A Modern Equilibrium Model

Jesús Fernández-Villaverde University of Pennsylvania

Household Problem

- Preferences:

$$
\max E \sum_{t=0}^{\infty} \beta^{t}\left\{\frac{c_{t}^{1-\sigma}}{1-\sigma}-\psi \frac{l_{t}^{1+\gamma}}{1+\gamma}\right\}
$$

- Budget constraint:

$$
c_{t}+k_{t+1}=w_{t} l_{t}+r_{t} k_{t}+(1-\delta) k_{t}, \forall t>0
$$

- Complete markets and Arrow-Debreu securities.

First Order Conditions

$$
\begin{aligned}
c_{t}^{-\sigma} & =\lambda_{t} \\
\beta E_{t} c_{t+1}^{-\sigma} & =\lambda_{t+1} \\
\psi l_{t}^{\gamma} & =\lambda_{t} w_{t} \\
\lambda_{t} & =\lambda_{t+1}\left(r_{t+1}+1-\delta\right)
\end{aligned}
$$

Problem of the Firm

- Neoclassical production function:

$$
y_{t}=A_{t} k_{t}^{\alpha} l_{t}^{1-\alpha}
$$

- By profit maximization:

$$
\begin{aligned}
\alpha A_{t} k_{t}^{\alpha-1} l_{t}^{1-\alpha} & =r_{t} \\
(1-\alpha) A_{t} k_{t}^{\alpha} l_{t}^{1-\alpha} l_{t}^{-1} & =w_{t}
\end{aligned}
$$

- Investment x_{t} induces a law of motion for capital:

$$
k_{t+1}=(1-\delta) k_{t}+x_{t}
$$

Evolution of the technology

- A_{t} changes over time.
- It follows the $\operatorname{AR}(1)$ process:

$$
\begin{aligned}
\log A_{t} & =\rho \log A_{t-1}+z_{t} \\
z_{t} & \sim \mathcal{N}\left(0, \sigma_{z}\right)
\end{aligned}
$$

- Interpretation of ρ.

A Competitive Equilibrium

- We can define a competitive equilibrium in the standard way.
- Conditions:

$$
\begin{aligned}
c_{t}^{-\sigma} & =\beta E_{t} c_{t+1}^{-\sigma}\left(r_{t+1}+1-\delta\right) \\
\psi l_{t}^{\gamma} & =\lambda_{t} w_{t} \\
r_{t} & =\alpha A_{t} k_{t}^{\alpha-1} l_{t}^{1-\alpha} \\
w_{t} & =(1-\alpha) A_{t} k_{t}^{\alpha} l_{t}^{1-\alpha} l_{t}^{-1} \\
c_{t}+k_{t+1} & =A_{t} k_{t}^{\alpha-1} l_{t}^{1-\alpha}+(1-\delta) k_{t} \\
\log A_{t} & =\rho \log A_{t-1}+z_{t}
\end{aligned}
$$

Behavior of the Model

- We have an initial shock: productivity changes.
- We have a transmission mechanism: intertemporal substitution and capital accumulation.
- We can look at a simulation from this economy.
- Why only a simulation?

Comparison with US economy

- Simulated Economy output fluctuations are around 75% as big as observed fluctuations.
- Consumption is less volatile than output.
- Investment is much more volatile.
- Behavior of hours.

Assessment of the Basic Real Business Model

- It accounts for a substantial amount of the observed fluctuations.
- It accounts for the covariances among a number of variables.
- It has some problems accounting for the behavior of the hours worked.
- More important question: where do productivity shocks come from?

Negative Productivity Shocks I

- The model implies that half of the quarters we have negative technology shocks.
- Is this plausible? What is a negative productivity shocks?
- Role of trend.

Negative Productivity Shocks II

- s.d. of shocks is 0.01 . Mean quarter productivity growth is 0.0048 (to give us a 1.9% growth per year).
- As a consequence, we would only observe negative technological shocks when $\varepsilon_{t}<-0.0048$.
- This happens in the model around 33% of times.
- Ways to fix it.

