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Motivation

• Nonlinear and/or non-gaussian filtering, smoothing, and forecasting
(NLGF) problems are pervasive in economics.

• Macroeconomics: evaluating likelihood of DSGE models

• Finance: time-varying variance of time series.

• However, NLGF is a complicated endeavor with no simple and exact
algorithm.

2



Environment

• Discrete time t ∈ {1, 2, ...} .

• States St.

• Initial state S0 is either known or it comes from p (S0; γ) .

• Properties of p (S0; γ)? Stationarity?
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Nonlinear and/or Non-gaussian State Space Representations

• Transition equation:
St = f (St−1,Wt; γ)

• Measurement equation:
Yt = g (St, Vt; γ)

• Interpretation.
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Shocks

• {Wt} and {Vt} are independent of each other.

• Wt and Vt have zero mean.

• The variance of Wt is given by Rt and the variance of Vt by Qt.

• Generalizations?
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Conditional Densities

• From St = f (St−1,Wt; γ) , we can compute p (St|St−1; γ).

• From Yt = g (St, Vt; γ), we can compute p (Yt|St; γ) .

• From St = f (St−1,Wt; γ) and Yt = g (St, Vt; γ), we have:

Yt = g (f (St−1,Wt; γ) , Vt; γ)

and hence we can compute p (Yt|St−1; γ).
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Filtering, Smoothing, and Filtering

• Filtering: we are concerned with what we have learned up to current
observation.

• Smoothing: we are concerned with what we learn with the full sample.

• Forecasting: we are concerned with future realizations.
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Goal of Filtering I

• Compute conditional densities: p
³
st|yt−1; γ

´
and p

³
st|yt; γ

´
.

• Why?

1. It allows probability statements regarding the situation of the sys-

tem.

2. Compute conditional moments: mean, st|t and st|t−1 and variances
Pt|t and Pt|t−1.

3. Other functions of the states.
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Goals of Filtering II

• Compute condition the likelihood function of a sequence of realizations
of the observable yT at a particular parameter value γ:

p
³
yT ; γ

´

• Given the markov structure of our state space representation, we can
factorize the likelihood function as”

p
³
yT ; γ

´
=

TY
t=1

p
³
yt|yt−1; γ

´
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Goals of Filtering III

• Then,

p
³
yT ; γ

´
= p (y1|γ)

TY
t=1

p
³
yt|yt−1; γ

´

=
Z
p (y1|s0; γ) ds0

TY
t=1

Z
p (yt|st; γ) p

³
st|yt−1; γ

´
dst

• Hence, knowledge of
n
p
³
st|yt−1; γ

´oT
t=1

and p (s0; γ) allow the eval-

uation of the likelihood of the model.
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Two Fundamental Tools

1. Chapman-Kolmogorov equation:

p
³
st|yt−1; γ

´
=
Z
p (st|st−1; γ) p

³
st−1|yt−1; γ

´
dst−1

2. Bayes’ theorem:

p
³
st|yt; γ

´
=
p (yt|st; γ) p

³
st|yt−1; γ

´
p
³
yt|yt−1; γ

´
where:

p
³
yt|yt−1; γ

´
=
Z
p (yt|st; γ) p

³
st|yt−1; γ

´
dst
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Interpretation

1. Chapman-Kolmogorov equation is one-step ahead predictor.

2. Bayes’ theorem updates the conditional density of states given the new

observation.
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Recursion for p
³
st|yt; γ

´

• Combining the Chapman-Kolmogorov and the Bayes’ theorem:

p
³
st|yt; γ

´
=

R
p (st|st−1; γ) p

³
st−1|yt−1; γ

´
dst−1R nR

p (st|st−1; γ) p
³
st−1|yt−1; γ

´
dst−1

o
p (yt|st; γ) dst

p (yt|st; γ)

• To initiate that recursion, we only need a value for s0 or p (s0; γ).

• Applying the Chapman-Kolmogorov equation once more to the out-
come of the recursion, the get the sequence of

n
p
³
st|yt−1; γ

´oT
t=1
to

evaluate the likelihood function.
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Smoothing

• We are interested on the distribution of the state conditional on all
the observations, on p

³
st|yT ; γ

´
and p

³
yt|yT ; γ

´
.

• We compute:

p
³
st|yT ; γ

´
= p

³
st|yt; γ

´ Z p ³st+1|yT ; γ´ p (st+1|st; γ)
p (st+1|yt; γ)

dst+1

a backward recursion that we initialize with p
³
sT |yT ; γ

´
and the se-

quences
n
p
³
st|yt; γ

´oT
t=1

and
n
p
³
st|yt−1; γ

´oT
t=1

we obtained from

filtering.
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Forecasting

• We apply the Chapman-Kolmogorov equation recursively, we can get
p
³
st+j|yt; γ

´
, j ≥ 1.

• Integrating recursively:

p
³
yl+1|yl; γ

´
=
Z
p
¡
yl+1|sl+1; γ

¢
p
³
sl+1|yl; γ

´
dsl+1

from t+ 1 to t+ j, we get p
³
yt+j|yT ; γ

´
.

