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Model Comparison

• Assume models 1, 2, ..., I to explain Y T . Let M = {1, 2, ..., I}.

• Let {Θ1,Θ2, ...,ΘI} be associated parameter sets.

• Let
n
f(Y T |θ1, 1), f(Y T |θ2, 2), ..., f(Y T |θI, I)

o
be associated likeli-

hood functions.

• Let {π (θ1|1) ,π (θ2|2) , ...,π (θI|I)} be associated prior distributions.

• Let {π (1) ,π (2) , ...,π (I)} be associated prior about the models.
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Marginal Likelihood and Model Comparison

• Assume PIi=1 π (i) = 1.
• Then Bayes rule implies posterior probabilities for the models:

π
³
i|Y T

´
=

π
³
i, Y T

´
Pk
i=1 π

³
i, Y T

´ = π (i)P (Y T |i)Pk
i=1 π (i)P (Y

T |i).

where P
³
Y T |i

´
=
R
ΘMi

f(Y T |θi, i)π (θi|i) dθi

• This probability is the Marginal Likelihood.
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Why is the Marginal Likelihood a Good Measure to Compare Models?

• Assume i∗ is the true model, then:
π
³
i∗|Y T

´
→ 1 as T →∞.

• Why?

π
³
i∗|Y T

´
=

π (i∗)P (Y T |i∗)Pk
i=1 π (i)P (Y

T |i) =
π (i∗)Pk

i=1 π (i)
P (Y T |i)
P (Y T |i∗)

• Under some regularity conditions, it can shown that:
P (Y T |i)
P (Y T |i∗) → 0 as T →∞ for all i ∈M/ {i∗}
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An Important Point about Priors

• Priors need to be proper. Why?

• If priors are not proper then P
³
Y T |i

´
may not be proper, and it cannot

be interpret as a probability.

• If priors are proper and likelihood is bounded, then the Marginal Like-
lihood exists.

• How do we compute it?
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Approach I — Drawing from the Prior

• Let
n
θij
oM
j=1

be a draw from the prior of model i, π (θi|i).

• By Monte-Carlo integration: P ∗
³
Y T |i

´
= 1
M

PM
j=1 f(Y

T |θij, i).

• Very inefficient if likelihood very informative.

V ar
h
P ∗

³
Y T |i

´i
' 1

M

MX
j=1

³
f(Y T |θij, i)− P ∗

³
Y T |i

´´2
very high.

• Likelihood very informative if likelihood and prior far apart.
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Example I — Drawing from the Prior

• Assume the true likelihood is N (0, 1).

• Let calculate the Marginal Likelihood for different priors.

• N (k, 1) for k = 1, 2, 3, 4, and 5.
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Example I — Drawing from the Prior

Marginal Likelihood
k 1 2 3 4

P ∗
³
Y T |i

´
0.2175 0.1068 0.0308 0.0048

V ar[P ∗
¡
Y T |i¢]0.5

P ∗(Y T |i) 0.6023 1.1129 2.0431 4.0009
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Example II — Drawing from the Prior

• Assume the likelihood is N (0, 1).

• Let us calculate the Marginal Likelihood for different priors.

• N (0, k) for k = 1, 2, 3, 4, and 5.
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Example II — Drawing from the Prior

Marginal Likelihood
k 1 2 3 4

P ∗
³
Y T |i

´
0.2797 0.1731 0.1303 0.0952

V ar[P ∗
¡
Y T |i¢]0.5

P ∗(Y T |i) 0.3971 0.8292 1.1038 1.4166
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Approach II — Important Sampling

• Assume we want to compute P
³
Y T |i

´
.

• Assume ji(θ) is a probability density (not a kernel) which support is
contained in Θi.

• Let P
³
θ|Y T , i

´
∝ f

³
Y T |θ, i

´
π (θ|i), both properly normalized den-

sities (not kernels).

• Let w (θ) = f
³
Y T |θ, i

´
π (θ|i) /ji(θ).
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Approach I I— Important Sampling

• Let {θij}Mj=1 be a draw from ji (θ). It can be shown that:

w∗M =

PM
j=1w

³
θij
´

M
→

Z f ³Y T |θi, i´π (θi|i)
ji (θi)

ji (θi) dθi = P
³
Y T |i

´

• If w (θ) is bounded above, then we also have:

σ∗2 =
PM
m=1[w

³
θij
´
− w∗M ]2

M
→ σ2
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Approach I I— Important Sampling

• The problem is the common drawback of important sampling.

• To find ji (θ) such that w(θ) is bounded and well-behaved.