Some Policy Implications

- The basic model is Pareto-efficient.
- Fluctuations are the optimal response to a changing environment.
- Fluctuations are not a sufficient condition for inefficiencies or for government intervention.
- In fact in this model the government can only worsen the allocation.
- Recessions have a "cleansing" effect.

Extensions I

- We can extend our model in several directions.
- Examples we are not going to cover:

1. Fiscal Policy shocks (McGrattan, 1994).
2. Agents with Finite Lives (Ríos-Rull, 1996).
3. Indivisible Labor (Rogerson, 1988, and Hansen, 1985).
4. Home Production (Benhabib, Rogerson and Wright, 1991).

Extensions We Study (Cumulative)

- Money (Cooley and Hansen, 1989).

Money

- Money in the Utility function (MIU).
- Comparison with Cash-in-Advance.
- You can show both approaches are equivalent.
- Are we doing the right thing (Wallace, 2001)?

Households

- Utility function:

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t}\left\{\frac{c_{t}^{1-\sigma}}{1-\sigma}+\frac{v}{1-\xi}\left(\frac{m_{t}}{p_{t}}\right)^{1-\xi}-\psi \frac{l_{t}^{1+\gamma}}{1+\gamma}\right\}
$$

- Budget constraint:

$$
c_{t}+x_{t}+\frac{m_{t}}{p_{t}}+\frac{b_{t+1}}{p_{t}}=w_{t} l_{t}+r_{t} k_{t}+\frac{m_{t-1}}{p_{t}}+R_{t} \frac{b_{t}}{p_{t}}+T_{t}+\Pi_{t}
$$

First Order Conditions I

$$
\begin{aligned}
c_{t}^{-\sigma} & =\lambda_{t} \\
\beta E_{t} c_{t+1}^{-\sigma} & =\lambda_{t+1} \\
\psi l_{t}^{\gamma} & =\lambda_{t} w_{t} \\
v\left(\frac{m_{t}}{p_{t}}\right)^{-\xi} & =\lambda_{t} \frac{1}{p_{t}}+\lambda_{t+1} \frac{1}{p_{t+1}} \\
\lambda_{t} \frac{1}{p_{t}} & =\lambda_{t+1} R_{t+1} \frac{1}{p_{t+1}} \\
\lambda_{t} & =\lambda_{t+1}\left(r_{t+1}+1-\delta\right)
\end{aligned}
$$

First Order Conditions II

$$
\begin{gathered}
c_{t}^{-\sigma}=\beta E_{t}\left\{c_{t+1}^{-\sigma}\left(r_{t+1}+1-\delta\right)\right\} \\
c_{t}^{-\sigma}=\beta E_{t}\left\{c_{t+1}^{-\sigma} R_{t+1} \frac{p_{t}}{p_{t+1}}\right\} \\
\psi l_{t}^{\gamma}=c_{t}^{-\sigma} w_{t} \\
v\left(\frac{m_{t}}{p_{t}}\right)^{-\xi}=c_{t}^{-\sigma}+E_{t}\left\{c_{t+1}^{-\sigma} \frac{p_{t}}{p_{t+1}}\right\}
\end{gathered}
$$

The Government Problem

- The government sets the nominal interest rates according to the Taylor rule:

$$
\frac{R_{t+1}}{R}=\left(\frac{R_{t}}{R}\right)^{\gamma_{R}}\left(\frac{\pi_{t}}{\pi}\right)^{\gamma_{\pi}}\left(\frac{y_{t}}{y}\right)^{\gamma_{y}} e^{\varphi_{t}}
$$

- How? Through open market operations.
- How are those operations financed? Lump-sum transfers T_{t} such that the deficit are equal to zero:

$$
T_{t}=\frac{m_{t}}{p_{t}}-\frac{m_{t-1}}{p_{t}}+\frac{b_{t+1}}{p_{t}}-R_{t} \frac{b_{t}}{p_{t}}
$$

Interpretation

- π : target level of inflation (equal to inflation in the steady state),
- y : the steady state output
- R : steady state gross return of capital.
- φ_{t} : random shock to monetary policy distributed according to $\mathcal{N}\left(0, \sigma_{\varphi}\right)$.
- The presence of the previous period interest rate, R_{t}, is justified because we want to match the smooth profile of the interest rate over time observed in U.S. data.

