Inference

Jesús Fernández-Villaverde University of Pennsylvania

A Model with Sticky Price and Sticky Wage

- Household $j \in[0,1]$ maximizes utility function:

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t}\left[\frac{G_{t}\left(C_{t}^{j}\right)^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}}-\frac{\left(N_{t}^{j}\right)^{1+\gamma}}{1+\gamma}+\frac{\eta}{1-\xi}\left(\frac{M_{t}^{j}}{P_{t}}\right)^{1-\xi}\right]
$$

$0<\beta<1$ is the discount factor, $\sigma>0$ the elasticity of intertemporal substitution, $\xi>1$ the elasticity of money holdings, and $\gamma>0$ the inverse of the elasticity of labor supply with respect to real wages.

- Subject the budget constrain given by:

$$
\begin{gathered}
P_{t} C_{t}^{j}+M_{t}^{j}-M_{t-1}^{j}+\sum_{h_{t+\tau}} Q_{t}\left(h_{t+\tau}\right) D_{t}^{j}\left(h_{t+\tau}\right)+\frac{B_{t+1}^{j}}{R_{t}} \\
=W_{t}^{j} N_{t}^{j}+\Pi_{t}^{j}+T_{t}^{j}+D_{t}^{j}+B_{t}^{j}
\end{gathered}
$$

where Π_{t}^{j} are firms' profits, T_{t}^{j} are nominal transfers, $D_{t}^{j}\left(h_{t+\tau}\right)$ denotes holdings of contingent bonds, B_{t+1}^{j} denotes holdings of an uncontingent bonds, and W_{t}^{j} is the hourly nominal wage.

Technology

- Intermediate Goods producer $i \in[0,1]$ use the following production function:

$$
Y_{t}^{i}=A_{t} K_{s r}^{\delta}\left\{\left[\int_{0}^{1}\left(N_{t}^{i j}\right)^{\frac{\phi-1}{\phi}} d j\right]^{\frac{\phi}{\phi-1}}\right\}^{1-\delta}
$$

A_{t} is a technology factor, which is common to the whole economy. $N_{t}^{i j}$ is the amount of hours of type j labor used by intermediate good producer i. $\phi>1$ is the elasticity of substitution between different types of labor, and $0>\delta>1$ is the capital share of output. The production function is concave in the labor aggregate, and we assume that capital is fixed in the short run at a level $K_{s r}$.

- Final good:

$$
Y_{t}=\left[\int_{0}^{1}\left(Y_{t}^{i}\right)^{\frac{\varepsilon_{t}-1}{\varepsilon_{t}}} d i\right]^{\frac{\varepsilon_{t}}{\varepsilon_{t}-1}}
$$

$\varepsilon_{t}>1$ the elasticity of substitution between intermediate goods, $\Lambda_{t}=\varepsilon_{t} /\left(\varepsilon_{t}-1\right)$ price markup. There is a shock to the elasticity of substitution, ε_{t}.

Final Goods Price Setting

- Final good producers are competitive and maximize profits.
- The input demand functions associated with this problem are

$$
Y_{t}^{i}=\left[\frac{P_{t}^{i}}{P_{t}}\right]^{-\varepsilon_{t}} Y_{t} \quad \forall i
$$

- The zero profit condition \Rightarrow the price of the final good

$$
P_{t}=\left[\int_{0}^{1} P_{t}^{i 1-\varepsilon_{t}} d i\right]^{\frac{1}{1-\varepsilon_{t}}}
$$

Intermediate Goods Producers Problem

- Operate in a monopolistic competition environment. They maximize profits taking as given all prices and wages but their own price.
- The profit maximization problem of the intermediate good producers is divided into two stages: In the first stage, given all wages, firms choose $\left\{N_{t}^{i j}\right\}_{j \in[0,1]}$ to obtain the optimal labor mix. Hence, the demand of producer i for type of labor j is

$$
N_{t}^{i j}=\left[\frac{W_{t}^{j}}{W_{t}}\right]^{-\phi}\left[\frac{Y_{t}^{i}}{A_{t}}\right]^{\frac{1}{1-\delta}} \quad \forall j
$$

- Where the aggregate wage W_{t} can be expressed as

$$
W_{t}=\left[\int_{0}^{1}\left(W_{t}^{j}\right)^{1-\phi} d j\right]^{\frac{1}{1-\phi}} .
$$

