Model Comparison

Jesús Fernández-Villaverde University of Pennsylvania

Model Comparison

- Assume models $1,2, \ldots, I$ to explain Y^{T}. Let $M=\{1,2, \ldots, I\}$.
- Let $\left\{\Theta_{1}, \Theta_{2}, \ldots, \Theta_{I}\right\}$ be associated parameter sets.
- Let $\left\{f\left(Y^{T} \mid \theta_{1}, 1\right), f\left(Y^{T} \mid \theta_{2}, 2\right), \ldots, f\left(Y^{T} \mid \theta_{I}, I\right)\right\}$ be associated likelihood functions.
- Let $\left\{\pi\left(\theta_{1} \mid 1\right), \pi\left(\theta_{2} \mid 2\right), \ldots, \pi\left(\theta_{I} \mid I\right)\right\}$ be associated prior distributions.
- Let $\{\pi(1), \pi(2), \ldots, \pi(I)\}$ be associated prior about the models.

Marginal Likelihood and Model Comparison

- Assume $\sum_{i=1}^{I} \pi(i)=1$.
- Then Bayes rule implies posterior probabilities for the models:

$$
\pi\left(i \mid Y^{T}\right)=\frac{\pi\left(i, Y^{T}\right)}{\sum_{i=1}^{k} \pi\left(i, Y^{T}\right)}=\frac{\pi(i) P\left(Y^{T} \mid i\right)}{\sum_{i=1}^{k} \pi(i) P\left(Y^{T} \mid i\right)}
$$

where $P\left(Y^{T} \mid i\right)=\int_{\Theta_{M i}} f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right) d \theta_{i}$

- This probability is the Marginal Likelihood.

Why is the Marginal Likelihood a Good Measure to Compare Models?

- Assume i^{*} is the true model, then:

$$
\pi\left(i^{*} \mid Y^{T}\right) \rightarrow 1 \text { as } T \rightarrow \infty
$$

- Why?

$$
\pi\left(i^{*} \mid Y^{T}\right)=\frac{\pi\left(i^{*}\right) P\left(Y^{T} \mid i^{*}\right)}{\sum_{i=1}^{k} \pi(i) P\left(Y^{T} \mid i\right)}=\frac{\pi\left(i^{*}\right)}{\sum_{i=1}^{k} \pi(i) \frac{P\left(Y^{T} \mid i\right)}{P\left(Y^{T} \mid i^{*}\right)}}
$$

- Under some regularity conditions, it can shown that:

$$
\frac{P\left(Y^{T} \mid i\right)}{P\left(Y^{T} \mid i^{*}\right)} \rightarrow 0 \text { as } T \rightarrow \infty \text { for all } i \in M /\left\{i^{*}\right\}
$$

An Important Point about Priors

- Priors need to be proper. Why?
- If priors are not proper then $P\left(Y^{T} \mid i\right)$ may not be proper, and it cannot be interpret as a probability.
- If priors are proper and likelihood is bounded, then the Marginal Likelihood exists.
- How do we compute it?

Approach I - Drawing from the Prior

- Let $\left\{\theta_{i j}\right\}_{j=1}^{M}$ be a draw from the prior of model $i, \pi\left(\theta_{i} \mid i\right)$.
- By Monte-Carlo integration: $P^{*}\left(Y^{T} \mid i\right)=\frac{1}{M} \sum_{j=1}^{M} f\left(Y^{T} \mid \theta_{i j}, i\right)$.
- Very inefficient if likelihood very informative.

$$
\operatorname{Var}\left[P^{*}\left(Y^{T} \mid i\right)\right] \simeq \frac{1}{M} \sum_{j=1}^{M}\left(f\left(Y^{T} \mid \theta_{i j}, i\right)-P^{*}\left(Y^{T} \mid i\right)\right)^{2} \text { very high. }
$$

- Likelihood very informative if likelihood and prior far apart.

Example I - Drawing from the Prior

- Assume the true likelihood is $\mathcal{N}(0,1)$.
- Let calculate the Marginal Likelihood for different priors.
- $\mathcal{N}(k, 1)$ for $k=1,2,3,4$, and 5.

