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Basic RBC

• Social Planner’s problem:

maxE
∞X
t=0

βt {log ct + ψ log (1− lt)}

ct + kt+1 = kαt (e
ztlt)

1−α + (1− δ) kt, ∀ t > 0
zt = ρzt−1 + εt, εt ∼ N (0,σ)

• This is a dynamic optimization problem.
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Computing the RBC

• The previous problem does not have a known “paper and pencil” so-

lution.

• We will work with an approximation: Perturbation Theory.

• We will undertake a first order perturbation of the model.

• How well will the approximation work?
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Equilibrium Conditions

From the household problem+firms’s problem+aggregate conditions:

1

ct
= βEt

(
1

ct+1

³
1 + αkα−1t (eztlt)

1−α − δ
´)

ψ
ct

1− lt
= (1− α) kαt (e

ztlt)
1−α l−1t

ct + kt+1 = k
α
t (e

ztlt)
1−α + (1− δ) kt

zt = ρzt−1 + εt
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Finding a Deterministic Solution

• We search for the first component of the solution.

• If σ = 0, the equilibrium conditions are:

1

ct
= β

1

ct+1

³
1 + αkα−1t l1−αt − δ

´
ψ

ct

1− lt
= (1− α) kαt l

−α
t

ct + kt+1 = k
α
t l
1−α
t + (1− δ) kt

5



Steady State

• The equilibrium conditions imply a steady state:

1

c
= β

1

c

³
1 + αkα−1l1−α − δ

´
ψ

c

1− l = (1− α) kαl−α

c+ δk = kαl1−α

• The first equation can be written as:
1

β
= 1 + αkα−1l1−α − δ
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Solving the Steady State

Solution:

k =
µ

Ω+ ϕµ
l = ϕk

c = Ωk

y = kαl1−α

where ϕ =
³
1
α

³
1
β − 1 + δ

´´ 1
1−α, Ω = ϕ1−α − δ and µ = 1

ψ (1− α)ϕ−α.
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Linearization I

• Loglinearization or linearization?

• Advantages and disadvantages

• We can linearize and perform later a change of variables.
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Linearization II

We linearize:

1

ct
= βEt

(
1

ct+1

³
1 + αkα−1t (eztlt)

1−α − δ
´)

ψ
ct

1− lt
= (1− α) kαt (e

ztlt)
1−α l−1t

ct + kt+1 = k
α
t (e

ztlt)
1−α + (1− δ) kt

zt = ρzt−1 + εt

around l, k, and c with a First-order Taylor Expansion.
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Linearization III

We get:

−1
c
(ct − c) = Et

( −1c (ct+1 − c) + α (1− α)βykzt+1+
α (α− 1)β y

k2
(kt+1 − k) + α (1− α)β ykl (lt+1 − l)

)
1

c
(ct − c) + 1

(1− l) (lt − l) = (1− α) zt +
α

k
(kt − k)− α

l
(lt − l)

(ct − c) + (kt+1 − k) =
 y

µ
(1− α) zt +

α
k (kt − k) +

(1−α)
l (lt − l)

¶
+(1− δ) (kt − k)


zt = ρzt−1 + εt
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Rewriting the System I

Or:

α1 (ct − c) = Et {α1 (ct+1 − c) + α2zt+1 + α3 (kt+1 − k) + α4 (lt+1 − l)}

(ct − c) = α5zt +
α

k
c (kt − k) + α6 (lt − l)

(ct − c) + (kt+1 − k) = α7zt + α8 (kt − k) + α9 (lt − l)

zt = ρzt−1 + εt
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Rewriting the System II

where

α1 = −1c α2 = α (1− α)βyk
α3 = α (α− 1)β y

k2
α4 = α (1− α)β ykl

α5 = (1− α) c α6 = −
µ
α
l +

1
(1−l)

¶
c

α7 = (1− α) y α8 = y
α
k + (1− δ)

α9 = y
(1−α)
l y = kαl1−α
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Rewriting the System III

After some algebra the system is reduced to:

A (kt+1 − k) +B (kt − k) + C (lt − l) +Dzt = 0

Et (G (kt+1 − k) +H (kt − k) + J (lt+1 − l) +K (lt − l) + Lzt+1 +Mzt) = 0

Etzt+1 = ρzt
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Guess Policy Functions

We guess policy functions of the form (kt+1 − k) = P (kt − k) +Qzt and
(lt − l) = R (kt − k) + Szt, plug them in and get:

A (P (kt − k) +Qzt) +B (kt − k)
+C (R (kt − k) + Szt) +Dzt = 0

G (P (kt − k) +Qzt) +H (kt − k) + J (R (P (kt − k) +Qzt) + SNzt)
+K (R (kt − k) + Szt) + (LN +M) zt = 0
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Solving the System I

Since these equations need to hold for any value (kt+1 − k) or ztwe need
to equate each coefficient to zero, on (kt − k):

AP +B + CR = 0

GP +H + JRP +KR = 0

and on zt:

AQ+ CS +D = 0

(G+ JR)Q+ JSN +KS + LN +M = 0
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Solving the System II

• We have a system of four equations on four unknowns.

• To solve it note that R = − 1
C (AP +B) = − 1

CAP − 1
CB

• Then:
P 2 +

µ
B

A
+
K

J
− GC
JA

¶
P +

KB −HC
JA

= 0

a quadratic equation on P .
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Solving the System III

• We have two solutions:

P = −1
2

−B
A
− K
J
+
GC

JA
±
Ãµ
B

A
+
K

J
− GC
JA

¶2
− 4KB −HC

JA

!0.5
one stable and another unstable.

• If we pick the stable root and find R = − 1
C (AP +B) we have to a

system of two linear equations on two unknowns with solution:

Q =
−D (JN +K) + CLN + CM

AJN +AK − CG− CJR
S =

−ALN −AM +DG+DJR

AJN +AK − CG− CJR
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Practical Implementation

• How do we do this in practice?