- In the second stage, they set prices. They can reset their price only when they receive a stochastic signal to do so. This signal is received with probability $1-\theta_{p}$.
- If they can change the price, they choose the price that maximizes:

$$
E_{t} \sum_{\tau=0}^{\infty} \theta_{p}^{\tau} Q_{t}^{t+\tau}\left[P_{t}^{i} Y_{t+\tau}^{i}-W_{t+\tau}\left(\frac{Y_{t+\tau}^{i}}{A_{t+\tau}}\right)^{\frac{1}{1-\delta}}\right]
$$

subject to

$$
Y_{t+\tau}^{i}=\left[\frac{P_{t}^{i}}{P_{t+\tau}}\right]^{-\varepsilon_{t+\tau}} Y_{t+\tau} \quad \forall i, \tau
$$

- The solution is:

$$
E_{t} \sum_{\tau=0}^{\infty} \theta_{p}^{\tau} Q_{t}^{t+\tau}\left\{\left[\frac{P_{t}^{i, *}}{P_{t+\tau}}-\Lambda_{t} M C_{t}^{i}\right] Y_{t}^{i}\right\}=0
$$

- The evolution of the aggregate price level is:

$$
P_{t}=\left[\theta_{p}\left(P_{t-1}\right)^{1-\varepsilon_{t}}+\left(1-\theta_{p}\right)\left(P_{t}^{*}\right)^{1-\varepsilon_{t}}\right]^{\frac{1}{1-\varepsilon_{t}}}
$$

Consumers problem

- Intertemporal susbstitution Equation

$$
G_{t} C_{t}^{-\frac{1}{\sigma}}=\beta E_{t}\left\{G_{t+1} C_{t+1}^{-\frac{1}{\sigma}} R_{t} \frac{P_{t}}{P_{t+1}}\right\}
$$

- Demand for money, at a given interest rate, always satisfied.

Wage Setting Problem

- Consumers operate in a monopolistic competition environment. They maximize utility given all wages, but their own. They reset wages if signal to do so. They receive the signal with probability $\left(1-\theta_{w}\right)$. As before, the signal is independent across intermediate good producers and past history of signals.
- If they can change their wage, they choose the wage, $W_{t}^{j, *}$, that maximizes:

$$
E_{t} \sum_{\tau=0}^{\infty}\left(\beta \theta_{w}\right)^{\tau}\left\{\left[G_{t+\tau} C_{t+\tau}^{-\frac{1}{\sigma}} \frac{W_{t}^{j, *}}{P_{t+\tau}}-\vartheta\left(N_{t+\tau}^{* j}\right)^{\gamma}\right] N_{t+\tau}^{* j}\right\}=0
$$

subject to

$$
N_{t+\tau}^{* j}=\left(\frac{W_{t}^{j, *}}{W_{t+\tau}}\right)^{-\phi} \int_{0}^{1}\left(\frac{Y_{t+\tau}^{i}}{A_{t+\tau}}\right)^{\frac{1}{1-\delta}} d i \quad \forall j, \tau
$$

- The evolution of the aggregate wage level is:

$$
W_{t}=\left[\theta_{w} W_{t-1}^{1-\phi}+\left(1-\theta_{w}\right)\left(W_{t}^{*}\right)^{1-\phi}\right]^{\frac{1}{1-\phi}}
$$

Fiscal and Monetary Policy

- On the fiscal side, the government cannot run deficits or surpluses, so its budget constraint is

$$
\int_{0}^{1} T\left(h_{t}, j\right) d j=M\left(h_{t}\right)-M\left(h_{t-1}\right)
$$

- On the Monetary side, as suggested by Taylor (1993), we assume that the monetary authority conducts monetary policy using the nominal interest rate, through a Taylor rule.

$$
\frac{r_{t}}{r}=\left(\frac{r_{t-1}}{r}\right)^{\rho_{r}}\left(\frac{\pi_{t}}{\pi}\right)^{\gamma_{\pi}}\left(\frac{y_{t}}{y}\right)^{\gamma_{y}} e^{m s_{t}}
$$

Dynamics

$$
\begin{gathered}
a_{t}+(1-\delta) n_{t}-y_{t}=0 \\
m c_{t}-\left(w_{t}-p_{t}\right)+y_{t}-n_{t}=0 \\
\frac{1}{\sigma} c_{t}+\gamma n_{t}-g_{t}-m r s_{t}=0 \\
\rho_{r} r_{t-1}+\left(1-\rho_{r}\right)\left[\gamma_{\pi} \pi_{t}+\gamma_{y} y_{t}\right]+m s_{t}-r_{t}=0 \\
-y_{t}+c_{t}=0 \\
w_{t}-p_{t}-\left(w_{t-1}-p_{t-1}-\Delta w_{t}+\pi_{t}\right)=0
\end{gathered}
$$

