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Model Comparison
e Assume models 1,2, ..., I to explain Y1 Let M = {1, 2,..., I}.
o Let {©1,0,,...,0;} be associated parameter sets.

o Let {f(YT|91,1),f(YT|92,2),...,f(YT|61,I)} be associated likeli-
hood functions.

o Let {7 (01]1),n (62|2),...,7(07|])} be associated prior distributions.

o Let {w(1),nw(2),...,7(I)} be associated prior about the models.
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Marginal Likelihood and Model Comparison

o Assume ;_; 7 (i) = 1.

e Then Bayes rule implies posterior probabilities for the models:

r iy T) = ™ (i, Y7) __m@PyE)
Shaw(i,YT)  Shyn @) P(YTh)

where P (YT|i) = [g,,. F(Y7T105, )7 (6;]3) db;

e This probability is the Marginal Likelihood.
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Why is the Marginal Likelihood a Good Measure to Compare Models?

e Assume ¢* is the true model, then:

iy (i*|YT) — 1l as T — oo.

e Why?
4 (%) P(Y"]i*) m (%)
m(YT) = o - = -
SEarOPOT 5,2 ) 22T

e Under some regularity conditions, it can shown that:

P(YT|?)

. . .k
POYTI) OasT — oo foralli € M/ {i*}




An Important Point about Priors
e Priors need to be proper. Why?

e If priors are not proper then P (YTl’i) may not be proper, and it cannot
be interpret as a probability.

e If priors are proper and likelihood is bounded, then the Marginal Like-
lihood exists.

e How do we compute it?



Approach | — Drawing from the Prior

M
o Let {eij}jzl be a draw from the prior of model i, 7 (0;|7).

e By Monte-Carlo integration: P* (YT| ) M Z ~ 1 f(YT|HZ],z)
e Very inefficient if likelihood very informative.

M
Var |[P* (YT]i)| ~ %;::1 (£(Y7T1655,4) — P* (YT|7L))2 very high.

e Likelihood very informative if likelihood and prior far apart.
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Example | — Drawing from the Prior

e Assume the true likelihood is N'(0,1).

e Let calculate the Marginal Likelihood for different priors.

e N(k,1) for k=1,2,3,4, and 5.



Example | — Drawing from the Prior

Marginal Likelihood

k 1 2 3 4

P* (YTli) 0.2175 | 0.1068 | 0.0308 | 0.0048

Var[P* (YT|Z')]0'5
P*(YT|7Z)

0.6023 | 1.1129 | 2.0431 | 4.0009




Example Il — Drawing from the Prior

e Assume the likelihood is A (0, 1).

e Let us calculate the Marginal Likelihood for different priors.

e NV(0,k) for k=1,2,3,4, and 5.



Example |l — Drawing from the Prior

Marginal Likelihood

k 1 2 3 4

P*(YT}i) ]0.2797 | 0.1731 | 0.1303 | 0.0952

Var[P* (YT|Z')]0'5
P*(YT|7Z)

0.3971 | 0.8292 | 1.1038 | 1.4166
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Approach Il — Important Sampling
e Assume we want to compute P (YT|7L>.

e Assume j;(0) is a probability density (not a kernel) which support is
contained in ©;.

o Let P <9|YT,i) x f (YT|9,7L) 7 (0|i), both properly normalized den-
sities (not kernels).

o Let w(0) = f (Y7T10,4)  (6]i) /5:(6).
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Approach | |- Important Sampling

o Let {Qij}f;'\i1 be a draw from j; (0). It can be shown that:

*
’lUM M

>M 1w (6;5) £ (YT105,) 7 (6]3) |
g ’ >/ 502 Ji (07) db; = P(YT|Z>

e If w(6) is bounded above, then we also have:

M 2
o Tl (09) — Wi
M

o
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Approach | |- Important Sampling

e The problem is the common drawback of important sampling.

e To find j; (0) such that w(6) is bounded and well-behaved.

e Alternative: use the posterior. How?
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Approach IlIl — Harmonic Mean

e Argument due to Gelfand and Dey (1994).

o Let f;(0) be a p.d.f. which support is contained in ©;.

e Then, it can be proved that:

1 _ 1i(05) T A,
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Proof

Since:
£ (Y71034) 7 (63]3)

Po;|YT, i) =
i Jo, f (YT103,7) m (651i) d

fi(0;) WT g
/@i f (YT|97577:> 7T(97;|i)P(92|Y ,1)do;

_ fi(0;) i (YT‘ei’i> ™ (0if4) do; =
O; f (YT|97;, ’I,) T (91|Z) f@i f (YT|97§7 7/) T (92‘7’) do; Z
Jo, fi(0:)df; 1 1

o,/ (YT16:, i) m (8ili)d6;  Jo,  (YT16:,7) m (0i1i) d6;  P(YTI)
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We Need to Find f;(6) |

As always, we need to find a f;(6) such that:

fi(0)

£ (YT16,4) m (6]3)

bounded above.
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We need to Find f;(0) Il
e The following proposal is due to Geweke (1998).
o Let {Hij}j]\il be a draw from the posterior.

e [ hen we can write:

and

> 311855 — Osn) (655 — Oinr)
M

iy =
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We need to find f;(0) I

e Define now the following set:

O = {0: (0 — 0;0s) T;37(0 — 0ins) < x1_,(k)}

e Define f;(0) to be:

(2m)F/2 |50 712 exp]— (H_HiM)/zé_&(e_eiM)]

fi(0) = Yo, (0)

p
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We need to check the two conditions:

o Is fz(e) d p.d.f?

e Does the support of f;(6) belong to ©;7
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Is f;(0) a p.d.f?

e Remember that f(6;) equals:

k25 —1/2 o (0=0inr)' T (0—04nr)
i) = Gl e E—N T

e And, since:

(6 — 0;01) Z;77(0 — 511)
2

| @m)Rim 72 expl -
Oim

it does integrates to one.

