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Models

• Tradition in macroeconomics of using models:

1. Policy Analysis.

2. Forecasting.

3. Counterfactuals.

• This course reviews the recent advances in macroeconometric model-
building.
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Why Models?

• Organize our thinking.

• Reproducibility.

• Accumulation of capital within organizations.

• Ex-ante versus ex-post analysis.

• Counterfactuals.

• New circumstances.
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A Brief History of Macroeconometric Models: A Promising Beginning

• Old idea of economists: Quesnay, Walras.

• Pioneers: Tinbergen (1939, Noble Prize 1969), Haavelmo (1943, No-
ble Prize 1989).

• Klein-Goldberger model (1955).

• Big models of the 1960s: Brookings, MIT-FRB-Penn, Wharton.
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A Brief History of Macroeconometric Models: Disappointment

• 1970s and 1980s were the decades of disappointment

• Problems:

1. Fit (Nelson, 1972).

2. Nonstationarity (Granger, 1981).

3. Economic Foundations (Lucas, 1972).
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A Brief History of Macroeconometric Models: Renewed Hopes

• 1980s: Real Business Cycle theory: advances and difficulties.

• Late 1990s, early 2000s: revival.

• Why?

1. Advances in economic theory: second generation equilibrium mod-

els.

2. Advances in econometrics: simulation methods.
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Why Dynamic Equilibrium Models?

• Explicit microeconomic foundation.

• Robust to Lucas critique.

• Welfare analysis.

• Design of optimal policy.
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A Brief History of Macroeconometric Models: References

• R.G. Bodking, L.R. Klein, and K. Marwah: A History of Macroecono-
metric Model-Building, Edward Elgar, 1991.

• T.J. Sargent: Expectations and the Nonneutrality of Lucas, Journal
of Monetary Economics, 1996.
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Why Monetary Models?

• Is price stability a good idea? If so, at what price?

• How do we implement monetary policy?

• Does monetary policy have a role in stock market booms/busts?

• What do we in the wake of a monetary crisis?

• Why did inflation take off during the 1970s?

• Was the Great Depression caused by bad monetary policy?
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Is Money Important?

• At a basic level yes.

• “Lenin is said to have declared that the best way to destroy the Capi-
talist System was to debauch its currency... Lenin was certainly right”.

J.M. Keynes (1919), The Economic Consequences of the Peace.

• Experiences of hyperinflation.
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Money and the Business Cycle

• At a more moderate level, the question is surprisingly difficult to an-
swer.

• Two “observations”:

1. Relation between Output and Money growth.

2. Phillips Curve.

• Where do these observations come?
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“Conventional Wisdom”

• Old tradition in economics: Hume, Of Money, 1752.

• Friedman and Schwartz, A Monetary History of the US, 1963.

• Volcker’s recessions.

• Evidence from Structural Vector Autoregressions.
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Structural Vector Autoregression

• SVARs have become a common tool among economists.

• Introduced by Sims (1980)

• SVARs make explicit identifying assumptions to isolate estimates of
policy and/or private agents behavior and its effects on the economy,

while keeping the model free of the many additional restrictive as-

sumptions needed to give every parameter a behavioral interpretation.

13



Uses of SVARs

1. The effects of money on output (Sims and Zha, 2005).

2. The relative importance of supply and demand shocks on output (Blan-

chard and Quah, 1989),

3. The effects of fiscal policy (Rotemberg and Woodford, 1992).

4. The relation between technology shocks and hours (Gaĺı, 1999).
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Economic Theory and the SVAR Representation

• Dynamic economic models can be viewed as restrictions on stochastic
processes.

• An economic theory is a mapping between a vector of k economic
shocks wt and a vector of n observables yt of the form

yt = D
³
wt
´

• Interpretation.
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Mapping

• The mapping D (·) is the product of the equilibrium behavior of the

agents in the model, implied by their optimal decision rules and the

consistency conditions like resource constraints and market clearing.

• The construction of the mapping D (·) is the sense in which economic
theory tightly relates shocks and observables.

• The mapping D (·) can be interpreted as the impulse response of the
model to an economic shock.
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A Linear Mapping

• We restrict our attention to linear mappings of the form:
yt = D (L)wt

where L is the lag operator.

• wt ∼ N (0,Σ) .

• More involved structures?
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Invertibility

• If k = n, i.e., we have as many economic shocks as observables,

and |D (L)| has all its roots outside the unit circle, we can invert the
mapping D (L) (Fernández-Villaverde, Rubio-Raḿırez, and Sargent,

2005).

• Meaning of invertibility.

• Example of non-invertibility:
yt = wt + 2wt−1
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SVAR Representation

• We obtain:
A (L) yt = wt

where A (L) = A0 −Σ∞k=1AkLk is a one-sided matrix lag polynomial
that embodies all the (usually non-linear) cross-equation restrictions

derived by the equilibrium solution of the model.