Advantages and Disadvantages of Taylor Rules

- Advantages:

1. Simplicity.
2. Empirical foundation.

- Problems:

1. Normative versus positive.
2. Empirical specification.

Behavior of the Model

- We have a second shock: interest shock.
- We have a transmission mechanism: intertemporal substitution and capital accumulation.
- For a standard calibration, the second shock buys us very little.

Extensions We Study (Cumulative)

- Money (Cooley and Hansen, 1989).
- Monopolistic Competition (Blanchard and Kiyotaki, 1987, and Horstein, 1993).

Monopolistic Competition

- Final good producer. Competitive behavior.
- Continuum of intermediate good producers with market power.
- Alternative formulations: continuum of goods in the utility function.
- Otherwise, the model is the same as the model with money.

The Final Good Producer

- Production function:

$$
y_{t}=\left(\int_{0}^{1} y_{i t}^{\frac{\varepsilon-1}{\varepsilon}} d i\right)^{\frac{\varepsilon}{\varepsilon-1}}
$$

where ε controls the elasticity of substitution.

- Final good producer is perfectly competitive and maximize profits, taking as given all intermediate goods prices $p_{t i}$ and the final good price p_{t}.

Maximization Problem

- Thus, its maximization problem is:

$$
\max _{y_{i t}} p_{t} y_{t}-\int_{0}^{1} p_{i t} y_{i t} d i
$$

- First order conditions are:

$$
p_{t} \frac{\varepsilon}{\varepsilon-1}\left(\int_{0}^{1} y_{i t}^{\frac{\varepsilon-1}{\varepsilon}} d i\right)^{\frac{\varepsilon}{\varepsilon-1}-1} \frac{\varepsilon-1}{\varepsilon} y_{i t}^{\frac{\varepsilon-1}{\varepsilon}-1}-p_{i t}=0 \quad \forall i
$$

Working with the First Order Conditions I

- Dividing the first order conditions for two intermediate goods i and j, we get:

$$
\frac{p_{i t}}{p_{j t}}=\left(\frac{y_{i t}}{y_{j t}}\right)^{-\frac{1}{\varepsilon}}
$$

or:

$$
p_{j t}=\left(\frac{y_{i t}}{y_{j t}}\right)^{\frac{1}{\varepsilon}} p_{i t}
$$

- Interpretation.

Working with the First Order Conditions II

- Hence:

$$
p_{j t} y_{j t}=p_{i t} y^{\frac{1}{\varepsilon}} y_{j t}^{\frac{\varepsilon-1}{\varepsilon}}
$$

- Integrating out:

$$
\int_{0}^{1} p_{j t} y_{j t} d j=p_{i t} y_{i t}^{\frac{1}{\varepsilon}} \int_{0}^{1} y_{j t}^{\frac{\varepsilon-1}{\varepsilon}} d j=p_{i t} y_{i t}^{\frac{1}{\varepsilon}} y_{t}^{\frac{\varepsilon-1}{\varepsilon}}
$$

Input Demand Function

- By zero profits $\left(p_{t} y_{t}=\int_{0}^{1} p_{j t} y_{j t} d j\right)$, we get:

$$
p_{t} y_{t}=p_{i t} y_{i t}^{\frac{1}{\varepsilon}} y_{t}^{\frac{\varepsilon-1}{\varepsilon}} \Rightarrow p_{t}=p_{i t} y_{i t}^{\frac{1}{\varepsilon}} y_{t}^{-\frac{1}{\varepsilon}}
$$

- Consequently, the input demand functions associated with this problem are:

$$
y_{i t}=\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} y_{t} \quad \forall i
$$

- Interpretation.