• Clearly smoothing and forecasting require to solve the filtering problem
first!
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Problem of Filtering

• We have the recursion

p
³
st|yt; γ

´
=

R
p (st|st−1; γ) p

³
st−1|yt−1; γ

´
dst−1R nR

p (st|st−1; γ) p
³
st−1|yt−1; γ

´
dst−1

o
p (yt|st; γ) dst

p (yt|st; γ)

• A lot of complicated and high dimensional integrals.

• In general, we do not have close for solution for them.

• Nonlinear and non-gaussianity translate, spread, and deform (TSD)

the conditional densities in ways that impossibilities to accommodate

them with any known parametric family.
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Exception

• There is one exception: linear and gaussian case.

• Why? Because if the system is linear and gaussian, all the conditional
probabilities are also gaussian.

• Linear and gaussian state spaces models translate and spread the con-
ditional distributions, but they do not deform them.

• For gaussian distributions, we only need to track mean and variance
(sufficient statistics).

• Kalman filter accomplishes this goal efficiently.
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Different Approaches

• Deterministic filtering:

1. Kalman family.

2. Grid-based filtering.

• Simulation filtering:

1. McMc.

2. Sequential Monte Carlo.
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Kalman Family of Filters

• Use ideas of Kalman filtering to NLGF problems.

• Non-optimal filters.

• Different implementations:

1. Extended Kalman filter.

2. Iterated Extended Kalman filter.

3. Second-order Extended Kalman filter.

4. Unscented Kalman filter.
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The Extended Kalman Filter

• EKF is historically the first descendant of the Kalman filter.

• EKF deals with nonlinearities with a first order approximation to the
system and applying the Kalman filter to this approximation.

• Non-gaussianities are ignored.
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Algorithm I

• Given st−1|t−1:
st|t−1 = f

³
st−1|t−1, 0; γ

´

• Then:
Pt|t−1 = Qt−1 + FtPt−1|t−1F 0t

where

Ft =
df (St−1,Wt; γ)

dSt−1

¯̄̄̄
¯
St−1=st−1|t−1,Wt=0
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Algorithm II

• Kalman gain, Kt, is:

Kt = Pt|t−1G0t
³
GtPt|t−1G0t +Rt

´−1
where

Gt =
dg (St−1, vt; γ)

dSt−1

¯̄̄̄
¯
St−1=st|t−1,vt=0

• Then
st|t = st|t−1 +Kt

³
yt − g

³
st|t−1, 0; γ

´´
Pt|t = Pt|t−1 −KtGtPt|t−1
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Problems of EKF

1. It ignores the non-gaussianities of Wt and Vt.

2. It ignores the non-gaussianities of states distribution.

3. Approximation error incurred by the linearization.

4. Biased estimate of the mean and variance.

5. We need to compute Jacobian and Hessians.

As the sample size grows, those errors accumulate and the filter diverges.
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Iterated Extended Kalman Filter I

• Compute st|t−1 and Pt|t−1 as in EKF.

• Iterate N times on:

Kit = Pt|t−1Gi0t
³
GitPt|t−1Gi0t +Rt

´−1
where

Git =
dg (St−1, vt; γ)

dSt−1

¯̄̄̄
¯
St−1=sit|t−1,vt=0

and

sit|t = st|t−1 +K
i
t

³
yt − g

³
st|t−1, 0; γ

´´
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Iterated Extended Kalman Filter II

• Why are we iterating?

• How many times?

• Then:
st|t = st|t−1 +Kt

³
yt − g

³
sNt|t−1, 0; γ

´´
Pt|t = Pt|t−1 −KNt GNt Pt|t−1
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Second-order Extended Kalman Filter

• We keep second-order terms of the Taylor expansion of transition and
measurement.

• Theoretically, less biased than EKF.

• Messy algebra.

• In practice, not much improvement.
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Unscented Kalman Filter I

• Recent proposal by Julier and Uhlmann (1996).

• Based around the unscented transform.

• A set of sigma points is selected to preserve some properties of the

conditional distribution (for example, the first two moments).

• Then, those points are transformed and the properties of the new
conditional distribution are computed.
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Unscented Kalman Filter II

• The UKF computes the conditional mean and variance accurately up
to a third order approximation if the shocks Wt and Vt are gaussian

and up to a second order if they are not.

• The sigma points are chosen deterministically and not by simulation
as in a Monte Carlo method.

• The UKF has the advantage with respect to the EKF that no jacobian
or hessians is required, objects that may be difficult to compute.
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New State Variable

• We modify the state space by creating a new augmented state variable:
St = [St,Wt, Vt]

that includes the pure state space and the two random variables Wt

and Vt.

• We initialize the filter with
s0|0 = E (St) = E (S0, 0, 0)

P0|0 =

 P0|0 0 0

0 R0 0
0 0 Q0
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Sigma Points

• Let L be the dimension of the state variable St.