• Solving quadratic equations: “A Toolkit for Analyzing Nonlinear Dy-
namic Stochastic Models Easily” by Harald Uhlig.

• Using dynare.
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General Structure of Linearized System

Given m states xt, n controls yt, and k exogenous stochastic processes

zt+1, we have:

Axt +Bxt−1 + Cyt +Dzt = 0
Et (Fxt+1 +Gxt +Hxt−1 + Jyt+1 +Kyt + Lzt+1 +Mzt) = 0

Etzt+1 = Nzt

where C is of size l×n, l ≥ n and of rank n, that F is of size (m+ n− l)×
n, and that N has only stable eigenvalues.
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Policy Functions

We guess policy functions of the form:

xt = Pxt−1 +Qzt
yt = Rxt−1 + Szt

where P, Q, R, and S are matrices such that the computed equilibrium is

stable.
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Policy Functions

For simplicity, suppose l = n. See Uhlig for general case (I have never be

in the situation where l = n did not hold).

Then:

1. P satisfies the matrix quadratic equation:³
F − JC−1A

´
P 2−

³
JC−1B −G+KC−1A

´
P −KC−1B+H = 0

The equilibrium is stable iff max (abs (eig (P ))) < 1.

2. R is given by:

R = −C−1 (AP +B)
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3. Q satisfies:

N 0 ⊗
³
F − JC−1A

´
+ Ik ⊗

³
JR+ FP +G−KC−1A

´
vec (Q)

= vec
³³
JC−1D − L

´
N +KC−1D −M

´

4. S satisfies:

S = −C−1 (AQ+D)
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How to Solve Quadratic Equations

To solve

ΨP 2 − ΓP −Θ = 0

for the m×m matrix P :

1. Define the 2m× 2m matrices:

Ξ =

"
Γ Θ
Im 0m

#
, and ∆ =

"
Ψ 0m
0m Im

#

2. Let s be the generalized eigenvector and λ be the corresponding

generalized eigenvalue of Ξ with respect to ∆. Then we can write

s0 =
£
λx0, x0

¤
for some x ∈ <m.
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3. If there arem generalized eigenvalues λ1,λ2, ...,λm together with gen-

eralized eigenvectors s1, ..., sm of Ξ with respect to ∆, written as

s0 =
h
λx0i, x0i

i
for some xi ∈ <m and if (x1, ..., xm) is linearly inde-

pendent, then:

P = ΩΛΩ−1

is a solution to the matrix quadratic equation where Ω = [x1, ..., xm]

and Λ = [λ1, ...,λm]. The solution of P is stable if max |λi| < 1.

Conversely, any diagonalizable solution P can be written in this way.
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How to Implement This Solver

Available Code:

1. My own code: undeter1.m.

2. Uhlig’s web page: http://www.wiwi.hu-berlin.de/wpol/html/toolkit.htm
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An Alternative Dynare

• What is Dynare? A platform for the solution, simulation, and estima-

tion of DSGE models in economics.

• Developed by Michel Juilliard and collaborators.

• I am one of them:)

• http://www.cepremap.cnrs.fr/dynare/
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• Dynare takes a more “blackbox approach”.

• However, you can access the files...

• ...and it is very easy to use.

• Short tutorial.
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Our Benchmark Model

• We are now ready to compute our benchmark model.

• We begin finding the steady state.

• As before, a variable x with no time index represent the value of that
variable in the steady state.
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Steady State I

• From the first order conditions of the household:.

c−σ = βc−σ (r + 1− δ)}
c−σ = βc−σR

π
ψlγ = c−σw

• We forget the money condition because the central bank, through
open market operations, will supply all the needed money to support

the chosen interest rate.

• Also, we normalize the price level to one.
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Steady State II

• From the problem of the intermediate good producer:

k =
α

1− α

w

r
l

• Also:

mc =
µ

1

1− α

¶1−α µ1
α

¶α
w1−αrα

p∗
p
=

ε

ε− 1mc

where A = 1.
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Steady State III

• Now, since p∗ = p:µ
1

1− α

¶1−α µ1
α

¶α
w1−αrα = ε− 1

ε

• By markets clearing:
c+ δk = y = kαl1−α

where we have used the fact that x = δk and that:
A

v
= 1

• The Taylor rule will be trivially satisfied and we can drop it from the
computation.
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Steady State IV

• Our steady state equations, cancelling redundant constants are:

r =
1

β
− 1 + δ

R =
1

β
π

ψlγ = c−σw
k =

α

1− α

w

r
lµ

1

1− α

¶1−α µ1
α

¶α
w1−αrα = ε− 1

ε

c+ δk = kαl1−α

• A system of six equations on six unknowns.
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Solving for the Steady State I

• Note first that:
w1−α = (1− α)1−α ααε− 1

ε
r−α⇒

w = (1− α)α
α
1−α

µ
ε− 1
ε

¶ 1
1−α

Ã
1

β
− 1 + δ

! α
α−1

• Then:
k

l
= Ω =

α

1− α

w

r
⇒ k = Ωl

33



Solving for the Steady State II

• We are left with a system of two equations on two unknowns:

ψlγcσ = w

c+ δΩl = Ωαl

• Substituting c = (Ωα − δΩ) l, we have

ψ

µ
c

Ωα − δΩ

¶γ
cσ = w⇒

c =

Ã
(Ωα − δΩ)γ

w

ψ

! 1
γ+σ
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Steady State

r = 1
β − 1 + δ mc = ε−1

ε

R = 1
βπ k = Ωl

w = (1− α)α
α
1−α

³
ε−1
ε

´ 1
1−α

³
1
β − 1 + δ

´ α
α−1 x = δk

c =
³
(Ωα − δΩ)γ wψ

´ 1
γ+σ y = kαl1−α

l = c
Ωα−δΩ Ω = α

1−α
w
r
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Log-Linearizing Equilibrium Conditions

• Take variable xt.