Price Level

- By the zero profit condition $p_{t} y_{t}=\int_{0}^{1} p_{i t} y_{i t} d i$ and plug-in the input demand functions:

$$
p_{t} y_{t}=\int_{0}^{1} p_{i t}\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} y_{t} d i \Rightarrow p_{t}^{1-\varepsilon}=\int_{0}^{1} p_{i t}^{1-\varepsilon} d i
$$

- Thus:

$$
p_{t}=\left(\int_{0}^{1} p_{i t}^{1-\varepsilon} d i\right)^{\frac{1}{1-\varepsilon}}
$$

Intermediate Good Producers

- Continuum of intermediate goods producers.
- No entry/exit.
- Each intermediate good producer i has a production function

$$
y_{i t}=A_{t} k_{i t}^{\alpha} l_{i t}^{1-\alpha}
$$

- A_{t} follows the $\mathrm{AR}(1)$ process:

$$
\begin{aligned}
\log A_{t} & =\rho \log A_{t-1}+z_{t} \\
z_{t} & \sim \mathcal{N}\left(0, \sigma_{z}\right)
\end{aligned}
$$

Maximization Problem I

- Intermediate goods producers solve a two-stages problem.
- First, given w_{t} and r_{t}, they rent $l_{i t}$ and $k_{i t}$ in perfectly competitive factor markets in order to minimize real cost:

$$
\min _{l_{i t}, k_{i t}}\left\{w_{t} l_{i t}+r_{t} k_{i t}\right\}
$$

subject to their supply curve:

$$
y_{i t}=A_{t} k_{i t}^{\alpha} l_{i t}^{1-\alpha}
$$

First Order Conditions

- The first order conditions for this problem are:

$$
\begin{aligned}
w_{t} & =\varrho(1-\alpha) A_{t} k_{i t}^{\alpha} l_{i t}^{-\alpha} \\
r_{t} & =\varrho \alpha A_{t} k_{i t}^{\alpha-1} l_{i t}^{1-\alpha}
\end{aligned}
$$

where ϱ is the Lagrangian multiplier or:

$$
k_{i t}=\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}} l_{i t}
$$

- Note that ratio capital-labor only is the same for all firms i.

Real Cost

- The real cost of optimally using $l_{i t}$ is:

$$
\left(w_{t} l_{i t}+\frac{\alpha}{1-\alpha} w_{t} l_{i t}\right)
$$

- Simplifying:

$$
\left(\frac{1}{1-\alpha}\right) w_{t} l_{i t}
$$

Marginal Cost I

- The firm has constant returns to scale.
- Then, we can find the real marginal cost $m c_{t}$ by setting the level of labor and capital equal to the requirements of producing one unit of $\operatorname{good} A_{t} k_{i t}^{\alpha} l_{i t}^{1-\alpha}=1$
- Thus:

$$
A_{t} k_{i t}^{\alpha} l_{i t}^{1-\alpha}=A_{t}\left(\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}} l_{i t}\right)^{\alpha} l_{i t}^{1-\alpha}=A_{t}\left(\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}}\right)^{\alpha} l_{i t}=1
$$

Marginal Cost II

- Then:

$$
m c_{t}=\left(\frac{1}{1-\alpha}\right) w_{t} \frac{1}{A_{t}}\left(\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}}\right)^{-\alpha}=\left(\frac{1}{1-\alpha}\right)^{1-\alpha}\left(\frac{1}{\alpha}\right)^{\alpha} \frac{1}{A_{t}} w_{t}^{1-\alpha} r_{t}^{\alpha}
$$

- Note that the marginal cost does not depend on i.
- Also, from the optimality conditions of input demand, input prices must satisfy:

$$
k_{t}=\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}} l_{t}
$$

Maximization Problem II

- The second part of the problem is to choose price that maximizes discounted real profits, i.e.,

$$
\max _{p_{i t}}\left\{\left(\frac{p_{i t}}{p_{t}}-m c_{t}\right) y_{i t}^{*}\right\}
$$

subject to

$$
y_{i t+\tau}^{*}=\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} y_{t+\tau}
$$

- First order condition:

$$
\frac{1}{p_{t}}\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} y_{t+\tau}-\varepsilon\left(\frac{p_{i t}}{p_{t}}-m c_{t}\right)\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon-1} \frac{1}{p_{t}} y_{t+\tau}=0
$$

Mark-Up Condition

- From the fist order condition:

$$
\begin{gathered}
1-\varepsilon\left(\frac{p_{i t}}{p_{t}}-m c_{t}\right)\left(\frac{p_{i t}}{p_{t}}\right)^{-1}=0 \Rightarrow \\
p_{i t}=\varepsilon\left(p_{i t}-m c_{t} p_{t}\right) \Rightarrow \\
p_{i t}=\frac{\varepsilon}{\varepsilon-1} m c_{t} p_{t}
\end{gathered}
$$

- Mark-up condition.
- Reasonable values for ε.

