Model Comparison

Jesús Fernández-Villaverde University of Pennsylvania Model Comparison

- Assume models 1, 2, ..., I to explain Y^T . Let $M = \{1, 2, ..., I\}$.
- Let $\{\Theta_1, \Theta_2, ..., \Theta_I\}$ be associated parameter sets.
- Let $\{f(Y^T|\theta_1, 1), f(Y^T|\theta_2, 2), ..., f(Y^T|\theta_I, I)\}$ be associated likelihood functions.
- Let $\{\pi(\theta_1|1), \pi(\theta_2|2), ..., \pi(\theta_I|I)\}\$ be associated prior distributions.
- Let $\{\pi(1), \pi(2), ..., \pi(I)\}$ be associated prior about the models.

Marginal Likelihood and Model Comparison

• Assume
$$\sum_{i=1}^{I} \pi(i) = 1$$
.

• Then Bayes rule implies posterior probabilities for the models:

$$\pi\left(i|Y^{T}\right) = \frac{\pi\left(i,Y^{T}\right)}{\sum_{i=1}^{k} \pi\left(i,Y^{T}\right)} = \frac{\pi\left(i\right)P(Y^{T}|i)}{\sum_{i=1}^{k} \pi\left(i\right)P(Y^{T}|i)}.$$

where $P\left(Y^T|i\right) = \int_{\Theta_{Mi}} f(Y^T|\theta_i, i) \pi\left(\theta_i|i\right) d\theta_i$

• This probability is the Marginal Likelihood.

Why is the Marginal Likelihood a Good Measure to Compare Models?

• Assume i^* is the true model, then:

$$\pi\left(i^*|Y^T
ight)
ightarrow$$
1 as $T
ightarrow\infty$.

• Why?

$$\pi \left(i^* | Y^T \right) = \frac{\pi \left(i^* \right) P(Y^T | i^*)}{\sum_{i=1}^k \pi \left(i \right) P(Y^T | i)} = \frac{\pi \left(i^* \right)}{\sum_{i=1}^k \pi \left(i \right) \frac{P(Y^T | i)}{P(Y^T | i^*)}}$$

• Under some regularity conditions, it can shown that:

$$rac{P(Y^T|i)}{P(Y^T|i^*)}
ightarrow \mathsf{0} ext{ as } T
ightarrow \infty ext{ for all } i \in M/\left\{i^*
ight\}$$

An Important Point about Priors

- Priors need to be proper. Why?
- If priors are not proper then $P\left(Y^T|i\right)$ may not be proper, and it cannot be interpret as a probability.
- If priors are proper and likelihood is bounded, then the Marginal Likelihood exists.
- How do we compute it?

Approach I – Drawing from the Prior

- Let $\{\theta_{ij}\}_{j=1}^{M}$ be a draw from the prior of model *i*, $\pi(\theta_i|i)$.
- By Monte-Carlo integration: $P^*(Y^T|i) = \frac{1}{M} \sum_{j=1}^M f(Y^T|\theta_{ij}, i).$
- Very inefficient if likelihood very informative.

$$Var\left[P^*\left(Y^T|i\right)\right] \simeq \frac{1}{M} \sum_{j=1}^M \left(f(Y^T|\theta_{ij},i) - P^*\left(Y^T|i\right)\right)^2 \text{ very high.}$$

• Likelihood very informative if likelihood and prior far apart.

Example I – Drawing from the Prior

- Assume the true likelihood is $\mathcal{N}(0,1)$.
- Let calculate the Marginal Likelihood for different priors.
- $\mathcal{N}(k, 1)$ for k = 1, 2, 3, 4, and 5.

Example I – Drawing from the Prior

Marginal Likelihood

k	1	2	3	4
$P^*\left(Y^T i ight)$	0.2175	0.1068	0.0308	0.0048
$\frac{Var[P^*(Y^T i)]^{0.5}}{P^*(Y^T i)}$	0.6023	1.1129	2.0431	4.0009

Example II – Drawing from the Prior

- Assume the likelihood is $\mathcal{N}(0,1)$.
- Let us calculate the Marginal Likelihood for different priors.
- $\mathcal{N}(0,k)$ for k = 1, 2, 3, 4, and 5.