• Substitute by xebxt where:
bxt = log xt

x

• Notation: a variable bxt represents the log-deviation with respect to
the steady state.

• Linearize with respect to bxt.
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Households Conditions I

• ψl
γ
t = c

−σ
t wt or ψl

γeγ
blt = c−σe−σbctwe bwt gets loglinearized to:

γblt = −σbct + bwt
• Then:

c−σt = βEt{c−σt+1 (rt+1 + 1− δ)}
or:

c−σe−σbct = βEt{c−σe−σbct+1 ³rebrt+1 + 1− δ
´
}

that gets loglinearized to:

−σbct = −σEtbct+1 + βrEtbrt+1
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Households Conditions II

• Also:
c−σt = βEt{c−σt+1

Rt+1
πt+1

}
or:

c−σe−σbct = βEt{c−σe−σbct+1 µR
π
e
bRt+1−bπt+1¶}

that gets loglinearized to:

−σbct = −σEtbct+1 +Et ³ bRt+1 − bπt+1´

• We do not loglinearize the money condition because the central bank,
through open market operations, will supply all the needed money to

support the chosen interest rate.
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Marginal Cost

• We know:
mct =

µ
1

1− α

¶1−α µ1
α

¶α 1

At
w1−αt rαt

or:

mcecmct = µ
1

1− α

¶1−α µ1
α

¶α w1−αrα
A

e− bAt+(1−α) bwt+αbrt

• Loglinearizes to:
dmct = − bAt + (1− α) bwt + αbrt
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Pricing Condition I

• We have:

Et

∞X
τ=0

(βθp)
τ vt+τ

(Ã
p∗it
pt+τ

− ε

ε− 1mct+τ
!
y∗it+τ

)
= 0,

where

y∗it+τ =
Ã
p∗ti
pt+τ

!−ε
yt+τ ,
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Pricing Condition II

• Also:

Et

∞X
τ=0

(βθp)
τ vt+τ


Ã p∗it
pt+τ

!1−ε
− ε

ε− 1mct+τ
Ã
p∗ti
pt+τ

!−ε yt+τ
 = 0⇒

Et

∞X
τ=0

(βθp)
τ vt+τ

Ã
p∗it
pt+τ

!1−ε
yt+τ =

Et

∞X
τ=0

(βθp)
τ vt+τ

ε

ε− 1mct+τ
Ã
p∗ti
pt+τ

!−ε
yt+τ
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Working on the Expression I

• If we prepare the expression for loglinearization (and eliminating the
index i because of the symmetric equilibrium assumption):

Et

∞X
τ=0

(βθp)
τ v

Ã
p∗
p

!1−ε
yebvt+τ+(1−ε)bp∗t−(1−ε)bpt+τ+byt+τ =

Et

∞X
τ=0

(βθp)
τ v

µ
ε

ε− 1mc
¶Ã

p∗
p

!−ε
yebvt+τ−εbp∗t+εbpt+τ+cmct+τ+byt+τ

42



Working on the Expression II

• Note that ε
ε−1mc = 1,

p∗
p = 1,

• Dropping redundant constants, we get:

Et

∞X
τ=0

(βθp)
τ ebvt+τ+(1−ε)bp∗t−(1−ε)bpt+τ+byt+τ =

Et

∞X
τ=0

(βθp)
τ ebvt+τ−εbp∗t+εbpt+τ+cmct+τ+byt+τ
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Working on the Expression III

Then

Et

∞X
τ=0

(βθp)
τ (bvt+τ + (1− ε) bp∗t − (1− ε) bpt+τ + byt+τ) =

= Et

∞X
τ=0

(βθp)
τ (bvt+τ − εbp∗t + εbpt+τ +dmct+τ + byt+τ)
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Working on the Expression IV:

Et

∞X
τ=0

(βθp)
τ (bp∗t − bpt+τ) = Et ∞X

τ=0

(βθp)
τ dmct+τ ⇒

Et

∞X
τ=0

(βθp)
τ bp∗t = Et ∞X

τ=0

(βθp)
τ bpt+τ +Et ∞X

τ=0

(βθp)
τ dmct+τ ⇒

1

1− βθp
bp∗t = Et ∞X

τ=0

(βθp)
τ bpt+τ +Et ∞X

τ=0

(βθp)
τ dmct+τ ⇒

bp∗t = (1− βθp)Et

∞X
τ=0

(βθp)
τ bpt+τ + (1− βθp)Et

∞X
τ=0

(βθp)
τ dmct+τ
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Working on the Expression V

• Note that:

(1− βθp)Et

∞X
τ=0

(βθp)
τ bpt+τ = (1− βθp) bpt + (1− βθp)βθpEtbpt+1 + ...

= bpt + βθpEt (bpt+1 − bpt) + ...
= bpt−1 + bpt − bpt−1 + βθpEtbπt+1 + ...
= bpt−1 +Et ∞X

τ=0

(βθp)
τ bπt+τ

• Then:

bp∗t = bpt−1 +Et ∞X
τ=0

(βθp)
τ bπt+τ + (1− βθp)Et

∞X
τ=0

(βθp)
τ dmct+τ
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Working on the Expression VI

• Now:

bp∗t = bpt−1 + bπt + (1− βθp)dmct +Et ∞X
τ=1

(βθp)
τ bπt+τ

+(1− βθp)Et

∞X
τ=1

(βθp)
τ dmct+τ

• If we forward the equation one term:

Etbp∗t+1 = bpt +Et ∞X
τ=0

(βθp)
τ bπt+1+τ + (1− βθp)Et

∞X
τ=0

(βθp)
τ dmct+1+τ
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Working on the Expression VII

• We multiply it by βθp:

βθpEtbp∗t+1 = βθpbpt +Et ∞X
τ=0

(βθp)
τ+1 bπt+1+τ

+(1− βθp)Et

∞X
τ=0

(βθp)
τ+1dmct+1+τ

• Then:
bp∗t − bpt−1 = βθpEt

³bp∗t+1 − bpt´+ bπt + (1− βθp)dmct
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Price Index

• Since the price index is equal to pt =
h
θpp

1−ε
t−1 + (1− θp) p

∗1−ε
t

i 1
1−ε.