Behavior of the Model

- Presence of monopolistic competition is, by itself, pretty irrelevant.
- Why? Constant mark-up.
- Similar to a tax.
- Solutions:

1. Shocks to mark-up (maybe endogenous changes).
2. Price rigidities.

Extensions We Study (Cumulative)

- Money (Cooley and Hansen, 1989).
- Monopolistic Competition (Blanchard and Kiyotaki, 1987, and Horstein, 1993).
- Price rigidities (Calvo, 1983).

The Baseline Sticky Price Model

- The basic structure of the economy is as before:

1. A representative household consumes, saves, holds money, and works.
2. There is a monetary authority that fixes the one-period nominal interest rate through open market operations with public debt.
3. Final output is manufactured by a final good producer, which uses as inputs a continuum of intermediate goods manufactured by monopolistic competitors.

- Additional constraint: the intermediate good producers face the constraint that they can only change prices following a Calvo's rule.

Maximization Problem II

- The second part of the problem is to choose price that maximizes discounted real profits, i.e.,

$$
\max _{p_{i t}} E_{t} \sum_{\tau=0}^{\infty}\left(\beta \theta_{p}\right)^{\tau} v_{t+\tau}\left\{\left(\frac{p_{i t}}{p_{t+\tau}}-m c_{t+\tau}\right) y_{i t+\tau}^{*}\right\}
$$

subject to

$$
y_{i t+\tau}^{*}=\left(\frac{p_{t i}}{p_{t+\tau}}\right)^{-\varepsilon} y_{t+\tau}
$$

- Think about different elements of the problem.

Pricing I

- Calvo pricing.
- Parameter θ_{p}.
- What if $\theta_{p}=0$?

Pricing II

- Alternative pricing mechanisms:

1. Time-dependent pricing: Taylor and Calvo.
2. State-dependent pricing.

- Advantages and disadvantages:

1. Klenow and Kryvstov (2005): "intensive" versus "extensive" margin of price changes.
2. Caplin and Spulber (1987), Dotsey et al. (1999).

Discounting

- v_{t} is the marginal value of a dollar to the household, which is treated as exogenous by the firm.
- We have complete markets in securities,
- Then, this marginal value is constant across households.
- Consequently, $\beta^{\tau} v_{t+\tau}$ is the correct valuation on future profits.

First Order Condition

- Substituting the demand curve in the objective function, we get:

$$
\max _{p_{i t}} E_{t} \sum_{\tau=0}^{\infty}\left(\beta \theta_{p}\right)^{\tau} v_{t+\tau}\left\{\left(\left(\frac{p_{i t}}{p_{t+\tau}}\right)^{1-\varepsilon}-\left(\frac{p_{t i}}{p_{t+\tau}}\right)^{-\varepsilon} m c_{t+\tau}\right) y_{i t+\tau}^{*}\right\}
$$

- The solution $p_{i t}^{*}$ implies the first order condition:

$$
E_{t} \sum_{\tau=0}^{\infty}\left(\beta \theta_{p}\right)^{\tau} v_{t+\tau}\left\{\binom{(1-\varepsilon)\left(\frac{p_{i t}^{*}}{p_{t+\tau}}\right)^{1-\varepsilon} p_{i t}^{*-1}}{+\varepsilon\left(\frac{p_{i t}^{*}}{p_{t+\tau}}\right)^{-\varepsilon} p_{i t}^{*-1} m c_{t+\tau}} y_{i t+\tau}^{*}\right\}=0
$$

