionality Principle implies,

by itself, the Likelihood Principle (Evans, Fraser, and Monette, 1986).
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Proof: First, let us show that the Conditionality and the Sufficiency Prin-

ciples ⇒ Likelihood Principle.

Let E1 and E2 be two experiments. Assume that f
1
θ

³
x∗1
´
= cf2θ

³
x∗2
´
.

The Conditionality Principle ⇒ Ev
³
E∗,

³
j, xj

´´
= Ev

³
Ej, xj

´
.

Consider the statistic:

T (J,XJ) =

( ³
1, x∗1

´
if J = 2,X2 = x

∗
2

(J,XJ) otherwise

T is a sufficient statistic for θ since:

Pθ
³
(J,XJ) = (j, xj)|T = t 6= (1, x∗1)

´
=

(
1 if (j, xj) = t
0 otherwise
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Now:

Pθ ((J,XJ) = (1, x
∗
1) |T = (1, x∗1)) =

=
Pθ

³
(J,XJ) =

³
1, x∗1

´
, T =

³
1, x∗1

´´
Pθ

³
T =

³
1, x∗1

´´ =

=

1
2f
1
θ

³
x∗1
´

1
2f
1
θ

³
x∗1
´
+ 1
2f
2
θ

³
x∗2
´ = c

1 + c

and

Pθ ((J,XJ) = (1, x
∗
1) |T = (1, x∗1)) = 1−Pθ ((J,XJ) = (2, x∗2) |T = (1, x∗1))

Since T
³
1, x∗1

´
= T

³
2, x∗2

´
, the Sufficiency Principle⇒Ev

³
E∗,

³
1, x∗1

´´
=

Ev
³
E∗,

³
2, x∗2

´´
⇒ the Likelihood Principle.
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Now, let us prove that the Likelihood Principle⇒ both the Condition-

ality and the Sufficiency Principles.

The likelihood function in E∗ is

l(j,xj) (θ) =
1

2
f
j
θ

³
xj
´
∝ lxj (θ) = fjθ

³
xj
´

proportional to the likelihood function in Ej when xj is observed.

The Likelihood Principle ⇒ Ev
³
E∗,

³
j, xj

´´
= Ev

³
Ej, xj

´
⇒ Con-

ditionality Principle.

If T is sufficient and T (x1) = T (x2)⇒ fθ (x1) = dfθ (x2). The Like-

lihood Principle ⇒ Ev (E, x1) = Ev (E, x2) ⇒ Sufficiency Principle.
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Stopping Rule Principle

If a sequence of experiments, E1, E2, ..., is directed by a stopping rule,

τ , which indicates when the experiment should stop, inference about θ,

should depend on τ only through the resulting sample.

• Interpretation.

• Difference with classical inference.

• Which one makes more sense?
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Example by Lindley and Phillips (1976)

• We are given a coin and we are interested in the probability of heads
θ when flipped.

• We test H0 : θ = 1
2 versus H1 : θ >

1
2.

• An experiment involves flipping a coin 12 times, with the result of 9
heads and 3 tails.

• What was the reasoning behind the experiment, i.e., which was the
stopping rule?
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Two Possible Stopping Rules

1. The experiment was to toss a coin 12 times⇒ B (12, θ). Likelihood:

f1θ (x) =

Ã
n
x

!
θx (1− θ)n−x = 220θ9 (1− θ)3

2. The experiment was to toss a coin until 3 tails were observed⇒
NB (3, θ). Likelihood:

f2θ (x) =

Ã
n+ x− 1

x

!
θx (1− θ)n−x = 55θ9 (1− θ)3

• Note f1θ (x) = cf2θ (x), consequently a LP econometrician gets the

same answer in both cases.
15



Classical Analyses

Fix a conventional significance level of 5 percent.