• we can write:

pebpt =
h
θpp

1−εe(1−ε)bpt−1 + (1− θp) p
1−εe(1−ε)bp∗t i 1

1−ε ⇒

ebpt =
h
θpe

(1−ε)bpt−1 + (1− θp) e
(1−ε)bp∗t i 1

1−ε

• Loglinearizes to:
bpt = θpbpt−1 + (1− θp) bp∗t ⇒ bπt = (1− θp) (bp∗t − bpt−1)
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Evolution of Inflation

• We can put together the price index and the pricing condition:
bπt

1− θp
= βθpEt

bπt+1
1− θp

+ bπt + (1− βθp)dmct
or:

bπt = βθpEtbπt+1 + (1− θp) bπt + (1− θp) (1− βθp)dmct
• Simplifies to:

bπt = βEtbπt+1 + λ
³
− bAt + (1− α) bwt + αbrt´

where λ =
(1−θp)(1−βθp)

θp
and dmct = − bAt + (1− α) bwt + αbrt
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New Keynesian Phillips Curve

• The expression:
bπt = βEtbπt+1 + λdmct

is known as the New Keynesian Phillips Curve

• Empirical performance?

• Large literature:

1. Lagged inflation versus expected inflation.

2. Measures of marginal cost.
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Production Function I

• Now:

yebyt = Ae
bAt

j−εe−εbjtpεeεbptkαl1−αeαbkt+(1−α)blt

• Cancelling constants:

ebyt = e
bAt

e−εbjteεbpteαbkt+(1−α)blt
• Then:

byt = bAt + αbkt + (1− α) blt + ε
µebjt − ebpt¶
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Production Function II

• Now we find expressions for the loglinearized values of jt and pt:

bjt = log jt − log j = −1
ε
log

ÃZ 1
0
p−εit di

!
− log p

bpt = log pt − log p = 1

1− ε
log

ÃZ 1
0
p1−εit di

!
− log p

• Then:
ebjt = −1

p

Z 1
0
(pit − p) di

ebpt = − 1

1− ε

1− ε

p

Z 1
0
(pit − p) di
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Production Function II

• Clearly ebjt = ebpt.
• Then:

byt = bAt + αbkt + (1− α) blt
• No first-order loss of efficiency!
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Aggregate Conditions I

• We know ct + xt = yt or cebct + xebxt = yebyt that loglinearizes to:
cbc+ xbxt = ybyt

• Also kt+1 = (1− δ) kt + xt or ke
bkt+1 = (1− δ) ke

bkt + xebxt that
loglinearizes to:

kbkt+1 = (1− δ) kbkt + xbxt
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Aggregate Conditions II

• Finally:
kt =

α

1− α

wt

rt
lt

or:

ke
bkt = α

1− α

w

r
le bwt+blt−brt

• Loglinearizes to: bkt = bwt + blt − brt
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Government

• We have that:
Rt+1
R

=
µ
Rt

R

¶γR µπt
π

¶γπ Ãyt
y

!γy
eϕt

or:

e
bRt+1 = eγR bRt+γπbπt+γybyt+ϕt

• Loglinearizes to:
bRt+1 = γR

bRt + γπbπt + γy byt + ϕt
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Loglinear System

−σbct = Et (−σbct+1 + βrbrt+1)
−σbct = Et

³
−σbct+1 + bRt+1 − bπt+1´

γblt = −σbct + bwtbyt = bAt + αbkt + (1− α) blt
ybyt = cbc+ xbxt

kbkt+1 = (1− δ) kbkt + xbxtbkt = bwt + blt − brtbRt+1 = γR
bRt + γπbπt + γy byt + ϕtbπt = βEtbπt+1 + λ

³
− bAt + (1− α) bwt + αbrt´bAt = ρ bAt−1 + zt

a system of 10 equations on 10 variables:
nbct, blt, bxt, byt, bkt, bwt, brt, bRt+1, bπt, bAto .
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Solving the System

• We can put the system in Uhlig’s form.

• To do so, we redefine bRt+1 and bπt as (pseudo) state-variables in order
to have at most as many control variables as deterministic equations.

• States, controls, and shocks:
Xt =

³ bkt+1 bRt+1 bπt ´0
Yt =

³ bct blt bxt byt bwt brt ´0
Zt =

³
zt ϕt

´0
59



Deterministic Bloc

γblt + σbct − bwt = 0byt − bAt − αbkt − (1− α) blt = 0

ybyt − cbc− xbxt = 0

kbkt+1 − (1− δ) kbkt − xbxt = 0bkt − bwt − blt + brt = 0bRt+1 − γR
bRt − γπbπt − γy byt − ϕt = 0
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Expectational Bloc

σbct +Et (−σbct+1 + βrbrt+1) = 0

σbct + bRt+1 +Et (−σbct+1 − bπt+1) = 0bπt − βEtbπt+1 − λ
³
− bAt + (1− α) bwt + αbrt´ = 0

Two stochastic processes

bAt = ρ bAt−1 + zt
ϕt

61



Matrices of the Deterministic Bloc

A =



0 0 0
0 0 0
0 0 0
k 0 0
0 0 0
0 1 −γπ


, B =



0 0 0
−α 0 0
0 0 0
− (1− δ) k 0 0
1 0 0
0 −γR 0


,

C =



σ γ 0 0 −1 0
0 − (1− α) 0 1 0 0
−c 0 −x y 0 0
0 0 −x 0 0 0
0 −1 0 0 −1 1
0 0 0 −γy 0 0