$$
\begin{gathered}
E_{t}\left[-\sigma r_{t}+\sigma \pi_{t+1}-\sigma g_{t+1}+\sigma g_{t}-c_{t}+c_{t+1}\right]=0 \\
E_{t}\left[\kappa_{p} m c_{t}+\kappa_{p} \mu_{t}-\pi_{t}+\beta \pi_{t+1}\right]=0 \\
E_{t}\left[\kappa_{w} m r s_{t}-\kappa_{w}\left(w_{t}-p_{t}\right)-\Delta w_{t}+\beta \Delta w_{t+1}\right]=0
\end{gathered}
$$

where

$$
\begin{gathered}
a_{t}=\rho_{a} a_{t-1}+\varepsilon_{a t} \\
\mu_{t}=\varepsilon_{\mu t} \\
m s_{t}=\varepsilon_{m s t} \\
g_{t}=\rho_{g} g_{t-1}+\varepsilon_{g t}
\end{gathered}
$$

and

$$
\begin{gathered}
\kappa_{p}=(1-\delta)\left(1-\theta_{p} \beta\right)\left(1-\theta_{p}\right) /\left(\theta_{p}(1+\delta(\bar{\varepsilon}-1))\right) \\
\kappa_{w}=\left(1-\theta_{w}\right)\left(1-\beta \theta_{w}\right) /\left[\theta_{w}(1+\phi \gamma)\right]
\end{gathered}
$$

Solve the Model (Uhlig Algorithm)

- Derive the system:

$$
\begin{gathered}
0=A s_{t}+B s_{t-1}+C e_{t}+D z_{t} \\
0=E_{t}\left[F s_{t+1}+G s_{t}+H s_{t-1}+J e_{t+1}+K e_{t}+L z_{t+1}+M z_{t}\right] \\
z_{t+1}=N z_{t}+\varepsilon_{t+1} \quad \varepsilon_{t+1} \sim N(0, \Sigma)
\end{gathered}
$$

- $s_{t}=\left(w_{t}-p_{t}, r_{t}, \pi_{t}, \Delta w_{t}, y_{t}\right)^{\prime}$ is the endogenous state, $e_{t}=\left(n_{t}, m c_{t}, m r s_{t}, c_{t}\right)$ are endogenous variables, and $z_{t}=\left(a_{t}, m s_{t}, \mu_{t}, g_{t}\right)^{\prime}$ is the exogenous state.
- $N=\left[\begin{array}{cccc}\rho_{a} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \rho_{g}\end{array}\right]$
- Solution

$$
\begin{aligned}
& s_{t}=P P s_{t-1}+Q Q z_{t} \\
& e_{t}=R R s_{t-1}+S S z_{t}
\end{aligned}
$$

Writing the Solution in State Space Form

- Transition equation

$$
\begin{aligned}
\binom{s_{t}}{z_{t}}= & \left(\begin{array}{cc}
P P & Q Q * N \\
0 & N
\end{array}\right)\binom{s_{t-1}}{z_{t-1}}+\binom{Q}{I} \varepsilon_{t}= \\
& \binom{s_{t}}{z_{t}}=F\binom{s_{t-1}}{z_{t-1}}+G \varepsilon_{t}
\end{aligned}
$$

- Measurement equation

$$
s_{t}=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)\binom{s_{t}}{z_{t}}=H\binom{s_{t}}{z_{t}}
$$

- Evaluate the Likelihood function using the Kalman Filter.
- Apply Metropolis-Hastings Algorigthm to get a draw from the posterior.
- Compute moments and marginal likelihood.

	Prior Distribution	Mean/std
$\frac{1}{1-\theta_{p}}$	gamma(2, 1)+1	3.00
$\frac{1}{1-\theta_{w}}$	gamma(3, 1) +1	$4.02)$
γ_{π}	normal(1.5, 0.25)	(1.71)
		(0.25)
γ_{y}	normal(0.125, 0.125)	0.125
		(0.125)
ρ_{r}	uniform[0, 1)	0.5
		(0.28)
σ^{-1}	gamma(2, 1.25)	2.5
		(1.76)
γ	normal(1, 0.5)	1.0
		(0.5)
ρ_{a}	uniform[0, 1)	0.5
		(0.28)
ρ_{g}	uniform[0, 1)	0.5
		(0.28)
$\sigma_{a}(\%)$	uniform[0, 1)	50.0
		(28.0)
$\sigma_{m}(\%)$	uniform[0, 1)	50.0
		(28.0)
$\sigma_{\lambda}(\%)$	uniform[0, 1)	50.0
		(28.0)
$\sigma_{g}(\%)$	uniform[0, 1)	50.0
		(28.0)

Algorithm (gencoeffsehl.m)

Step 0 Read data (usadefl1d.txt)

Step 1 Intial value for θ_{0}, N and set $j=1$.