1. Observed significance level of x = 2 against θ = 1
2 would be:

α1 = P1/2 (X ≥ 9) = f11/2 (9)+f11/2 (10)+f11/2 (11)+f11/2 (12) = 0.075

2. Observed significance level of x = 2 against θ = 1
2 would be:

α2 = P1/2 (X ≥ 9) = f21/2 (9)+f21/2 (10)+f21/2 (11)+f21/2 (12) = 0.0325

We get different answers: no reject H0 in 1, reject H0 in 2!
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What is Going On?

• The LP tells us that all the experimental information is in the evidence.

• A non-LP researcher is using, in its evaluation of the evidence, obser-
vations that have NOT occurred.

• Jeffreys (1961): “...a hypothesis which may be true may be rejected
because it has not predicted observable results which have not oc-

curred.”

• In our example θ = 1
2 certainly is not predicting X larger than 9, and

in fact, such values do not occur.
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Savage (1962)

“I learned the stopping rule principle from Professor Barnard, in conver-

sation in the summer of 1952. Frankly, I the thought it a scandal that

anyone in the profession could advance an idea so patently wrong, even

as today I can scarcely believe that some people resist an idea so patently

right”.
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Limitations of the Likelihood Principle

• We have one important assumption: θ is finite-dimensional.

• What if θ is infinite-dimensional?

• Why infinite-dimensional problems are relevant?

1. Economic theory advances: Ellsberg’s Paradox.

2. Statistical theory advances.

3. Numerical advances.

19



Infinite-Dimensional Problems

• Many of our intuitions from finite dimensional spaces break down when
we deal with spaces of infinite dimensions.

• Example by Robins and Ritov (1997).

• Example appears in the analysis of treatment effects in randomized
trials.
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Model

• Let (x1, y1) , ..., (xn, yn) be n i.i.d. copies of a random vector (X,Y )

where X takes values on the unit cube (0, 1)k and Y is normally

distributed with mean θ (x) and variance 1.

• The density f (x) belongs to the class
F =

n
f : c < f (x) ≤ 1/c for x ∈ (0, 1)k

o
where c ∈ (0, 1) is a fixed constant.

• The conditional mean function is continuous and sup
x∈(0,1)k |θ (x)| ≤

M for some positive finite constant M. Let Θ be the set of all those

functions.
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Likelihood

• The likelihood function of this model is:

L (f, θ) =

nY
i=1

φ (yi − θ (xi))



nY
i=1

f (xi)


where φ (·) is the standard normal density.

• Note that the model is infinite-dimensional because the set Θ can-
not be put into smooth, one-to-one correspondence with a finite-
dimensional Euclidean space.

• Our goal is to estimate:
ψ =

Z
(0,1)k

θ (x) dx
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Ancillary Statistic is Not Irrelevant

• Let X∗ be the set of observed x’s.

• When f is known, X∗ is ancillary. Why?

• When f is unknown, X∗ is ancillary for ψ. Why? Because the condi-
tional likelihood givenX∗ is a function of f alone, θ and f are variation
independent (i.e., the parameter space is a product space), and ψ only

depends on θ.
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Consistent Estimators

• When f is unknown, there no uniformly consistent estimator of ψ
(Robins and Ritov, 1997).

• When f is known, there are n0.5-consistent uniformly estimator of ψ
over f ×θ ∈ F ×Θ.

• Example: ψ∗ = 1
n

Pn
i=1

yi
f(xi)

.

• But we are now using X∗, which was supposed to be ancillary!

• You can show that no estimator that respects the likelihood principle
can be uniformly consistent over f ×θ ∈ F ×Θ.
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Likelihood Based Inference

• Likelihood Principle strongly suggests implementing likelihood-based
inference.

• Two basic approaches:

1. Maximum likelihood:

bθ = argmax
θ
lx (θ)

2. Bayesian estimation:

π
³
θ|XT

´
=

lx (θ)π (θ)R
lx (θ)π (θ) dθ
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Maximum Likelihood Based Inference

• Maximum likelihood is well-know and intuitive.