Working on the Expression I

- Then:

$$
\begin{aligned}
E_{t} \sum_{\tau=0}^{\infty}\left(\beta \theta_{p}\right)^{\tau} v_{t+\tau}\left\{\left((1-\varepsilon) \frac{p_{i t}^{*}}{p_{t+\tau}} p_{i t}^{*-1}+\varepsilon p_{i t}^{*-1} m c_{t+\tau}\right) y_{i t+\tau}\right\} & =0 \Rightarrow \\
E_{t} \sum_{\tau=0}^{\infty}\left(\beta \theta_{p}\right)^{\tau} v_{t+\tau}\left\{\left(\frac{p_{i t}^{*}}{p_{t+\tau}}-\frac{\varepsilon}{\varepsilon-1} m c_{t+\tau}\right) y_{i t+\tau}\right\} & =0
\end{aligned}
$$

- Thus, in a symmetric equilibrium, in every period, $1-\theta_{p}$ of the intermediate good producers set p_{t}^{*} as their price policy function, while the remaining θ_{p} do not reset their price at all.

Working on the Expression II

- Note, if $\theta_{p}=0$ (all firms move), all terms $\tau>0$ are zero:

$$
v_{t}\left\{\left(\frac{p_{i t}^{*}}{p_{t}}-\frac{\varepsilon}{\varepsilon-1} m c_{t}\right) y_{i t}\right\}=0
$$

- Then

$$
p_{i t}^{*}=\frac{\varepsilon}{\varepsilon-1} m c t p_{t}
$$

the result we had from the basic monopolistic case.

Price Level

- The price index evolves:

$$
p_{t}=\left[\theta_{p} p_{t-1}^{1-\varepsilon}+\left(1-\theta_{p}\right) p_{t}^{* 1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}
$$

- Dividing by p_{t-1} :

$$
\pi_{t}=\frac{p_{t}}{p_{t-1}}=\left[\theta_{p}+\left(1-\theta_{p}\right) \pi_{t}^{* 1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}
$$

where $\pi_{t}^{*}=\frac{p_{t}^{*}}{p_{t-1}}$.

Aggregation I

- Now, we derive an expression for aggregate output.
- Remember that:

$$
\frac{k_{i t}}{l_{i t}}=\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}}
$$

- Since this ratio is equivalent for all intermediate firms, it must also be the case that:

$$
\frac{k_{t}}{l_{t}}=\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}}
$$

Aggregation II

- We get:

$$
\frac{k_{i t}}{l_{i t}}=\frac{k_{t}}{l_{t}}
$$

- If we substitute this condition in the production function of the intermediate good firm $y_{i t}=A_{t} k_{i t}^{\alpha} l_{i t}^{1-\alpha}$ we derive:

$$
y_{i t}=A_{t}\left(\frac{k_{i t}}{l_{i t}}\right)^{\alpha} l_{i t}=A_{t}\left(\frac{k_{t}}{l_{t}}\right)^{\alpha} l_{i t}
$$

Aggregation III

- The demand function for the firm is:

$$
y_{i t}=\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} y_{t} \quad \forall i
$$

- Thus, we find the equality:

$$
\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} y_{t}=A_{t}\left(\frac{k_{t}}{l_{t}}\right)^{\alpha} l_{i t}
$$

Aggregation IV

- If we integrate in both sides of this equation:

$$
y_{t} \int_{0}^{1}\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} d i=A_{t}\left(\frac{k_{t}}{l_{t}}\right)^{\alpha} \int_{0}^{1} l_{i t} d i=A_{t} k_{t}^{\alpha} l_{t}^{1-\alpha}
$$

- Then:

$$
y_{t}=\frac{A_{t}}{v_{t}} k_{t}^{\alpha} l_{t}^{1-\alpha}
$$

where

$$
v_{t}=\int_{0}^{1}\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} d i=\frac{j_{t}^{-\varepsilon}}{p_{t}^{-\varepsilon}}=j_{t}^{-\varepsilon} p_{t}^{\varepsilon}
$$

and $j_{t}=\left(\int_{0}^{1} p_{i t}^{-\varepsilon} d i\right)^{-\frac{1}{\varepsilon}}$.

Interpretation of j_{t}

- What is j_{t} ?
- Measure of price disperssion.
- Measure of efficiency losses implied by inflation.
- Important to remenber for welfare analysis.