Step 2 Evaluate $f\left(Y^{T} \mid \theta_{0}\right)$ and $\pi\left(\theta_{0}\right)$ and make sure $f\left(Y^{T} \mid \theta_{0}\right), \pi\left(\theta_{0}\right)>0$
(a) Given θ_{0} evaluate prior $\pi\left(\theta_{0}\right)$ (priorehl.m)
(b) Given θ_{0} : Uligh algorithm to solve the model (modelehl.m and solve2.m)
(c) Kalman Filter to evaluate $f\left(Y^{T} \mid \theta_{0}\right)$ (likeliehl.m)

Step $3 \theta_{j}^{*}=\theta_{j-1}+\varepsilon \sim N\left(0, \Sigma_{\varepsilon}\right)$ and u from Uniform $[0,1]$
(a) Given θ_{j}^{*} evaluate prior $\pi\left(\theta_{j}^{*}\right)$ (priorehl.m)
(b) Given θ_{j}^{*} : Uligh algorithm to solve the model (modelehl.m and solve2.m)
(c) Kalman Filter to evaluate $f\left(Y^{T} \mid \theta_{j}^{*}\right)$ (likeliehl.m)

Step 4 If $u \leq \alpha\left(\theta_{j-1}, \theta_{j}^{*}\right)=\min \left\{\frac{f\left(Y^{T} \mid \theta_{j}^{*}\right) \pi\left(\theta_{j}^{*}\right)}{f\left(Y^{T} \mid \theta_{j-1}\right) \pi\left(\theta_{j-1}\right)}, 1\right\}$ then $\theta_{j}=\theta_{j}^{*}, \theta_{j}=$ θ_{j-1} otherwise.

Step 5 If $j \leq N$ then $j \rightsquigarrow j+1$ and got to 3 .

	Prior	Mean (Std)	Mean of Posterior (Std)
$\frac{1}{1-\theta_{p}}$	$\operatorname{gamma}(2,1)+1$	$\begin{array}{r} 3.00 \\ (1.42) \end{array}$	$\begin{gathered} 4.37 \\ (0.35) \end{gathered}$
$\frac{1}{1-\theta_{w}}$	$\operatorname{gamma}(3,1)+1$	$\begin{array}{r} 4.00 \\ (1.71) \\ \hline \end{array}$	$\begin{gathered} 2.72 \\ (0.27) \\ \hline \end{gathered}$
γ_{π}	normal (1.5, 0.25)	$\begin{gathered} 1.5 \\ (0.25) \\ \hline \end{gathered}$	$\begin{aligned} & 1.08 \\ & (0.09) \end{aligned}$
γ_{y}	normal(0.125, 0.125)	$\begin{aligned} & 0.125 \\ & (0.125) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.26 \\ (0.06) \\ \hline \end{array}$
ρ_{r}	uniform[0, 1)	$\begin{gathered} 0.5 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} 0.74 \\ (0.02) \\ \hline \end{gathered}$
σ^{-1}	gamma $(2,1.25)$	$\begin{gathered} 2.5 \\ (1.76) \end{gathered}$	$\begin{gathered} 8.33 \\ (2.50) \\ \hline \end{gathered}$
γ	normal (1, 0.5)	$\begin{gathered} 1.0 \\ (0.5) \end{gathered}$	$\begin{aligned} & 1.74 \\ & (0.29) \end{aligned}$
ρ_{a}	uniform $[0,1)$	$\begin{gathered} 0.5 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} 0.74 \\ (0.05) \\ \hline \end{gathered}$
ρ_{g}	uniform[0, 1)	$\begin{gathered} 0.5 \\ (0.28) \\ \hline \end{gathered}$	$\begin{aligned} & 0.82 \\ & (0.03) \\ & \hline \end{aligned}$
$\sigma_{a}(\%)$	uniform $[0,1)$	$\begin{aligned} & 50.0 \\ & (28.0) \end{aligned}$	$\begin{gathered} 3.88 \\ (1.09) \end{gathered}$
$\sigma_{m}(\%)$	uniform $[0,1) \quad 25$	$\begin{array}{r} 50.0 \\ (28.0) \\ \hline \end{array}$	$\begin{gathered} 0.33 \\ (0.02) \end{gathered}$
$\sigma_{\lambda}(\%)$	uniform $[0,1)$	$\begin{array}{r} 50.0 \\ (28.0) \\ \hline \end{array}$	$\begin{aligned} & 31.67 \\ & (5.32) \end{aligned}$
$\sigma_{g}(\%)$	uniform $[0,1)$	$\begin{array}{r} 50.0 \\ (28.0) \\ \hline \end{array}$	$\begin{aligned} & 11.88 \\ & (3.28) \\ & \hline \end{aligned}$