• Alternative: use the posterior. How?
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Approach III — Harmonic Mean

• Argument due to Gelfand and Dey (1994).

• Let fi(θ) be a p.d.f. which support is contained in Θi.

• Then, it can be proved that:
1

P (Y T |i) =
Z
Θi

fi(θi)

f
³
Y T |θi, i

´
π (θi|i)

P (θi|Y T , i)dθi
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Proof

Since:

P (θi|Y T , i) =
f
³
Y T |θi, i

´
π (θi|i)R

Θi
f
³
Y T |θi, i

´
π (θi|i) dθi

Z
Θi

fi(θi)

f
³
Y T |θi, i

´
π (θi|i)

P (θi|Y T , i)dθi =

=
Z
Θi

fi(θi)

f
³
Y T |θi, i

´
π (θi|i)

f
³
Y T |θi, i

´
π (θi|i)R

Θi
f
³
Y T |θi, i

´
π (θi|i) dθi

dθi =

=

R
Θi
fi(θi)dθiR

Θi
f
³
Y T |θi, i

´
π (θi|i) dθi

=
1R

Θi
f
³
Y T |θi, i

´
π (θi|i) dθi

=
1

P (Y T |i)
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We Need to Find fi(θ) I

As always, we need to find a fi(θ) such that:

fi(θ)

f
³
Y T |θ, i

´
π (θ|i)

bounded above.
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We need to Find fi(θ) II

• The following proposal is due to Geweke (1998).

• Let {θij}Mj=1 be a draw from the posterior.

• Then we can write:

θiM =

PM
j=1 θij

M

and

ΣiM =

PM
j=1(θij − θiM)(θij − θiM)

0

M
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We need to find fi(θ) III

• Define now the following set:

ΘiM = {θ : (θ − θiM)
0Σ−1iM(θ − θiM) ≤ χ21−p(k)}

• Define fi(θ) to be:

fi(θ) =
(2π)−k/2|ΣiM |−1/2 exp[−(θ−θiM)

0Σ−1iM(θ−θiM)
2 ]

p
ψΘiM

(θ)
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We need to check the two conditions:

• Is fi(θ) a p.d.f?

• Does the support of fi(θ) belong to Θi?
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Is fi(θ) a p.d.f?

• Remember that f(θi) equals:

fi(θ) =
(2π)−k/2|ΣiM |−1/2 exp[−(θ−θiM)

0Σ−1iM(θ−θiM)
2 ]

p
ψΘiM

(θ) ≥ 0

• And, since:Z
ΘiM

(2π)−k/2|ΣiM |−1/2 exp[−
(θ − θiM)

0Σ−1iM(θ − θiM)

2
] = p

it does integrates to one.

• Therefore, fi(θ) is a p.d.f
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Does the Support of fi(θ) Belong to Θi?

• The support of fi(θ) is ΘiM .

• In general we cannot be sure of it.

• If Θi = Rki there is no problem. This is the case of unrestricted
parameters. Example: a VAR.

• If Θi ⊂ Rki, maybe there is a problem. If ΘiM Ã Θi, we need to
redefine the domain of integration to be ΘiM ∩Θi.

• As a consequence, we also need to find the new normalization constant
for fi(θ). This is the typical case for DSGE models.
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Recalculating the Constant for f(θi)

• If ΘiM Ã Θi.

• We redefine f(θi) as f∗(θi) in the following way:

f∗i (θ) =
1

p∗
(2π)−k/2|ΣiM |−1/2 exp[−(θ−θiM)

0Σ−1iM(θ−θiM)
2 ]

p
ψΘiM∩Θi(θ)

• Where p∗ = 1 for the case that ΘiM ⊆ Θi.
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Recalculating the Constant for f(θi) II

How do we calculate p∗?

1. Fix N and let j = 0 and i = 1.

2. Draw θi from fi(θ) and let i = i+ 1.

3. If θi ∈ Θi, then j = j + 1 if i < N got to 2, else p∗ = j
N and exit.
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Compute the Marginal Likelihood

• Let
n
θij
oN
j=1

be a draw from the posterior of model i, P (θi|Y T , i).

• Then, we can approximate P (Y T |i) using simple Monte Carlo inte-
gration:

1

P ∗(Y T |i) = N
−1 NX

j=1

fi(θij)

f
³
Y T |θij, i

´
π
³
θij|i

´

• Notice that we have to evaluate fi(θij) for every draw θij from the

posterior.