• In general, A (L) is of infinite order.

• This representation is known as the SVAR representation.
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Reduced Form Representation

• Consider now the case where a researcher does not have access to the
SVAR representation. Instead, she has access to the VAR representa-

tion of yt:

yt = B1yt−1 +B2yt−2 + ...+ at,

where Eyt−jat = 0 for all j and Eata0t = Ω.

• This representation is known as the Reduced form representation.

• Can the researcher recover the SVAR representation using the Reduced
form representation?
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Identification by Theory I

• Fernández-Villaverde, Rubio-Raḿırez, and Sargent (2005) show that,
given a strictly invertible economic model, there is one and only one

identification scheme to recover the SVAR from the reduced form.

• In addition, at = A−10 wt.

• Hence, if we knew A−10 , we could recover the SVAR representation

from the reduced from representation noticing that Aj = A0Bj for all

j and wt = A0at.
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Identification by Theory II

• Fernández-Villaverde, Rubio-Raḿırez, and Sargent’s identification re-
quires the specification of an explicit dynamic economic model.

• Can we avoid this step? Unfortunately, the answer is in general no,

because knowledge of the reduced form matrices Bi’s and Ω does not

imply, by itself, knowledge of the Ai’s and Σ.

• Why: normalization and identification.
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Normalization

• Reversing the signs of two rows or columns of the Ai’s does not matter
for the Bi’s.

• Thus, without the correct normalization restrictions, statistical infer-
ence about the Ai’s is essentially meaningless.

• Waggoner and Zha (2003) provide a general normalization rule that
maintains coherent economic interpretations.
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Identification I

• If we knew A0, each equation Bi = A−10 Ai would determine Ai given

some Bi.

• But in Ω = A0ΣA
0
0 we n (3n+ 1) /2 unknowns (the n

2 distinct ele-

ments of A0 and the n (n+ 1) /2 distinct elements of Σ) for n
2 knows

(the n (n+ 1) /2 distinct elements of Ω).

• Thus, we require n2 identification restrictions.
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Identification II

• Since can set the diagonal elements of A0 equal to 1 by scaling, we are
left with the need of n (n− 1) additional identification restrictions.

• Alternatively, we could scale the shocks such that the diagonal of Σ
is composed of ones and leave the diagonal of A0 unrestricted.

• These identification restrictions are dictated by the economic theory
being studied.

25



Identification III

• What about identification restrictions compatible with a large class of
models?

• Robustness versus efficiency.

• Discussion of trade-off.
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Identification IV

• Most common identification restrictions: Σ is diagonal.

• Why?

• Since this assumption imposes n (n− 1) /2 restrictions, we still require
n (n− 1) /2 additional restrictions.
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Short-Run Identification I

• Sims (1980) pioneered the first approach when he proposed to impose
zeroes on A0.

• Why? Natural timing in the effect of economic shocks.

• Example: we can use the intuition that monetary policy cannot re-
spond contemporaneously to a shock in the price level because of

informational delays to place a zero on A0.

• Similarly, institutional constraints, like the timing of tax collections,
can be exploited for identification (Blanchard and Perotti, 2002).
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Short-Run Identification II

• Sims (1980) ordered variables in such a way that A0 is lower triangular.

• Sims and Zha (2005) present a non-triangular, identification scheme
on an eight-variable SVAR.

• We will come back to Sims and Zha (2005).
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Long-Run Identification I

• Blanchard and Quah (1989).

• Restriction imposed on A (1) = A0 − Σ∞k=1Ak.

• Since A−1 (1) = D (1), long-run restrictions are restrictions on the

long-run effects of economic shocks, usually on the first difference of

an observable.
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Long-Run Identification II

• Blanchard and Quah (1989): demand shock has no effect long-run
effect on unemployment or output while supply shock has no long-run

on unemployment, but may have a long-run effect on output.

• Gaĺı (1999): technology shocks has no effect long-run effect on hours
and but it has on productivity.
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New Identification Schemes

• Uhlig (2005): sign restrictions. Identifies a contractionary monetary
policy shock as one that does not lead to an increase in prices or in

nonborrowed reserves and does not lead to a decrease in the federal

funds rate.

• Faust, Swanson, and Wright (2004) identify the effects if a monetary
shock in a SVAR using the prices of federal funds futures contracts.
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Estimable Equation

• Why is the previous discussion of the relation between the reduced
and structural form of a VAR relevant?

• Because the reduced form can be easily estimated.