• One of the main tools of classical econometrics.

• Asymptotic properties: consistency, efficiency, and normality.
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Why Would Not You Use ML?

1. Maximization is a difficult task.

2. Lack of smoothness (for example if we have boundaries)

3. Stability problems.

4. It often violates the likelihood principle.
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Classical Econometrics and the Likelihood Principle

• Consider the following example due to Berger and Wolpert (1984).

• Let Ω = {1, 2, 3} and Θ = {0, 1} and consider the following two
experiments E1 and E2 with the following densities:

1 2 3

f10 (x1) .9 .05 .05

f11 (x1) .09 .055 .855

and

1 2 3

f20 (x2) .26 .73 .01

f21 (x2) .026 .803 .171

• Note: same underlaying phenomenon. Examples in economics? Euler
Equation test.
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Constant Likelihood Ratios

• Let x1 = 1 and x2 = 1.

• But
³
f10 (1) , f

1
1 (1)

´
= (.9, .09) and

³
f20 (1) , f

2
1 (1)

´
= (.26, .026) are

proportional ⇒LP⇒ same inference.

• Actually, this is true for any value of x; the likelihood ratios are always
the same.

• If we get x1 = x2, the LP tells us that we should get the same

inference.
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A Standard Classical Test

• Let the following classical test. H0: θ = 0 and we have the following

test: (
accept if x = 1
reject otherwise

• This test has the most power under E1.

• But errors are different: Type I error is 0.1 (E1) against 0.74 (E2)
and Type II error is 0.09 (E1) against 0.026 (E2).

• This implies that E1 and E2 will give very different answers.
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What is Going On?

• Experiment E1 is much more likely to proved useful information about
θ, as evidenced by the overall better error probabilities (a measure of

ex ante precision).

• Once x is at hand, ex ante precision is irrelevant.

• What matters is ex post information!
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Is There an Alternative that Respects the Likelihood Principle?

• Yes: Bayesian econometrics.

• Original idea of Reverend Thomas Bayes in 1761.

• First modern treatment: Jeffreys (1939).

• During the next half century, landscape dominated by classical meth-
ods (despite contribution like Savage, 1954, and Zellner, 1971).

• Resurgence in the 1990s because of the arrival of McMc.
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Basic Difference: Conditioning

• Classical and Bayesian methods differ basically on what do you condi-
tion on.

• Classical (or frequentist) search for procedures that work well ex ante.

• Bayesians always condition ex post.

• Example: Hypothesis testing.
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Why Bayesian?

• It respects the likelihood principle.

• It can be easily derived from axiomatic foundations (Heath and Sud-
derth, 1996) as an if and only if statement.

• Coherent and comprehensive.

• Easily deals with misspecified models.

• Good small sample behavior.

• Good asymptotic properties.
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Bayesian Econometrics: the Basic Ingredients

• Data yT ≡ {yt}Tt=1 ∈ RT

• Model i ∈M :

— Parameters set

Θi ∈ Rki

— Likelihood function

f(yT |θ, i) : RT ×Θi→ R+

— Prior Distribution

π (θ|i) : Θi→ R+
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Bayesian Econometrics Basic Ingredients II

• The Joint Distribution for model i ∈M
f(yT |θ, i)π (θ|i)

• The Marginal Distribution

P
³
yT |i

´
=
Z
f(yT |θ, i)π (θ|i) dθ

• The Posterior Distribution

π
³
θ|yT , i

´
=

f(yT |θ, i)π (θ|i)R
f(yT |θ, i)π (θ|i) dθ
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Bayesian Econometrics and the Likelihood Principle

Since all Bayesian inference about θ is based on the posterior distribution

π
³
θ|Y T , i

´
=

f(Y T |θ, i)π (θ|i)R
Θi
f(Y T |θ, i)π (θ|i) dθ

the Likelihood Principle always holds.
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A Baby Example (Zellner, 1971)

• Assume that we have n observations yT = (y1, ..., yn) from N (θ, 1) .