Example II – Drawing from the Prior

1 3 k2 4 $Y^T | i^{\gamma}$ P^* 0.1731 0.1303 0.2797 0.0952 10.5 $Var[P^*($ Y'i0.3971 0.8292 1.1038 1.4166 P^* Y^{T} |i|

Marginal Likelihood

Approach II – Important Sampling

- Assume we want to compute $P(Y^T|i)$.
- Assume $j_i(\theta)$ is a probability density (not a kernel) which support is contained in Θ_i .
- Let $P(\theta|Y^T, i) \propto f(Y^T|\theta, i) \pi(\theta|i)$, both properly normalized densities (not kernels).
- Let $w(\theta) = f(Y^T|\theta, i) \pi(\theta|i) / j_i(\theta)$.

Approach I I– Important Sampling

• Let
$$\{\theta_{ij}\}_{j=1}^{M}$$
 be a draw from $j_i(\theta)$. It can be shown that:
 $w_M^* = \frac{\sum_{j=1}^{M} w\left(\theta_{ij}\right)}{M} \to \int \frac{f\left(Y^T | \theta_i, i\right) \pi\left(\theta_i | i\right)}{j_i(\theta_i)} j_i(\theta_i) d\theta_i = P\left(Y^T | i\right)$

• If $w(\theta)$ is bounded above, then we also have:

$$\sigma^{*2} = \frac{\sum_{m=1}^{M} [w\left(\theta_{ij}\right) - w_M^*]^2}{M} \to \sigma^2$$

Approach I I– Important Sampling

- The problem is the common drawback of important sampling.
- To find $j_i(\theta)$ such that $w(\theta)$ is bounded and well-behaved.
- Alternative: use the posterior. How?

Approach III – Harmonic Mean

- Argument due to Gelfand and Dey (1994).
- Let $f_i(\theta)$ be a p.d.f. which support is contained in Θ_i .
- Then, it can be proved that:

$$\frac{1}{P(Y^{T}|i)} = \int_{\Theta_{i}} \frac{f_{i}(\theta_{i})}{f\left(Y^{T}|\theta_{i},i\right)\pi\left(\theta_{i}|i\right)} P(\theta_{i}|Y^{T},i) d\theta_{i}$$

Proof

Since:

$$P(\theta_i | Y^T, i) = \frac{f\left(Y^T | \theta_i, i\right) \pi\left(\theta_i | i\right)}{\int_{\Theta_i} f\left(Y^T | \theta_i, i\right) \pi\left(\theta_i | i\right) d\theta_i}$$

$$\begin{split} \int_{\Theta_i} \frac{f_i(\theta_i)}{f\left(Y^T|\theta_i,i\right)\pi\left(\theta_i|i\right)} P(\theta_i|Y^T,i)d\theta_i = \\ &= \int_{\Theta_i} \frac{f_i(\theta_i)}{f\left(Y^T|\theta_i,i\right)\pi\left(\theta_i|i\right)} \frac{f\left(Y^T|\theta_i,i\right)\pi\left(\theta_i|i\right)}{\int_{\Theta_i} f\left(Y^T|\theta_i,i\right)\pi\left(\theta_i|i\right)d\theta_i} d\theta_i = \\ &= \frac{\int_{\Theta_i} f_i(\theta_i)d\theta_i}{\int_{\Theta_i} f\left(Y^T|\theta_i,i\right)\pi\left(\theta_i|i\right)d\theta_i} = \frac{1}{\int_{\Theta_i} f\left(Y^T|\theta_i,i\right)\pi\left(\theta_i|i\right)d\theta_i} = \frac{1}{P(Y^T|i)} \end{split}$$

We Need to Find $f_i(\theta)$ I

As always, we need to find a $f_i(\theta)$ such that:

$$rac{f_i(heta)}{f\left(Y^T| heta,i
ight)\pi\left(heta|i
ight)}$$

bounded above.