Equilibrium

- A definition of equilibrium in this economy is standard.
- The symmetric equilibrium policy functions are determined by the following blocks:

1. The first order conditions of the household.

The First Order Conditions of the Household

$$
\begin{gathered}
c_{t}^{-\sigma}=\beta E_{t}\left\{c_{t+1}^{-\sigma}\left(r_{t+1}+1-\delta\right)\right\} \\
c_{t}^{-\sigma}=\beta E_{t}\left\{c_{t+1}^{-\sigma} \frac{R_{t+1}}{\pi_{t+1}}\right\} \\
\psi l_{t}^{\gamma}=c_{t}^{-\sigma} w_{t} \\
v\left(\frac{m_{t}}{p_{t}}\right)^{-\xi}=c_{t}^{-\sigma}+E_{t}\left\{c_{t+1}^{-\sigma} \frac{1}{\pi_{t+1}}\right\} \\
c_{t}+x_{t}+\frac{m_{t}}{p_{t}}+\frac{b_{t+1}}{p_{t}}=w_{t} l_{t}+r_{t} k_{t}+\frac{m_{t-1}}{p_{t}}+R_{t} \frac{b_{t}}{p_{t}}+T_{t}+\Pi_{t}
\end{gathered}
$$

Equilibrium

- A definition of equilibrium in this economy is standard.
- The symmetric equilibrium policy functions are determined by the following blocks:

1. The first order conditions of the household.
2. Pricing decisions by firms.

Pricing Decisions by Firms.

The firms that can change prices set them to satisfy

$$
E_{t} \sum_{\tau=0}^{\infty}\left(\beta \theta_{p}\right)^{\tau} v_{t+\tau}\left\{\left(\frac{p_{t}^{*}}{p_{t+\tau}}-\frac{\varepsilon}{\varepsilon-1} m c_{t+\tau}\right) y_{i t+\tau}\right\}=0
$$

where:

$$
y_{i t+\tau}^{*}=\left(\frac{p_{t i}}{p_{t+\tau}}\right)^{-\varepsilon} y_{t+\tau},
$$

and

$$
m c_{t}=\left(\frac{1}{1-\alpha}\right)^{1-\alpha}\left(\frac{1}{\alpha}\right)^{\alpha} \frac{1}{A_{t}} w_{t}^{1-\alpha} r_{t}^{\alpha}
$$

Equilibrium

- A definition of equilibrium in this economy is standard.
- The symmetric equilibrium policy functions are determined by the following blocks:

1. The first order conditions of the household.
2. Pricing decisions by firms.
3. Pricing of inputs and outputs.

Input and Output Prices

- Input prices satisfy:

$$
k_{t}=\frac{\alpha}{1-\alpha} \frac{w_{t}}{r_{t}} l_{t}
$$

- The price level evolves:

$$
\pi_{t}=\frac{p_{t}}{p_{t-1}}=\left[\theta_{p}+\left(1-\theta_{p}\right) \pi_{t}^{* 1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}
$$

Equilibrium

- A definition of equilibrium in this economy is standard.
- The symmetric equilibrium policy functions are determined by the following blocks:

1. The first order conditions of the household.
2. Pricing decisions by firms.
3. Pricing of inputs and outputs.
4. Taylor rule and market clearing.

Taylor Rule and Market Clearing

- Taylor rule

$$
\frac{R_{t+1}}{R}=\left(\frac{R_{t}}{R}\right)^{\gamma_{R}}\left(\frac{\pi_{t}}{\pi}\right)^{\gamma_{\pi}}\left(\frac{y_{t}}{y}\right)^{\gamma_{y}} e^{\varphi_{t}}
$$

- Markets clear:

$$
c_{t}+x_{t}=y_{t}=\frac{A_{t}}{v_{t}} k_{t}^{\alpha} l_{t}^{1-\alpha}
$$

where $v_{t}=\int_{0}^{1}\left(\frac{p_{i t}}{p_{t}}\right)^{-\varepsilon} d i$ and $k_{t+1}=(1-\delta) k_{t}+x_{t}$.

Further Extensions

- Investment-specific technological change.
- Sticky wages.
- Open economy.