• Then:

f(yT |θ) =
1

(2π)0.5n
exp

−1
2

nX
i=1

(yi − θ)2


=

1

(2π)0.5n
exp

·
−1
2

µ
ns2 + n

³
θ − θ0

´2¶¸
where θ0 = 1

n

P
yi is the sample mean and s

2 = 1
n

P¡
yi − θ0

¢2 the
sample variance.
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The Prior

• Prior distribution:

π (θ) =
1

(2π)0.5 σ
exp

"
−(θ − µ)

2

2σ2

#
The parameters σ and µ are sometimes called hyperparameters.

• We will talk in a moment about priors and where they might come
from.
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The Posterior

π
³
θ|yT , i

´
∝ 1

(2π)0.5n
exp

h
−12
³
ns2+n(θ−θ0)2

´i
1

(2π)0.5 σ
exp

·
−(θ−µ)2

2σ2

¸

∝ exp

"
−1
2

Ã
n
³
θ − θ0

´2
+
(θ − µ)2

σ2

!#

∝ exp

−1
2

σ2 + 1/n

σ2/n

Ã
θ − θ0σ2 + µ/n

σ2 + 1/n

!2
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Remarks

• Posterior is a normal that with mean θ0σ2+µ/n
σ2+1/n

and variance
σ2/n

σ2+1/n
.

• Note the weighted sum structure of the mean and variance.

• Note the sufficient statistics structure.

• Let’s see a plot: babyexample.m.
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An Asymptotic Argument

• Notice, that as n→∞ :

θ0σ2 + µ/n
σ2 + 1/n

→ θ0

σ2/n

σ2 + 1/n
→ 0

• We know, by a simple law of large numbers that, θ0→ θ0, i.e. the true

parameter value (if the model is well specified) or to the pseudo-true

parameter value (if not).

• We will revisit this issue.
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Applications to Economics

• Previous example is interesting, but purely statistical.

• How do we apply this approach in economics?

• Linear regression and other models (VARs) are nothing more than
small modifications of previous example.

• Dynamic Equilibrium models required a bit more work.

• Let me present a trailer of attractions to come.
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A Mickey Mouse Economic Example

• Assume we want to explain data on consumption:
CT ≡ {Ct}Tt=1

• Model

max
TX
t=1

logCt

s.t.

Ct ≤ ωt

where ωt ∼ iid N(µ,σ2) and θ ≡ (µ,σ) ∈ Θ ≡ [0,∞)× [0,∞).
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• Model solution implies⇒Likelihood function
{Ct}Tt=1 ∼ iid N(µ,σ2)

so

f({Ct}Tt=1 |θ) = ΠTt=1φ
µ
Ct − µ

σ

¶

• Priors
µ ∼ Gamma(4, 0.25)

σ ∼ Gamma(1, 0.25)
so:

π (θ) = G (µ; 4, 0.25)G (σ; 1, 0.25)
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Bayes Theorem

Posterior distribution

π
³
θ| {Ct}Tt=1

´
=

f({Ct}Tt=1 |θ)π (θ|)R
Θ f({Ct}Tt=1 |θ)π (θ) dθ

=
ΠTt=1φ

³
Ct−µ
σ

´
G (µ; 4, 0.25)G (σ; 1, 0.25)R

ΘΠTt=1φ
³
Ct−µ
σ

´
G (µ; 4, 0.25)G (σ; 1, 0.25) dθ

and Z
Θ
ΠTt=1φ

µ
Ct − µ

σ

¶
G (µ; 4, 0.25)G (σ; 1, 0.25) dθ

is the marginal likelihood.