We need to Find $f_i(\theta)$ II

- The following proposal is due to Geweke (1998).
- Let $\{\theta_{ij}\}_{j=1}^M$ be a draw from the posterior.
- Then we can write:

$$\theta_{iM} = \frac{\sum_{j=1}^{M} \theta_{ij}}{M}$$

and

$$\boldsymbol{\Sigma}_{iM} = \frac{\sum_{j=1}^{M} (\theta_{ij} - \theta_{iM}) (\theta_{ij} - \theta_{iM})'}{M}$$

We need to find $f_i(\theta)$ III

• Define now the following set:

$$\Theta_{iM} = \{ heta: (heta - heta_{iM})' \Sigma_{iM}^{-1} (heta - heta_{iM}) \leq \chi_{1-p}^2(k) \}$$

• Define $f_i(\theta)$ to be:

$$f_i(\theta) = \frac{(2\pi)^{-k/2} |\boldsymbol{\Sigma}_{iM}|^{-1/2} \exp[-\frac{(\theta - \theta_{iM})' \boldsymbol{\Sigma}_{iM}^{-1} (\theta - \theta_{iM})}{2}]}{p} \psi_{\Theta_{iM}}(\theta)$$

We need to check the two conditions:

- Is $f_i(\theta)$ a p.d.f?
- Does the support of $f_i(\theta)$ belong to Θ_i ?

Is $f_i(\theta)$ a p.d.f?

• Remember that $f(\theta_i)$ equals:

$$f_i(\theta) = \frac{(2\pi)^{-k/2} |\boldsymbol{\Sigma}_{iM}|^{-1/2} \exp[-\frac{(\theta - \theta_{iM})' \boldsymbol{\Sigma}_{iM}^{-1} (\theta - \theta_{iM})}{2}]}{p} \psi_{\Theta_{iM}}(\theta) \ge 0$$

• And, since:

$$\int_{\Theta_{iM}} (2\pi)^{-k/2} |\boldsymbol{\Sigma}_{iM}|^{-1/2} \exp[-\frac{(\theta - \theta_{iM})' \boldsymbol{\Sigma}_{iM}^{-1} (\theta - \theta_{iM})}{2}] = p$$

it does integrates to one.

• Therefore, $f_i(\theta)$ is a p.d.f

Does the Support of $f_i(\theta)$ Belong to Θ_i ?

- The support of $f_i(\theta)$ is Θ_{iM} .
- In general we cannot be sure of it.
- If $\Theta_i = R^{k_i}$ there is no problem. This is the case of unrestricted parameters. Example: a VAR.
- If $\Theta_i \subset R^{k_i}$, maybe there is a problem. If $\Theta_{iM} \subsetneq \Theta_i$, we need to redefine the domain of integration to be $\Theta_{iM} \cap \Theta_i$.
- As a consequence, we also need to find the new normalization constant for $f_i(\theta)$. This is the typical case for DSGE models.

Recalculating the Constant for $f(\theta_i)$

- If $\Theta_{iM} \subsetneq \Theta_i$.
- We redefine $f(\theta_i)$ as $f^*(\theta_i)$ in the following way:

$$f_i^*(\theta) = \frac{1}{p^*} \frac{(2\pi)^{-k/2} |\boldsymbol{\Sigma}_{iM}|^{-1/2} \exp[-\frac{(\theta - \theta_{iM})' \boldsymbol{\Sigma}_{iM}^{-1} (\theta - \theta_{iM})}{2}]}{p} \psi_{\Theta_{iM} \cap \Theta_i}(\theta)$$

• Where $p^* = 1$ for the case that $\Theta_{iM} \subseteq \Theta_i$.