24



Algorithm

1. Let j = 1.

2. Evaluate fi(θij).

3. Evaluate
fi(θij)

f(Y T |θij,i)π(θij|i)

4. If j ≤M , set j Ã j + 1 and go to 2

5. Calculate 1
P ∗(Y T |i) =M

−1PM
j=1

fi(θij)

f(Y T |θij,i)π(θij|i).
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Example

• Imagine you want to compare how a VAR(1) and a VAR(2) explain

log yt and log it.

• Let us define a VAR(p) model.

xt = C +
pX
`=1

A(`)xt−` + εt

• Where xt = (log yt log it)
0, C is a 2 × 1 matrix, A(`) is a 2 × 2

matrix for all `, and εt is iid normally distributed with mean zero and

variance-covariance matrix Σ.
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Example II

• The likelihood function of a VAR(p) is:

L(xT |Ξ(p)) = (2π)−T |Σ|−T/2 exp−
ε0tΣεt
2

where Ξ(p) = {C,A(1), . . . , A(p)}.

• (Bounded) Flat and independent priors over all the parameters.
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Example III - Drawing from the posterior

1. Set p = 1, j = 1 and set Ξ(1)1 equal to the MLE estimate.

2. Generate Ξ(1)∗j+1 = Ξ(1)j + ξj+1, where ξj+1 is an iid draw from a

normal distribution with mean zero and variance-covariance matrix Σξ

and generate ν from uniform [0, 1].

3. Evaluate α(Ξ(p)∗j+1,Ξ(p)j) =
L(xT |Ξ(p)∗j+1)
L(xT |Ξ(p)j) if α(Ξ(p)

∗
j+1,Ξ(p)j) < ν.

Then Ξ(1)j+1 = Ξ(1)∗j+1, otherwise Ξ(1)j+1 = Ξ(1)j.

4. If j ≤M , set j Ã j + 1 and go to 2, otherwise exit.
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Example IV - Evaluating the Marginal Likelihood

• Since priors are flat, the posterior is proportional to the likelihood
L(xT |Ξ(p)) for all p.

• Repeat the algorithm for p = 2.

• Let {Ξ(1)j}Mj=1 and {Ξ(2)j}Mj=1 be draws from the posterior of the

VAR(1) and VAR(2) respectively.
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Example V - Evaluating the Marginal Likelihood

Calculate:

Ξ(p)M =

PM
j=1Ξ(p)j

M

and

Σ(p)M =

PM
j=1(Ξ(p)j − Ξ(p)M)(Ξ(p)j − Ξ(p)M)

0

M

for p = 1 and p = 2.
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Example VI - Evaluating the Marginal Likelihood

• Calculate {fi(Ξ(p)j)}Mj=1 for p = 1 and p = 2.

• Calculate:
1

P ∗(xT |p) =M
−1 MX

j=1

fi(Ξ(p)j)

L
³
xT |Ξ(p)j

´
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A Problem Evaluating the Marginal Likelihood

• Sometimes, L
³
xT |Ξ(p)j

´
is a to BIG number.

• For example: The log likelihood of the VAR(1) evaluated at the MLE
equals 1, 625.23. This means that the likelihood equals exp1,625.23. In

Matlab, exp1,625.23 = Inf .

• This implies that:
1

P ∗(xT |p) =M
−1 MX

j=1

fi(Ξ(p)j)

L
³
xT |Ξ(p)j

´ = 0
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Solving the Problem

• In general, we want to compute
1

P ∗(Y T |i) =M
−1 MX

j=1

fi(θij)

f
³
Y T |θij, i

´
π
³
θij|i

´

• Instead of evaluating f
³
Y T |θij, i

´
and π

³
θij|i

´
, we evaluate log f

³
Y T |θij, i

´
and log π

³
θij|i

´
for all {θij}Mj=1 and for each of the models i.

• For each i, we compute ℘i = maxj{log f
³
Y T |θij, i

´
+ log π

³
θij|i

´
}.

• Then, we compute ℘ = maxi{℘i}.
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• Compute:
log ef ³Y T |θij, i´ = log f ³Y T |θij, i´+ log π ³θij|i´− ℘.

• Compute ef ³Y T |θij, i´ = exp log ef ³Y T |θij, i´.
• Finally, compute

1eP (Y T |i) =M−1 MX
j=1

fi(θij)ef ³Y T |θij, i´

• And note that
log eP (Y T |i)− log eP (Y T |s) = logP ∗(Y T |i)− logP ∗(Y T |s)
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• Why?

• Note that
1eP (Y T |i) =M−1 MX

j=1

fi(θij)ef ³Y T |θij, i´ =M−1 MX
j=1

fi(θij)

f
¡
Y T |θij,i

¢
π(θij|i)

℘

• Therefore
1eP (Y T |i) = ℘

P ∗(Y T |i)
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