• For t = 1, we calculate the 2L+ 1 sigma points:
S0,t−1|t−1 = st−1|t−1
Si,t−1|t−1 = st−1|t−1 −

³
(L+ λ)Pt−1|t−1

´0.5
for i = 1, ..., L

Si,t−1|t−1 = st−1|t−1 +
³
(L+ λ)Pt−1|t−1

´0.5
for i = L+ 1, ..., 2L
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Parameters

• λ = α2 (L+ κ)− L is a scaling parameter.

• α determines the spread of the sigma point and it must belong to the

unit interval.

• κ is a secondary parameter usually set equal to zero.

• Notation for each of the elements of S:
Si = [Ssi ,Swi ,Svi ] for i = 0, ..., 2L
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Weights

• Weights for each point:

Wm
0 =

λ

L+ λ

Wc
0 =

λ

L+ λ
+
³
1− α2 + β

´
Wm
0 = Xc0 =

1

2 (L+ λ)
for i = 1, ..., 2L

• β incorporates knowledge regarding the conditional distributions.

• For gaussian distributions, β = 2 is optimal.
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Algorithm I: Prediction of States

• We compute the transition of the pure states:
Ssi,t|t−1 = f

³
Ssi,t|t−1,Swi,t−1|t−1; γ

´

• Weighted state

st|t−1 =
2LX
i=0

Wm
i Ssi,t|t−1

• Weighted variance:

Pt|t−1 =
2LX
i=0

Wc
i

³
Ssi,t|t−1 − st|t−1

´ ³
Ssi,t|t−1 − st|t−1

´0
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Algorithm II: Prediction of Observables

• Predicted sigma observables:
Yi,t|t−1 = g

³
Ssi,t|t−1,Svi,t|t−1; γ

´

• Predicted observable:

yt|t−1 =
2LX
i=0

Wm
i Yi,t|t−1
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Algorithm III: Update

• Variance-covariance matrices:

Pyy,t =
2LX
i=0

Wc
i

³
Yi,t|t−1 − yt|t−1

´ ³
Yi,t|t−1 − yt|t−1

´0
Pxy,t =

2LX
i=0

Wc
i

³
Ssi,t|t−1 − st|t−1

´ ³
Yi,t|t−1 − yt|t−1

´0

• Kalman gain:
Kt = Pxy,tP

−1
yy,t
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Algorithm IV: Update

• Update of the state:
st|t = st|t +Kt

³
yt − yt|t−1

´

• the update of the variance:
Pt|t = Pt|t−1 +KtPyy,tK0t

Finally:

Pt|t =

 Pt|t 0 0

0 Rt 0
0 0 Qt
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Grid-Based Filtering

• Remember that we have the recursion

p
³
st|yt; γ

´
=

R
p (st|st−1; γ) p

³
st−1|yt−1; γ

´
dst−1R nR

p (st|st−1; γ) p
³
st−1|yt−1; γ

´
dst−1

o
p (yt|st; γ) dst

p (yt|st; γ)

• This recursion requires the evaluation of three integrals.

• This suggests the possibility of addressing the problem by computing

those integrals by a deterministic procedure as a grid method.

• Kitagawa (1987) and Kramer and Sorenson (1988).
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Grid-Based Filtering

• We divide the state space intoN cells, with center point sit,
n
sit : i = 1, ..., N

o
.

• We substitute the exact conditional densities by discrete densities that
put all the mass at the points

n
sit

oN
i=1
.

• We denote δ (x) is a dirac function with mass at 0.
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Approximated Densities and Weights

p
³
st|yt−1; γ

´
'

NX
i=1

ωit|t−1δ
³
st − sit

´

p
³
st|yt; γ

´
'

NX
i=1

ωit|t−1δ
³
st − sit

´

ωit|t−1 =
NX
j=1

ω
j
t−1|t−1p

³
sit|sjt−1; γ

´

ωit|t =
ωit|t−1p

³
yt|sit; γ

´
PN
j=1ω

j
t|t−1p

³
yt|sjt ; γ

´
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Approximated Recursion

p
³
st|yt; γ

´
=

NX
i=1

·PN
j=1 ω

j
t−1|t−1p

³
sit|sjt−1; γ

´¸
p
³
yt|sit; γ

´
PN
j=1

·PN
j=1ω

j
t−1|t−1p

³
sit|sjt−1; γ

´¸
p
³
yt|sjt ; γ

´δ ³st − sit´

Compare with

p
³
st|yt; γ

´
=

R
p (st|st−1; γ) p

³
st−1|yt−1; γ

´
dst−1R nR

p (st|st−1; γ) p
³
st−1|yt−1; γ

´
dst−1

o
p (yt|st; γ) dst

p (yt|st; γ)

given that

p
³
st−1|yt−1; γ

´
'

NX
i=1

ωit−1|t−1δ
³
sit
´
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Problems

• Grid filters require a constant readjustment to small changes in the
model or its parameter values.

• Too computationally expensive to be of any practical benefit beyond
very low dimensions.

• Grid points are fixed ex ante and the results are very dependent on
that choice.

Can we overcome those difficulties and preserve the idea of integration?

Yes, through Monte Carlo Integration.
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