Recalculating the Constant for $f(\theta_i)$ II

How do we calculate p^* ?

1. Fix N and let j = 0 and i = 1.

2. Draw θ_i from $f_i(\theta)$ and let i = i + 1.

3. If $\theta_i \in \Theta_i$, then j = j + 1 if i < N got to 2, else $p^* = \frac{j}{N}$ and exit.

Compute the Marginal Likelihood

- Let $\{\theta_{ij}\}_{j=1}^{N}$ be a draw from the posterior of model *i*, $P(\theta_i|Y^T, i)$.
- Then, we can approximate $P(Y^T|i)$ using simple Monte Carlo integration:

$$\frac{1}{P^*(Y^T|i)} = N^{-1} \sum_{j=1}^N \frac{f_i(\theta_{ij})}{f\left(Y^T|\theta_{ij}, i\right) \pi\left(\theta_{ij}|i\right)}$$

• Notice that we have to evaluate $f_i(\theta_{ij})$ for every draw θ_{ij} from the posterior.

Algorithm

1. Let j = 1.

2. Evaluate $f_i(\theta_{ij})$.

3. Evaluate
$$rac{f_i(heta_{ij})}{f(Y^T| heta_{ij},i)\pi(heta_{ij}|i)}$$

4. If
$$j \leq M$$
, set $j \rightsquigarrow j+1$ and go to 2

5. Calculate
$$\frac{1}{P^*(Y^T|i)} = M^{-1} \sum_{j=1}^M \frac{f_i(\theta_{ij})}{f(Y^T|\theta_{ij},i)\pi(\theta_{ij}|i)}$$
.

Example

- Imagine you want to compare how a VAR(1) and a VAR(2) explain $\log y_t$ and $\log i_t$.
- Let us define a VAR(p) model.

$$x_t = C + \sum_{\ell=1}^p A(\ell) x_{t-\ell} + \varepsilon_t$$

Where x_t = (log y_t log i_t)', C is a 2 × 1 matrix, A(l) is a 2 × 2 matrix for all l, and ε_t is iid normally distributed with mean zero and variance-covariance matrix Σ.

Example II

• The likelihood function of a VAR(p) is:

$$L(x^T|\Xi(p)) = (2\pi)^{-T}|\mathbf{\Sigma}|^{-T/2}\exp^{-\frac{\varepsilon'_t \mathbf{\Sigma} \varepsilon_t}{2}}$$

where $\Xi(p) = \{C, A(1), ..., A(p)\}.$

• (Bounded) Flat and independent priors over all the parameters.

Example III - Drawing from the posterior

1. Set p = 1, j = 1 and set $\Xi(1)_1$ equal to the MLE estimate.

Generate Ξ(1)^{*}_{j+1} = Ξ(1)_j + ξ_{j+1}, where ξ_{j+1} is an iid draw from a normal distribution with mean zero and variance-covariance matrix Σ_ξ and generate ν from uniform [0, 1].

3. Evaluate
$$\alpha(\Xi(p)_{j+1}^*, \Xi(p)_j) = \frac{L(x^T | \Xi(p)_{j+1}^*)}{L(x^T | \Xi(p)_j)}$$
 if $\alpha(\Xi(p)_{j+1}^*, \Xi(p)_j) < \nu$.
Then $\Xi(1)_{j+1} = \Xi(1)_{j+1}^*$, otherwise $\Xi(1)_{j+1} = \Xi(1)_j$.

4. If $j \leq M$, set $j \rightsquigarrow j+1$ and go to 2, otherwise exit.

Example IV - Evaluating the Marginal Likelihood

- Since priors are flat, the posterior is proportional to the likelihood $L(x^T|\Xi(p))$ for all p.
- Repeat the algorithm for p = 2.
- Let $\{\Xi(1)_j\}_{j=1}^M$ and $\{\Xi(2)_j\}_{j=1}^M$ be draws from the posterior of the VAR(1) and VAR(2) respectively.