Example I - Drawing from the Prior
Marginal Likelihood

k	1	2	3	4
$P^{*}\left(Y^{T} \mid i\right)$	0.2175	0.1068	0.0308	0.0048
$\frac{\operatorname{Var}\left[P^{*}\left(Y^{T} \mid i\right)\right]^{0.5}}{P^{*}\left(Y^{T} \mid i\right)}$	0.6023	1.1129	2.0431	4.0009

Example II - Drawing from the Prior

- Assume the likelihood is $\mathcal{N}(0,1)$.
- Let us calculate the Marginal Likelihood for different priors.
- $\mathcal{N}(0, k)$ for $k=1,2,3,4$, and 5 .

Example II - Drawing from the Prior
Marginal Likelihood

k	1	2	3	4
$P^{*}\left(Y^{T} \mid i\right)$	0.2797	0.1731	0.1303	0.0952
$\frac{\operatorname{Var}\left[P^{*}\left(Y^{T} \mid i\right)\right]^{0.5}}{P^{*}\left(Y^{T} \mid i\right)}$	0.3971	0.8292	1.1038	1.4166

Approach II - Important Sampling

- Assume we want to compute $P\left(Y^{T} \mid i\right)$.
- Assume $j_{i}(\theta)$ is a probability density (not a kernel) which support is contained in Θ_{i}.
- Let $P\left(\theta \mid Y^{T}, i\right) \propto f\left(Y^{T} \mid \theta, i\right) \pi(\theta \mid i)$, both properly normalized densities (not kernels).
- Let $w(\theta)=f\left(Y^{T} \mid \theta, i\right) \pi(\theta \mid i) / j_{i}(\theta)$.

Approach I I- Important Sampling

- Let $\left\{\theta_{i j}\right\}_{j=1}^{M}$ be a draw from $j_{i}(\theta)$. It can be shown that:

$$
w_{M}^{*}=\frac{\sum_{j=1}^{M} w\left(\theta_{i j}\right)}{M} \rightarrow \int \frac{f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right)}{j_{i}\left(\theta_{i}\right)} j_{i}\left(\theta_{i}\right) d \theta_{i}=P\left(Y^{T} \mid i\right)
$$

- If $w(\theta)$ is bounded above, then we also have:

$$
\sigma^{* 2}=\frac{\sum_{m=1}^{M}\left[w\left(\theta_{i j}\right)-w_{M}^{*}\right]^{2}}{M} \rightarrow \sigma^{2}
$$

Approach I I- Important Sampling

- The problem is the common drawback of important sampling.
- To find $j_{i}(\theta)$ such that $w(\theta)$ is bounded and well-behaved.
- Alternative: use the posterior. How?

Approach III - Harmonic Mean

- Argument due to Gelfand and Dey (1994).
- Let $f_{i}(\theta)$ be a p.d.f. which support is contained in Θ_{i}.
- Then, it can be proved that:

$$
\frac{1}{P\left(Y^{T} \mid i\right)}=\int_{\Theta_{i}} \frac{f_{i}\left(\theta_{i}\right)}{f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right)} P\left(\theta_{i} \mid Y^{T}, i\right) d \theta_{i}
$$

Proof

Since:

$$
\begin{gathered}
P\left(\theta_{i} \mid Y^{T}, i\right)=\frac{f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right)}{\int_{\Theta_{i}} f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right) d \theta_{i}} \\
\int_{\Theta_{i}} \frac{f_{i}\left(\theta_{i}\right)}{f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right)} P\left(\theta_{i} \mid Y^{T}, i\right) d \theta_{i}= \\
=\int_{\Theta_{i}} \frac{f_{i}\left(\theta_{i}\right)}{f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right)} \frac{f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right)}{\int_{\Theta_{i}} f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right) d \theta_{i}} d \theta_{i}= \\
\int_{\Theta_{i} f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right) d \theta_{i}}^{\int_{\Theta_{i}} f_{i}\left(\theta_{i}\right) d \theta_{i}} \frac{1}{\int_{\Theta_{i}} f\left(Y^{T} \mid \theta_{i}, i\right) \pi\left(\theta_{i} \mid i\right) d \theta_{i}}=\frac{1}{P\left(Y^{T} \mid i\right)}
\end{gathered}
$$

We Need to Find $f_{i}(\theta)$ I

As always, we need to find a $f_{i}(\theta)$ such that:

$$
\frac{f_{i}(\theta)}{f\left(Y^{T} \mid \theta, i\right) \pi(\theta \mid i)}
$$

bounded above.