46



Remarks

• Posterior distribution does not belong to any easily recognized para-
metric family:

1. Traditional approach: conjugate priors⇒prior such that posterior
belongs to the same parametric family.

2. Modern approach: simulation.

• We need to solve a complicated integral:

1. Traditional approach: analytic approximations.

2. Modern approach: simulation.
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Tasks in Front of Us

1. Talk about priors.

2. Explain the importance of posteriors and marginal likelihoods.

3. Practical implementation.
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Tasks in Front of Us

1. Talk about priors.

49



What is the Prior?

• The prior is the belief of the researcher about the likely values of the
parameters.

• Gathers prior information.

• Problems:

1. Can we always formulate a prior?

2. If so, how?

3. How do we measure the extent to which the prior determines our

results?
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Proper versus Improper Priors

• What is a proper prior? A prior that is a well-defined pdf.

• Who would like to use an improper prior?

1. To introduce classical inference through the back door.

2. To achieve “non-informativeness” of the prior: why? Uniform dis-

tribution over <.

• Quest for “noninformative” prior.
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Some Noninformative Priors I: Laplace’s Prior

• Principle of Insufficient Reason: Uniform distribution over Θ.

• Problems:

1. Often induces nonproper priors.

2. Non invariant under reparametrizations. If we switch from θ ∈ Θ

with prior π (θ) = 1 to η = g (θ), the corresponding new prior is:

π∗ (η) =
¯̄̄̄
¯ ddηg−1 (η)

¯̄̄̄
¯

Therefore π∗ (η) is usually not a constant.
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Example of Noninvariance

• Discussion: is the business cycle asymmetric?

• Let p be the proportion of quarters in which there GDP per capita

grows less than the long-run average for the U.S. economy (1.9%).

• To learn about p we select a prior U [0, 1] .

• Now, the odds ratio is κ = p
1−p.

• But the uniform prior on p implies a prior on κ with density 1
(1+κ)2

.
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Some Noninformative Priors II: Unidimensional Jeffreys Prior

• Set π (θ) ∝ I0.5 (θ) where I (θ) = −Eθ

¯̄̄̄
∂2 log f(x|θ)

∂θ2

¯̄̄̄

• What is I (θ)? Fisher information (Fisher, 1956): how much the model
discriminates between θ and θ + dθ through the expected slope of

log f(x|θ).

• Intuition: the prior favors values of θ for which I (θ) is large, i.e. it
minimizes the influence of the prior distribution.

• Note I (θ) = I0.5 (h (θ))
¡
h0 (θ)

¢2 . Thus, it is invariant under repara-
metrization.
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Our Example of Asymmetric Business Cycles

• Let us assume that number of quarters with growth rate below 1.9%
is B (n, θ) .

• Thus:

f(x|θ) =
Ã
n
x

!
θx (1− θ)n−x⇒

∂2 log f(x|θ)
∂θ2

=
x

θ2
+

n− x
(1− θ)2

⇒

I (θ) = n

"
1

θ
+

1

(1− θ)

#
=

n

θ (1− θ)

• Hence: π (θ) ∝ (θ (1− θ))−0.5 .
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Some Noninformative Priors II: Multidimensional Jeffreys Prior

• Set π (θ) ∝ [det I (θ)]0.5 where the entries of the matrix are defined

as:

Iij (θ) = −Eθ

¯̄̄̄
¯ ∂2

∂θi∂θj
log fθ (x)

¯̄̄̄
¯
0.5

• Note that if f(x|θ) is exponential (like the Normal):
f(x|θ) = h (x) exp (θx− ψ (θ))

the Fisher information matrix is given by I (θ) = ∇∇tψ (θ). Thus

π (θ) ∝
 kY
i=1

∂2

∂θ2i
ψ (θ)

0.5
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An Interesting Application

• Big issue in the 1980s and early 1990s was Unit Roots. Given:
yt = ρyt−1 + εt

what is the value of ρ?

• Nelson and Plosser (1982) argued that many macroeconomic time
series may present a unit root.

• Why does it matter?