• An empirically implementable version of the reduced form representa-

tion truncates the number of lags at the p-th order:

yt = B
∗
1yt−1 + ...+B∗pyt−p + a∗t

where Ea∗t a∗0t = Ω∗.
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Effects of Truncation

• Bad: Chari, Kehoe, McGrattan (2005).

• Not too bad: Christiano, Eichenbaum, and Vigfusson (2005).

• Problems with infinite dimensional estimation: Faust and Leeper,

1997).
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Estimation

• Classical: GMM, ML, OLS.

• Bayesian.

• Why Bayesian? Overparametrization and priors.

• We will talk about these issues later.
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Estimation

• Point estimates B∗i for i = 1, .., p and Ω∗

• Then, we find estimates of Ai and Σ by solving B∗i = A−1i Ai for

i = 1, ..., p, and Ω∗ = A0ΣA00.

• Finally, wt = A0a∗t .
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An Example: Sims and Zha (2005)

• A simple, model-based SVAR.

• U.S. Quarterly Data 1964-1994.

• 8 variables.

• We will need at least (8 ∗ 7) /2 = 28 identification restrictions.
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Variables

R: federal funds rate.
M : M2.
Py: GNP deflator.
y: real GNP.
W : average hourly earnings of non-agricultural workers.
Pim: producers’ price index.
Tbk: bankruptcy filings, personal and business.
Pcm: producer’ price index for intermediate goods.
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Identification Scheme on A0

R M Py y W Pim Tbk Pcm
R × × × × 0 0 0 0
M × × 0 0 0 0 × ×
Py 0 0 × × × 0 × ×
y 0 0 0 × 0 0 × ×
W 0 0 0 × × 0 × ×
Pim 0 0 × × × × × ×
Tbk 0 0 0 0 0 0 × ×
Pcm × × × × × × × ×
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Comments on Identification

• Sims and Zha impose exactly 28 identification restrictions.

• Motivated by an economic model.

• Intuition guides the choice of model.
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Figure 2
Impulse Reponses: M2 Model
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Figure 4a
M Decomposition, M2 Model
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Figure 4b
M Decomposition, M2 Model
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Figure 4c
M Decomposition, M2 Model
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Figure 5a
R Decomposition, M2 Model
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Figure 5b
R Decomposition, M2 Model
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Figure 5c
R Decomposition, M2 Model
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Figure 6a
Py Decomposition, M2 Model

Forecast Errors
1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993

-0.04

-0.02

0.00

0.02

0.04

0.06

PCM
1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993

-0.04

-0.02

0.00

0.02

0.04

0.06

MD
1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993

-0.04

-0.02

0.00

0.02

0.04

0.06



Figure 6b
Py Decomposition, M2 Model
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Figure 6c
Py Decomposition, M2 Model
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Figure 7a
y Decomposition, M2 Model
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Figure 7b
y Decomposition, M2 Model
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Figure 7c
y Decomposition, M2 Model
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Figure 8a
Time Series of Structural Disturbances: M2 Model
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Figure 8b
Time Series of Structural Disturbances: M2 Model

W
1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993

-0.0100
-0.0075
-0.0050
-0.0025
0.0000
0.0025
0.0050

Py
1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993

-0.006
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008
0.010

y
1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993

-0.03
-0.02
-0.01
0.00
0.01
0.02
0.03

Tbk
1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993

-0.075
-0.050
-0.025
0.000
0.025
0.050
0.075



Figure 9
Fixed R Policy: M2 Model
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Figure 10
Fixed M Policy: M2 Model
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Assessment and Criticisms of SVARs

• SVARs offer an attractive approach to estimation.

• They promise to coax interesting patterns from the data that will

prevail across a set of incompletely specified dynamic economic model

with a minimum of identifying assumptions.

• Moreover, SVAR are easy to estimate.

• SVAR have contributed to the understanding of aggregate fluctuations,
to clarify the importance of different economic shocks, and to generate

fruitful debates among macroeconomists.
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Criticisms of SVARs I

• Economic shocks recovered from a SVAR do not resemble the shocks
measured by other mechanisms, like market expectations (Rudebusch,
1998).

• Shocks recovered from a SVAR may reflect variables omitted from the
model. If these omitted variables correlate with the included variables,
the estimated economic shocks will be biased.

• Example→“price puzzle”: early SVARs found that inflation increased
after a contractionary monetary policy shock.

• Sims (1992): the Fed looks forward when it sets the federal fund rate.
Solution?
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Criticisms of SVARs II

• Many SVAR exercises, even simple ones, are sensitive to the identifi-
cation restrictions, Stock and Watson (2001).

• Many of the identification schemes are the product of an specification
search in which researchers look for “reasonable” answers. If an identi-

fication scheme matches the conventional wisdom is called successful,

if it does not is called a puzzle or, even worse, a failure (Uhlig, 2005).
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