Example V - Evaluating the Marginal Likelihood

Calculate:

$$\Xi(p)_M = \frac{\sum_{j=1}^M \Xi(p)_j}{M}$$

 and

$$\Sigma(p)_M = \frac{\sum_{j=1}^M (\Xi(p)_j - \Xi(p)_M) (\Xi(p)_j - \Xi(p)_M)'}{M}$$

for p = 1 and p = 2.

Example VI - Evaluating the Marginal Likelihood

- Calculate ${f_i(\Xi(p)_j)}_{j=1}^M$ for p = 1 and p = 2.
- Calculate:

$$\frac{1}{P^*(x^T|p)} = M^{-1} \sum_{j=1}^M \frac{f_i(\Xi(p)_j)}{L\left(x^T|\Xi(p)_j\right)}$$

A Problem Evaluating the Marginal Likelihood

- Sometimes, $L\left(x^T|\Xi(p)_j\right)$ is a to BIG number.
- For example: The log likelihood of the VAR(1) evaluated at the MLE equals 1,625.23. This means that the likelihood equals $exp^{1,625.23}$. In Matlab, $exp^{1,625.23} = Inf$.
- This implies that:

$$\frac{1}{P^*(x^T|p)} = M^{-1} \sum_{j=1}^M \frac{f_i(\Xi(p)_j)}{L\left(x^T|\Xi(p)_j\right)} = 0$$

Solving the Problem

• In general, we want to compute

$$\frac{1}{P^*(Y^T|i)} = M^{-1} \sum_{j=1}^M \frac{f_i(\theta_{ij})}{f\left(Y^T|\theta_{ij}, i\right) \pi\left(\theta_{ij}|i\right)}$$

- Instead of evaluating $f\left(Y^T|\theta_{ij},i\right)$ and $\pi\left(\theta_{ij}|i\right)$, we evaluate $\log f\left(Y^T|\theta_{ij},i\right)$ and $\log \pi\left(\theta_{ij}|i\right)$ for all $\{\theta_{ij}\}_{j=1}^M$ and for each of the models i.
- For each *i*, we compute $\wp_i = \max_j \{\log f\left(Y^T | \theta_{ij}, i\right) + \log \pi\left(\theta_{ij} | i\right)\}.$
- Then, we compute $\wp = \max_i \{\wp_i\}$.

• Compute:

$$\log \tilde{f}\left(Y^T | \theta_{ij}, i\right) = \log f\left(Y^T | \theta_{ij}, i\right) + \log \pi \left(\theta_{ij} | i\right) - \wp.$$

• Compute

$$\widetilde{f}\left(Y^T | \boldsymbol{\theta}_{ij}, i\right) = \exp\log\widetilde{f}\left(Y^T | \boldsymbol{\theta}_{ij}, i\right).$$

• Finally, compute

$$\frac{1}{\widetilde{P}(Y^T|i)} = M^{-1} \sum_{j=1}^{M} \frac{f_i(\theta_{ij})}{\widetilde{f}\left(Y^T|\theta_{ij}, i\right)}$$

• And note that

$$\log \widetilde{P}(Y^T|i) - \log \widetilde{P}(Y^T|s) = \log P^*(Y^T|i) - \log P^*(Y^T|s)$$

- Why?
- Note that

$$\frac{1}{\widetilde{P}(Y^{T}|i)} = M^{-1} \sum_{j=1}^{M} \frac{f_{i}(\theta_{ij})}{\widetilde{f}\left(Y^{T}|\theta_{ij},i\right)} = M^{-1} \sum_{j=1}^{M} \frac{f_{i}(\theta_{ij})}{\frac{f\left(Y^{T}|\theta_{ij},i\right)\pi\left(\theta_{ij}|i\right)}{\wp}}$$

• Therefore

$$rac{1}{\widetilde{P}(Y^T|i)} = rac{\wp}{P^*(Y^T|i)}$$