1. Because non-stationarity changes classical asymptotic theory.

2. Opens the issue of cointegration.
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Exchange between Sims and Phillips about Unit Roots

• Sims and Uhlig (1991), “Understanding Unit Rooters: A Helicopter

Tour”:

1. Unit roots are not an issue for Bayesian econometrics.

2. They whole business is not that important anyway because we will

still have .

• Phillips (1991): Sims and Uhlig use a uniform prior. This affects the

results a lot.

• Sims (1991): I know!
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Criticisms of the Jeffreys Prior

• Jeffreys prior lacks a foundation in prior beliefs: it is only a trick.

• Often Jeffreys Prior it is not proper.

• It may violate the Likelihood Principle. Remember our stopping rule
example? In the first case, we had a binomial. But we just derived

that, for a binomial, the Jeffreys prior is π1 (θ) ∝ (θ (1− θ))−0.5 .
In the second case, we had a negative binomial, with Jeffreys prior

π2 (θ) ∝ θ−1 (1− θ)−0.5. They are different!

• We will see later that Jeffreys prior is difficult to apply to equilibrium
models.
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A Summary about Priors

• Searching for the right prior is sometimes difficult.

• Good thing about Bayesian: you are putting on the table.

• Some times, an informative prior is useful. For example: new economic
phenomena for which we do not have much data.

• Three advises: robustness checks, robustness checks, robustness checks.
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Tasks in Front of Us

1. Talk about priors (done).

2. Explain the importance of posteriors and marginal likelihoods.
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Why are the Posterior and the Marginal Likelihood So Important?

• Assume we want to explain the following data Y T ≡
³
Y 01, ..., Y 0T

´0
defined on a complete probability space (Ω,=, P0).

• Let M be the set of model. We define a model i as the collection

S (i) ≡
n
f
³
TT |θ, i

´
,π (θ|i) ,Θi

o
, where f

³
TT |θ, i

´
is the likelihood,

and π (θ|i) is a prior density ∀i ∈M .

• Define Kullback-Leibler measure:

K
³
fT (·|θ, i) ; pT0 (·)

´
=
Z
<m×T

log

 pT0

³
Y T

´
fT

³
Y T |θ, i

´
 pT0 ³Y T´ dνT
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• The Kullback-Leibler measure is not a metric, because
K
³
fT (·|θ, i) ; pT0 (·)

´
6= K

³
pT0 (·) ; fT (·|θ, i)

´
but it has the following nice properties:

1. K
³
fT (·|θ, i) ; pT0 (·)

´
≥ 0.

2. K
³
fT (·|θ, i) ; pT0 (·)

´
= 0 iff fT (·|θ, i) = pT0 (·).

• Property 1 is obvious because log (·) > 0 and pT0 (·) > 0.

• Property 2 holds because of the following nice property of log function
→ log η ≤ η − 1 and the equality holds only when η = 1.
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The Pseudotrue Value

We can define the pseudotrue value as

θ∗T (i) ≡ arg min
θ∈Θi

K
³
fT (·|θ, i) ; pT0 (·)

´
of θ that minimizes the Kullback-Leibler distance between fT (·|θ, i) and
pT0 (·).
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A Couple of Nice Theorems

Fernández-Villaverde and Rubio-Raḿırez (2004) show that:

• 1. The posterior distribution of the parameters collapses to the pseudo-

true value of the parameter θ∗T (i).

π
³
θ|Y T , i

´
→d χ{θ∗T (i)} (θ)

2. If j ∈M is the closed model to P0 in the Kullback-Leibler distance sense

lim
T→∞P0T

fT
³
Y T |i

´
fT

³
Y T |j

´ = 0
 = 1
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Importance of Theorems

• Result 1 implies that we can use the posterior distribution to estimate
the parameters of the model.

• Result 2 implies that we can use the bayes factor to compare between
alternative models.