, D =



0 0
−1 0
0 0
0 0
0 0
0 −1
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Matrices of the Expectational Bloc

F =

 0 0 0
0 0 0
0 0 −β

 , G =
 0 0 0
0 1 −1
0 0 1

 ,H =

 0 0 0
0 0 0
0 0 0

 ,
J =

 −σ 0 0 0 0 βr
−σ 0 0 0 0 0
0 0 0 0 0 1

 ,K =

 σ 0 0 0 0 0
σ 0 0 0 0 0
0 0 0 0 −λ (1− α) λα


L =

 0 0
0 0
0 0

 ,M =

 0 0
0 0
λ 0
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Matrices of the Stochastic Process

N =

Ã
ρ 0
0 0

!
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Solution of the Problem

Xt = PXt−1 +QZt
Yt = RXt−1 + SZt
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Beyond Linearization

• We solved the model using one particular approach.

• How different are the computational answers provided by alternative

solution methods for dynamic equilibrium economies?

• Why do we care?
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• Stochastic neoclassical growth model is nearly linear for the benchmark
calibration.

— Linear methods may be good enough.

• Unsatisfactory answer for many economic questions: we want to use
highly nonlinear models.

— Linear methods not enough.

67



Solution Methods

1. Linearization: levels and logs.

2. Perturbation: levels and logs, different orders.

3. Projection methods: spectral and Finite Elements.

4. Value Function Iteration.

5. Other?

68



Evaluation Criteria

• Accuracy.

• Computational cost.

• Programming cost
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What Do We Know about Other Methods?

• Perturbation methods deliver an interesting compromise between ac-
curacy, speed and programming burden (Problem: Analytical deriva-
tives).

• Second order perturbations much better than linear with trivial addi-
tional computational cost.

• Finite Elements method the best for estimation purposes.

• Linear methods can deliver misleading answers.

• Linearization in Levels can be better than in Logs.
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A Quick Overview

• Numerous problems in macroeconomics involve functional equations
of the form:

H (d) = 0

• Examples: Value Function, Euler Equations.

• Regular equations are particular examples of functional equations.

• How do we solve functional equations?
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Two Main Approaches

1. Projection Methods:

dn (x, θ) =
nX
i=0

θiΨi (x)

We pick a basis {Ψi (x)}∞i=0 and “project” H (·) against that basis.

2. Perturbation Methods:

dn (x, θ) =
nX
i=0

θi (x− x0)i

We use implicit-function theorems to find coefficients θi.

72



Solution Methods I: Projection (Spectral)

• Standard Reference: Judd (1992).

• Choose a basis for the policy functions.

• Restrict the policy function to a be a linear combination of the ele-
ments of the basis.

• Plug the policy function in the Equilibrium Conditions and find the

unknown coefficients.
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• Use Chebyshev polynomial.

• Pseudospectral (collocation) weigthing.
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Solution Methods II: Projection (Finite Elements)

• Standard Reference: McGrattan (1999)

• Bound the domain of the state variables.

• Partition this domain in nonintersecting elements.

• Choose a basis for the policy functions in each element.

• Plug the policy function in the Equilibrium Conditions and find the

unknown coefficients.
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• Use linear basis.

• Galerkin weighting.

• We can be smart picking our grid.
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Solution Methods III: Perturbation Methods

• Most complicated problems have particular cases that are easy to solve.

• Often, we can use the solution to the particular case as a building
block of the general solution.

• Very successful in physics.

• Judd and Guu (1993) showed how to apply it to economic problems.
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A Simple Example

• Imagine we want to find the (possible more than one) roots of:
x3 − 4.1x+ 0.2 = 0

such that x < 0.

• This a tricky, cubic equation.

• How do we do it?
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Main Idea

• Transform the problem rewriting it in terms of a small perturbation

parameter.

• Solve the new problem for a particular choice of the perturbation pa-

rameter.

• Use the previous solution to approximate the solution of original the
problem.
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Step 1: Transform the Problem

• Write the problem into a perturbation problem indexed by a small

parameter ε.

• This step is usually ambiguous since there are different ways to do so.

• A natural, and convenient, choice for our case is to rewrite the equation
as:

x3 − (4 + ε)x+ 2ε = 0

where ε ≡ 0.1.
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Step 2: Solve the New Problem

• Index the solutions as a function of the perturbation parameter x =
g (ε):

g (ε)3 − (4 + ε) g (ε) + 2ε = 0

and assume each of this solution is smooth (this can be shown to be

the case for our particular example).

• Note that ε = 0 is easy to solve:
x3 − 4x = 0

that has roots g (0) = −2, 0, 2. Since we require x < 0, we take

g (0) = −2.
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Step 3: Build the Approximated Solution

• By Taylor’s Theorem:

x = g (ε)|ε=0 = g (0) +
∞X
n=1

gn (0)

n!
εn

• Substitute the solution into the problem and recover the coefficients

g (0) and
gn(0)
n! for n = 1, ... in an iterative way.

• Let’s do it!
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Zeroth -Order Approximation

• We just take ε = 0 .

• Before we found that g (0) = −2.