=p

e Therefore, f;(0) is a p.d.f
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Does the Support of f;(6) Belong to ©,7
e The support of f;(0) is ©;),.
e In general we cannot be sure of it.

o If ©, = RFi there is no problem. This is the case of unrestricted
parameters. Example: a VAR.

o If ©, C RFi, maybe there is a problem. If ©,3, ¢ ©;, we need to
redefine the domain of integration to be ©,;, N ©;.

e As a consequence, we also need to find the new normalization constant
for f;(0). This is the typical case for DSGE models.
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Recalculating the Constant for f(6;)
o If O,y & O;.

o We redefine f(6;) as f*(6;) in the following way:

1 (2m)F/2|5;p 712 exp[—(e_eiM)/zﬁ'_]&(e_eiM)]

p* p

e Where p* = 1 for the case that ©;;; C ©,.
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Recalculating the Constant for f(6;) I

How do we calculate p*?
1. Fix N and let 7 =0 and 7 = 1.
2. Draw 6; from f;(0) and let i =4 4 1.

3. 1f 0, € ©;, then j =5+ 1if i < N got to 2, else p* = % and exit.
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Compute the Marginal Likelihood

N
o Let {eij}jzl be a draw from the posterior of model i, P(6;|Y", ).

e Then, we can approximate P(Y71|3) using simple Monte Carlo inte-
gration:

1 . fi(045)
PO S T (Y T0y.0) 7 (8)

e Notice that we have to evaluate f;(0;;) for every draw 6;; from the
posterior.
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Algorithm

1. Let 5 = 1.

2. Evaluate fz(ew)

fi(0:5)
F(Y110;5,0)m(0:5]i)

3. Evaluate
4. If 3 < M, set 3~ 53+ 1 and go to 2

5. Calculate IZhaiDie M ijl f(YT|0ij>ijy7T(0ij’i).
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Example

e Imagine you want to compare how a VAR(1) and a VAR(2) explain
log y; and log ;.

e Let us define a VAR(p) model.

p
e = C + Z A(@)aﬁt_g + &t
/=1

e Where z; = (logy;logi;)’, C is a 2 x 1 matrix, A(£) is a 2 x 2
matrix for all £, and &; is iid normally distributed with mean zero and

variance-covariance matrix 2.
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Example 1l

e The likelihood function of a VAR(p) is:

eéZst

L(zT|=(p)) = @) LI TP exp 2

where =(p) = {C, A(1),..., A(p)}.

e (Bounded) Flat and independent priors over all the parameters.
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Example Il - Drawing from the posterior
1. Set p=1, j =1 and set =(1); equal to the MLE estimate.

2. Generate E(l)ﬁ_1 =(1); +&j4+1, where £, 1 is an iid draw from a
normal distribution with mean zero and variance-covariance matrix Zf
and generate v from uniform [0, 1].

L(zT|=(p)*
3. Evaluate a(Z()}1, 2(0);) = o if a(E(0); 1 Z(0))) < v

Then =(1);41 = =(1)7;, otherwise =(1),41 = =(1);.

4. If j < M, set 3 ~» 7+ 1 and go to 2, otherwise exit.
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Example IV - Evaluating the Marginal Likelihood

e Since priors are flat, the posterior is proportional to the likelihood
L(zT|=(p)) for all p.

e Repeat the algorithm for p = 2.

o Let {=(1); j]\il and {E(Q)j}j]\/i1 be draws from the posterior of the
VAR(1) and VAR(2) respectively.
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Example V - Evaluating the Marginal Likelihood

Calculate:
M _ =(p).
=(p)m = Z]:}w ();
and
£ (o) — Zam1E®) — Z)(EE); — =)

M

forp=1and p = 2.
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Example VI - Evaluating the Marginal Likelihood
e Calculate {fi(E(p)j)}é\il forp=1and p = 2.

e Calculate:

1 -1 M fi(E(p)j)
=M
P*(z!|p) J; L (2T |=(p);)
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A Problem Evaluating the Marginal Likelihood
e Sometimes, L (xTE(p)j) is a to BIG number.

e For example: The log likelihood of the VAR(1) evaluated at the MLE

equals 1,625.23. This means that the likelihood equals exp1:922-23 |

Matlab, expl02223 = Inf.

n

e This implies that:

1 —1 M fz’(E(p)j)
— M =0
P*(z'|p) J; L (2T |=(p);)
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Solving the Problem

e In general, we want to compute

1 = Z fi(05)
PH(YTli) 21 (YT1055,4) 7 (05511)

e Instead of evaluating f (YT|6’Z], > and ( 7J‘7|z) we evaluate log f (YT|6’Z-]-,7Z)
and Iog7r( 7,]|7,) for all {ng} ~ 1 and for each of the models <.

e For each i, we compute p; = max;{log f (YT|9ij, z) + log 7 (023|z>}

e Then, we compute p = max;{g;}.
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Compute:

Iogf(YT|9w, ) Iogf(YTWw, )—|—|og7r<9ij|i) — e

Compute

(YT|HZ], > — explog f (YT|9,LJ, )

Finally, compute

1
P(YTl)

And note that

log P(Y1|3) — log P(Y'|s) =

34

log P*(Y1|i) — log P*(Y71s)



e Why?

e Note that

L % fi(035) 11 % fi(0ij)

P(YTli) j=1 f(YTWz'j,’i) 27 LV T1055,8)m(0351)

e [ herefore

P(YTli)  P*(YT)
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