We need to Find $f_{i}(\theta)$ II

- The following proposal is due to Geweke (1998).
- Let $\left\{\theta_{i j}\right\}_{j=1}^{M}$ be a draw from the posterior.
- Then we can write:

$$
\theta_{i M}=\frac{\sum_{j=1}^{M} \theta_{i j}}{M}
$$

and

$$
\Sigma_{i M}=\frac{\sum_{j=1}^{M}\left(\theta_{i j}-\theta_{i M}\right)\left(\theta_{i j}-\theta_{i M}\right)^{\prime}}{M}
$$

We need to find $f_{i}(\theta)$ III

- Define now the following set:

$$
\Theta_{i M}=\left\{\theta:\left(\theta-\theta_{i M}\right)^{\prime} \Sigma_{i M}^{-1}\left(\theta-\theta_{i M}\right) \leq \chi_{1-p}^{2}(k)\right\}
$$

- Define $f_{i}(\theta)$ to be:

$$
f_{i}(\theta)=\frac{(2 \pi)^{-k / 2}\left|\Sigma_{i M}\right|^{-1 / 2} \exp \left[-\frac{\left(\theta-\theta_{i M}\right)^{\prime} \Sigma_{i M}^{-1}\left(\theta-\theta_{i M}\right)}{2}\right]}{p} \psi_{\Theta_{i M}}(\theta)
$$

We need to check the two conditions:

- Is $f_{i}(\theta)$ a p.d.f?
- Does the support of $f_{i}(\theta)$ belong to Θ_{i} ?

Is $f_{i}(\theta)$ a p.d.f?

- Remember that $f\left(\theta_{i}\right)$ equals:

$$
f_{i}(\theta)=\frac{(2 \pi)^{-k / 2}\left|\Sigma_{i M}\right|^{-1 / 2} \exp \left[-\frac{\left(\theta-\theta_{i M}\right)^{\prime} \Sigma_{i M}^{-1}\left(\theta-\theta_{i M}\right)}{2}\right]}{p} \psi_{\Theta_{i M}}(\theta) \geq 0
$$

- And, since:

$$
\int_{\Theta_{i M}}(2 \pi)^{-k / 2}\left|\Sigma_{i M}\right|^{-1 / 2} \exp \left[-\frac{\left(\theta-\theta_{i M}\right)^{\prime} \Sigma_{i M}^{-1}\left(\theta-\theta_{i M}\right)}{2}\right]=p
$$

it does integrates to one.

- Therefore, $f_{i}(\theta)$ is a p.d.f

Does the Support of $f_{i}(\theta)$ Belong to Θ_{i} ?

- The support of $f_{i}(\theta)$ is $\Theta_{i M}$.
- In general we cannot be sure of it.
- If $\Theta_{i}=R^{k_{i}}$ there is no problem. This is the case of unrestricted parameters. Example: a VAR.
- If $\Theta_{i} \subset R^{k_{i}}$, maybe there is a problem. If $\Theta_{i M} \nsubseteq \Theta_{i}$, we need to redefine the domain of integration to be $\Theta_{i M} \cap \Theta_{i}$.
- As a consequence, we also need to find the new normalization constant for $f_{i}(\theta)$. This is the typical case for DSGE models.

Recalculating the Constant for $f\left(\theta_{i}\right)$

- If $\Theta_{i M} \nsubseteq \Theta_{i}$.
- We redefine $f\left(\theta_{i}\right)$ as $f^{*}\left(\theta_{i}\right)$ in the following way:

$$
f_{i}^{*}(\theta)=\frac{1}{p^{*}} \frac{(2 \pi)^{-k / 2}\left|\Sigma_{i M}\right|^{-1 / 2} \exp \left[-\frac{\left(\theta-\theta_{i M}\right)^{\prime} \sum_{i M}^{-1}\left(\theta-\theta_{i M}\right)}{2}\right]}{p} \psi_{\Theta_{i M} \cap \Theta_{i}}(\theta)
$$

- Where $p^{*}=1$ for the case that $\Theta_{i M} \subseteq \Theta_{i}$.