• Is this a good approximation?
x3 − 4.1x+ 0.2 = 0⇒
−8 + 8.2 + 0.2 = 0.4

• It depends!
83



First -Order Approximation

• Take the derivative of g (ε)3 − (4 + ε) g (ε) + 2ε = 0 with respect to

ε:

3g (ε)2 g0 (ε)− g (ε)− (4 + ε) g0 (ε) + 2 = 0

• Set ε = 0
3g (0)2 g0 (0)− g (0)− 4g0 (0) + 2 = 0

• But we just found that g (0) = −2, so:
8g0 (0) + 4 = 0

that implies g0 (0) = −12.
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First -Order Approximation

• By Taylor: x = g (ε)|ε=0 ' g (0) + g1(0)
1! ε1 or

x ' −2− 1
2
ε

• For our case ε ≡ 0.1
x = −2− 1

2
∗ 0.1 = −2.05

• Is this a good approximation?
x3 − 4.1x+ 0.2 = 0⇒

−8.615125 + 8.405 + 0.2 = −0.010125
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Second -Order Approximation

• Take the derivative of 3g (ε)2 g0 (ε)−g (ε)−(4 + ε) g0 (ε)+2 = 0 with
respect to ε:

6g (ε)
³
g0 (ε)

´2
+ 3g (ε)2 g00 (ε)− g0 (ε)− g0 (ε)− (4 + ε) g00 (ε) = 0

• Set ε = 0
6g (0)

³
g0 (0)

´2
+ 3g (0)2 g00 (0)− 2g0 (0)− 4g00 (0) = 0

• Since g (0) = −2 and g0 (0) = −12, we get:
8g00 (0)− 2 = 0

that implies g00 (0) = 1
4.
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Second -Order Approximation

• By Taylor:x = g (ε)|ε=0 ' g (0) + g1(0)
1! ε1 + g2(0)

2! ε2 or

x ' −2− 1
2
ε+

1

8
ε2

• For our case ε ≡ 0.1
x = −2− 1

2
∗ 0.1 + 1

8
∗ 0.01 = −2.04875

• Is this a good approximation?
x3 − 4.1x+ 0.2 = 0⇒

−8.59937523242188 + 8.399875 + 0.2 = 4.997675781240329e− 004
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Some Remarks

• The exact solution (up to machine precession of 14 decimal places) is
x = −2.04880884817015.

• A second-order approximation delivers: x = −2.04875

• Relative error: 0.00002872393906.

• Yes, this was a rigged, but suggestive, example.

88



A Couple of Points to Remember

1. We transformed the original problem into a perturbation problem in

such a way that the zeroth-order approximation has an analytical so-

lution.

2. Solving for the first iteration involves a nonlinear (although trivial in

our case) equation. All further iterations only require to solve a linear

equation in one unknown.
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An Application in Macroeconomics: Basic RBC

maxE0

∞X
t=0

βt {log ct}

ct + kt+1 = eztkαt + (1− δ) kt, ∀ t > 0
zt = ρzt−1 + σεt, εt ∼ N (0, 1)

Equilibrium Conditions

1

ct
= βEt

1

ct+1

³
1 + αezt+1kα−1t+1 − δ

´
ct + kt+1 = e

ztkαt + (1− δ) kt
zt = ρzt−1 + σεt
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Computing the RBC

• We already discuss that the previous problem does not have a known

“paper and pencil” solution.

• One particular case the model has a closed form solution: δ = 1.

• Why? Because, the income and the substitution effect from a produc-

tivity shock cancel each other.

• Not very realistic but we are trying to learn here.
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Solution

• By “Guess and Verify”
ct = (1− αβ) eztkαt

kt+1 = αβeztkαt

• How can you check? Plug the solution in the equilibrium conditions.
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Another Way to Solve the Problem

• Now let us suppose that you missed the lecture where “Guess and

Verify” was explained.

• You need to compute the RBC.

• What you are searching for? A policy functions for consumption:
ct = c (kt, zt)

and another one for capital:

kt+1 = k (kt, zt)
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Equilibrium Conditions

• We substitute in the equilibrium conditions the budget constraint and

the law of motion for technology.

• Then, we have the equilibrium conditions:

1

c (kt, zt)
= βEt

αeρzt+σεt+1k (kt, zt)
α−1

c (k (kt, zt) , ρzt + σεt+1)

c (kt, zt) + k (kt, zt) = e
ztkαt

• The Euler equation is the equivalent of x3 − 4.1x + 0.2 = 0 in our

simple example, and c (kt, zt) and k (kt, zt) are the equivalents of x.
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A Perturbation Approach

• You want to transform the problem.

• Which perturbation parameter? standard deviation σ.

• Why σ?

• Set σ = 0⇒deterministic model, zt = 0 and ezt = 1.
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Taylor’s Theorem

• We search for policy function ct = c (kt, zt;σ) and kt+1 = k (kt, zt;σ).

• Equilibrium conditions:

Et

Ã
1

c (kt, zt;σ)
− β

αeρzt+σεt+1k (kt, zt;σ)
α−1

c (k (kt, zt;σ) , ρzt + σεt+1;σ)

!
= 0

c (kt, zt;σ) + k (kt, zt;σ)− eztkαt = 0

• We will take derivatives with respect to kt, zt, and σ.
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Asymptotic Expansion ct = c (kt, zt;σ)|k,0,0

ct = c (k, 0; 0)

+ck (k, 0; 0) (kt − k) + cz (k, 0; 0) zt + cσ (k, 0; 0)σ
+
1

2
ckk (k, 0; 0) (kt − k)2 +

1

2
ckz (k, 0; 0) (kt − k) zt

+
1

2
ckσ (k, 0; 0) (kt − k)σ +

1

2
czk (k, 0; 0) zt (kt − k)

+
1

2
czz (k, 0; 0) z

2
t +

1

2
czσ (k, 0; 0) ztσ

+
1

2
cσk (k, 0; 0)σ (kt − k) +

1

2
cσz (k, 0; 0)σzt

+
1

2
cσ2 (k, 0; 0)σ

2 + ...
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Asymptotic Expansion kt+1 = k (kt, zt;σ)|k,0,0

kt+1 = k (k, 0; 0)