• Both for non-nested and/or misspecified models.
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Limitations of the Theorems

• We need to assume that parameter space is finite dimensional.

• Again, we can come up with counter-examples to the theorems when
the parameter space is infinite-dimensional (Freedman, 1962).

• Not all is lost, though...

• Growing field of Bayesian Nonparametrics: J.K. Ghosh and R.V. Ra-
mamoorthi, Bayesian Non Parametrics, Springer Verlag.

67



Bayesian Econometrics and Decision Theory

• Bayesian econometrics is explicitly based on Decision Theory.

• Researchers and users are undertaking inference to achieve a goal:

1. Select right economic theory.

2. Take the optimal policy decision.

• This purpose may be quite particular to the problem at hand. For
example, Schorfheide (2000).

• In that sense, the Bayesian approach is coherent with the rest of eco-
nomics.
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Parameter Estimation

• Loss function
` (δ, θ) : Θ×Θ→ Rk

• Point estimate: bθ such that
bθ ³Y T , i, `´ = argmin

δ

Z
Θi
` (δ, θ)π

³
θ|Y T , i

´
dθ
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Quadratic Loss Function

If the loss function is ` (δ, θ) = (δ − θ)2⇒ Posterior mean

∂
R
R (δ − θ)2 π

³
θ|Y T

´
dθ

∂δ
= 2

Z
R
(δ − θ)π

³
θ|Y T

´
dθ = 0

bθ ³Y T , `´ = Z
R
θπ

³
θ|Y T

´
dθ
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Absolute Value Loss Function

If the loss function is ` (δ, θ) = |(δ − θ)|⇒ Posterior median

Z ∞
−∞

|δ − θ|π
³
θ|Y T

´
dθ =

=
Z δ

−∞
(δ − θ)π

³
θ|Y T

´
dθ −

Z ∞
δ
(δ − θ)π

³
θ|Y T

´
=

=
Z δ

−∞
P
³
θ ≤ y|Y T

´
dy −

Z ∞
δ
P
³
θ ≥ y|Y T

´
dy
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Thus

∂
R∞−∞ |δ − θ|π

³
θ|Y T

´
dθ

∂δ
= P

³
θ ≤ δ|Y T

´
− P

³
θ ≥ δ|Y T

´
= 0

and

P
³
θ ≤ bθ ³Y T , `´ |Y T´ = 1

2
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Confidence Sets

• A set C ⊆ Θ is 1− α credible if:

P (θ ∈ Θ) ≥ 1− α

• A Highest Posterior Density (HPD) Region is a set C such that:

C =
n
θ : P

³
θ|Y T

´
≥ kα

o
where kα is the largest bound such that C is 1− α credible.

• HPD regions minimize the volume among all 1− α credible sets.

• Comparison with classical confidence intervals.
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Hypothesis Testing and Model Comparison

• Bayesian equivalent of classical hypothesis testing.

• A particular case of a more general approach: model comparison.

• We will come back to these issues latter.
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Tasks in Front of Us

1. Talk about priors (done).

2. Explain the importance of posteriors and marginal likelihoods (done).

3. Practical implementation.
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Three Issues

• Draw from the posterior π
³
θ|Y T , i

´
(We would need to evaluate

f(Y T |θ, i) and π (θ|i)).

• Use the Filtering Theory to evaluate f(Y T |θ, i) in a DSGE model (We
would need to solve the model).

• Compute P
³
Y T |i

´
.
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Numerical Problems

• Loss function (Compute expectations).

• Posterior distribution:

π
³
θ|Y T , i

´
=

f(Y T |θ, i)π (θ|i)R
Θi
f(Y T |θ, i)π (θ|i) dθ

• Marginal likelihood:

P
³
Y T |i

´
=
Z
Θi
f(Y T |θ, i)π (θ|i) dθ
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How Do We Integrate?

• Exact integration.

• Approximations: Laplace’s method.

• Quadrature.

• Monte Carlo simulations.
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