+kk (k, 0; 0) kt + kz (k, 0; 0) zt + kσ (k, 0; 0)σ

+
1

2
kkk (k, 0; 0) (kt − k)2 +

1

2
kkz (k, 0; 0) (kt − k) zt

+
1

2
kkσ (k, 0; 0) (kt − k)σ +

1

2
kzk (k, 0; 0) zt (kt − k)

+
1

2
kzz (k, 0; 0) z

2
t +

1

2
kzσ (k, 0; 0) ztσ

+
1

2
kσk (k, 0; 0)σ (kt − k) +

1

2
kσz (k, 0; 0)σzt

+
1

2
kσ2 (k, 0; 0)σ

2 + ...
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Comment on Notation

• From now on, to save on notation, I will just write

F (kt, zt;σ) = Et

 1
c(kt,zt;σ)

− β
αeρzt+σεt+1k(kt,zt;σ)

α−1
c(k(kt,zt;σ),ρzt+σεt+1;σ)

c (kt, zt;σ) + k (kt, zt;σ)− eztkαt

 = "
0
0

#

• Note that:
F (kt, zt;σ) = H (c (kt, zt;σ) , c (k (kt, zt;σ) , zt+1;σ) , k (kt, zt;σ) , kt, zt;σ)

• I will use Hi to represent the partial derivative of H with respect to
the i component and drop the evaluation at the steady state of the
functions when we do not need it.
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Zeroth -Order Approximation

• First, we evaluate σ = 0:
F (kt, 0; 0) = 0

• Steady state:
1

c
= β

αkα−1
c

or,

1 = αβkα−1
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Steady State

• Then:
c = c (k, 0; 0) = (αβ)

α
1−α − (αβ) 1

1−α

k = k (k, 0; 0) = (αβ)
1
1−α

• How good is this approximation?
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First -Order Approximation

• We take derivatives of F (kt, zt;σ) around k, 0, and 0.

• With respect to kt:
Fk (k, 0; 0) = 0

• With respect to zt:
Fz (k, 0; 0) = 0

• With respect to σ:

Fσ (k, 0; 0) = 0
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Solving the System I

Remember that:

F (kt, zt;σ) = H (c (kt, zt;σ) , c (k (kt, zt;σ) , zt+1;σ) , k (kt, zt;σ) , kt, zt;σ)

Then:

Fk (k, 0; 0) = H1ck +H2ckkk +H3kk +H4 = 0

Fz (k, 0; 0) = H1cz +H2 (ckkz + ckρ) +H3kz +H5 = 0

Fσ (k, 0; 0) = H1cσ +H2 (ckkσ + cσ) +H3kσ +H6 = 0
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Solving the System II

• Note that:
Fk (k, 0; 0) = H1ck +H2ckkk +H3kk +H4 = 0

Fz (k, 0; 0) = H1cz +H2 (ckkz + ckρ) +H3kz +H5 = 0

is a quadratic system of four equations on four unknowns: ck, cz, kk,

and kz.

• Procedures to solve quadratic systems: Uhlig (1999).

• Why quadratic? Stable and unstable manifold.
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Solving the System III

• Note that:
Fσ (k, 0; 0) = H1cσ +H2 (ckkσ + cσ) +H3kσ +H6 = 0

is a linear, and homogeneous system in cσ and kσ.

• Hence
cσ = kσ = 0
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Comparison with Linearization

• After Kydland and Prescott (1982) a popular method to solve eco-
nomic models has been the use of a LQ approximation.

• Close relative: linearization of equilibrium conditions.

• When properly implemented linearization, LQ, and first-order pertur-
bation are equivalent.

• Advantages of linearization:

1. Theorems.

2. Higher order terms.
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Second -Order Approximation

• We take second-order derivatives of F (kt, zt;σ) around k, 0, and 0:
Fkk (k, 0; 0) = 0

Fkz (k, 0; 0) = 0

Fkσ (k, 0; 0) = 0

Fzz (k, 0; 0) = 0

Fzσ (k, 0; 0) = 0

Fσσ (k, 0; 0) = 0

• Remember Young’s theorem!
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Solving the System

• We substitute the coefficients that we already know.

• A linear system of 12 equations on 12 unknowns. Why linear?

• Cross-terms kσ and zσ are zero.

• Conjecture on all the terms with odd powers of σ.
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Correction for Risk

• We have a term in σ2.

• Captures precautionary behavior.

• We do not have certainty equivalence any more!

• Important advantage of second order approximation.
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Higher Order Terms

• We can continue the iteration for as long as we want.

• Often, a few iterations will be enough.

• The level of accuracy depends on the goal of the exercise: Fernández-
Villaverde, Rubio-Raḿırez, and Santos (2005).
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A Computer

• In practice you do all this approximations with a computer.

• Burden: analytical derivatives.

• Why are numerical derivatives a bad idea?

• More theoretical point: do the derivatives exist? (Santos, 1992).
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Code

• First and second order: Matlab and Dynare.

• Higher order: Mathematica, Fortran code by Jinn and Judd.
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An Example

• Let me run a second order approximation.

• Our choices

Calibrated Parameters
Parameter β α ρ σ
Value 0.99 0.33 0.95 0.01
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Computation

• Steady State:

c = (αβ)
α
1−α − (αβ) 1

1−α = 0.388069

k = (αβ)
1
1−α = 0.1883

• First order components.
ck (k, 0; 0) = 0.680101 kk (k, 0; 0) = 0.33
cz (k, 0; 0) = 0.388069 kz (k, 0; 0) = 0.1883
cσ (k, 0; 0) = 0 kσ (k, 0; 0) = 0
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Comparison

ct = 0.6733e
ztk0.33t

ct ' 0.388069 + 0.680101 (kt − k) + 0.388069zt
and:

kt+1 = 0.3267e
ztk0.33t

kt+1 ' 0.1883 + 0.1883 (kt − k) + 0.33zt
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Second-Order Terms

ckk (k, 0; 0) = −2.41990 kkk (k, 0; 0) = −1.1742
ckz (k, 0; 0) = 0.680099 kkz (k, 0; 0) = 0.330003
ckσ (k, 0; 0) = 0. kkσ (k, 0; 0) = 0
czz (k, 0; 0) = 0.388064 kzz (k, 0; 0) = 0.188304
czσ (k, 0; 0) = 0 kzσ (k, 0; 0) = 0
cσ2 (k, 0; 0) = 0 kσ2 (k, 0; 0) = 0
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Non Local Accuracy test (Judd, 1992, and Judd and Guu, 1997)

Given the Euler equation:

1

ci (kt , zt)
= Et

αezt+1ki(kt, zt)α−1
ci
³
ki(kt, zt), zt+1

´


we can define:

EEi (kt , zt) ≡ 1− ci (kt , zt)Et
αezt+1ki(kt, zt)α−1
ci
³
ki(kt, zt), zt+1

´
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Changes of Variables

• We approximated our solution in levels.

• We could have done it in logs.

• Why stop there? Why not in powers of the state variables?

• Judd (2002) has provided methods for changes of variables.

• We apply and extend ideas to the stochastic neoclassical growth model.
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A General Transformation

• We look at solutions of the form:
cµ − cµ0 = a

³
kζ − kζ0

´
+ cz

k0γ − kγ0 = c
³
kζ − kζ0

´
+ dz

• Note that:

1. If γ, ζ, µ and ϕ are 1 we get the linear representation.

2. As γ, ζ and µ tend to zero and ϕ is equal to 1 we get the loglinear

approximation.

119



Theory

• The first order solution can be written as
f (x) ' f (a) + (x− a) f 0 (a)

• Expand g(y) = h (f (X (y))) around b = Y (a), where X (y) is the
inverse of Y (x).

• Then:
g (y) = h (f (X (y))) = g (b) + gα (b) (Y

α (x)− bα)
where gα = hAf

A
i X

i
α comes from the application of the chain rule.

• From this expression it is easy to see that if we have computed the
values of fAi , then it is straightforward to find the value of gα.
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Coefficients Relation

• Remember that the linear solution is:³
k0 − k0

´
= a1 (k − k0) + b1z

(l− l0) = c1 (k − k0) + d1z

• Then we show that:

a3 =
γ
ζk

γ−ζ
0 a1 b3 = γk

γ−1
0 b1

c3 =
µ
ζ l
µ−1
0 k

1−ζ
0 c1 d3 = µl

µ−1
0 d1
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Finding the Parameters γ, ζ, µ and ϕ

• Minimize over a grid the Euler Error.

• Some optimal results

Table 6.2.2: Euler Equation Errors
γ ζ µ SEE
1 1 1 0.0856279
0.986534 0.991673 2.47856 0.0279944
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Sensitivity Analysis

• Different parameter values.

• Most interesting finding is when we change σ:

Table 6.3.3: Optimal Parameters for different σ’s
σ γ ζ µ
0.014 0.98140 0.98766 2.47753
0.028 1.04804 1.05265 1.73209
0.056 1.23753 1.22394 0.77869

• A first order approximation corrects for changes in variance!
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A Quasi-Optimal Approximation I

• Sensitivity analysis reveals that for different parametrizations
γ ' ζ

• This suggests the quasi-optimal approximation:
k0γ − kγ0 = a3

³
kγ − kγ0

´
+ b3z

lµ − lµ0 = c3
³
kγ − kγ0

´
+ d3z
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A Quasi-Optimal Approximation II

• Note that if define bk = kγ − kγ0 and bl = lµ − lµ0 we get:bk0 = a3
bk + b3zbl = c3
bk + d3z

• Linear system:

1. Use for analytical study (Campbell, 1994 and Woodford, 2003).

2. Use for estimation with a Kalman Filter.
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Figure 5.2.5: Time Series for Output, τ = 2 / σ = 0.007
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Figure 5.2.6: Time Series for Capital, τ = 2 / σ = 0.007
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Figure 5.2.7 : Density of Output, τ = 50 / σ = 0.035
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Figure 5.2.8 : Density of Capital, τ = 50 / σ = 0.035
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Figure 5.2.9 : Density of Labor, τ = 50 / σ = 0.035
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Figure 5.2.10 : Density of Consumption, τ = 50 / σ = 0.035
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Figure 5.2.11 : Time Series for Output, τ = 50 / σ = 0.035
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Figure 5.2.12 : Time Series for Capital, τ = 50 / σ = 0.035
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Figure 5.3.1 : Empirical CDF of den Haan Marcet Tests, τ = 50 / σ = 0.035
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Figure 5.3.2 : Empirical CDF of den Haan Marcet Tests, τ = 50 / σ = 0.035
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Figure 5.4.8 : Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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Figure 5.4.20 : Euler Equation Errors at z = 0, τ = 50 / σ = 0.035
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Table 5.4.1: Integral of the Euler Errors (x10−4)
Linear 0.2291
Log-Linear 0.6306
Finite Elements 0.0537
Chebyshev 0.0369
Perturbation 2 0.0481
Perturbation 5 0.0369
Value Function 0.0224
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Table 5.4.2: Integral of the Euler Errors (x10−4)
Linear 7.12
Log-Linear 24.37
Finite Elements 0.34
Chebyshev 0.22
Perturbation 2 7.76
Perturbation 5 8.91
Perturbation 2 (log) 6.47
Value Function 0.32
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Figure 6.2.1 : Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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Figure 6.2.2 : Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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Figure 6.2.3. : Euler Equation Errors at z = 0, τ = 2 / σ = 0.007
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Computing Time and Reproducibility

• How methods compare?

• Web page:

www.econ.upenn.edu/~jesusfv/companion.htm
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