Recalculating the Constant for $f\left(\theta_{i}\right)$ II

How do we calculate p^{*} ?

1. Fix N and let $j=0$ and $i=1$.
2. Draw θ_{i} from $f_{i}(\theta)$ and let $i=i+1$.
3. If $\theta_{i} \in \Theta_{i}$, then $j=j+1$ if $i<N$ got to 2 , else $p^{*}=\frac{j}{N}$ and exit.

Compute the Marginal Likelihood

- Let $\left\{\theta_{i j}\right\}_{j=1}^{N}$ be a draw from the posterior of model $i, P\left(\theta_{i} \mid Y^{T}, i\right)$.
- Then, we can approximate $P\left(Y^{T} \mid i\right)$ using simple Monte Carlo integration:

$$
\frac{1}{P^{*}\left(Y^{T} \mid i\right)}=N^{-1} \sum_{j=1}^{N} \frac{f_{i}\left(\theta_{i j}\right)}{f\left(Y^{T} \mid \theta_{i j}, i\right) \pi\left(\theta_{i j} \mid i\right)}
$$

- Notice that we have to evaluate $f_{i}\left(\theta_{i j}\right)$ for every draw $\theta_{i j}$ from the posterior.

Algorithm

1. Let $j=1$.
2. Evaluate $f_{i}\left(\theta_{i j}\right)$.
3. Evaluate $\frac{f_{i}\left(\theta_{i j}\right)}{f\left(Y^{T} \mid \theta_{i j}, i\right) \pi\left(\theta_{i j} \mid i\right)}$
4. If $j \leq M$, set $j \rightsquigarrow j+1$ and go to 2
5. Calculate $\frac{1}{P^{*}\left(Y^{T} \mid i\right)}=M^{-1} \sum_{j=1}^{M} \frac{f_{i}\left(\theta_{i j}\right)}{f\left(Y^{T} \mid \theta_{i j}, i\right) \pi\left(\theta_{i j} \mid i\right)}$.

Example

- Imagine you want to compare how a $\operatorname{VAR}(1)$ and a $\operatorname{VAR}(2)$ explain $\log y_{t}$ and $\log i_{t}$.
- Let us define a $\operatorname{VAR}(p)$ model.

$$
x_{t}=C+\sum_{\ell=1}^{p} A(\ell) x_{t-\ell}+\varepsilon_{t}
$$

- Where $x_{t}=\left(\log y_{t} \log i_{t}\right)^{\prime}, C$ is a 2×1 matrix, $A(\ell)$ is a 2×2 matrix for all ℓ, and ε_{t} is iid normally distributed with mean zero and variance-covariance matrix Σ.

Example II

- The likelihood function of a $\operatorname{VAR}(p)$ is:

$$
L\left(x^{T} \mid \equiv(p)\right)=(2 \pi)^{-T}|\Sigma|^{-T / 2} \exp ^{-\frac{\varepsilon_{t}^{\prime} \Sigma \varepsilon_{t}}{2}}
$$

where $\Xi(p)=\{C, A(1), \ldots, A(p)\}$.

- (Bounded) Flat and independent priors over all the parameters.

Example III - Drawing from the posterior

1. Set $p=1, j=1$ and set $\equiv(1)_{1}$ equal to the MLE estimate.
2. Generate $\equiv(1)_{j+1}^{*}=\equiv(1)_{j}+\xi_{j+1}$, where ξ_{j+1} is an iid draw from a normal distribution with mean zero and variance-covariance matrix Σ_{ξ} and generate ν from uniform $[0,1]$.
3. Evaluate $\alpha\left(\equiv(p)_{j+1}^{*}, \equiv(p)_{j}\right)=\frac{L\left(x^{T} \mid \equiv(p)_{j+1}^{*}\right)}{L\left(x^{T} \mid \equiv(p)_{j}\right)}$ if $\alpha\left(\equiv(p)_{j+1}^{*}, \equiv(p)_{j}\right)<\nu$. Then $\Xi(1)_{j+1}=\equiv(1)_{j+1}^{*}$, otherwise $\Xi(1)_{j+1}=\equiv(1)_{j}$.
4. If $j \leq M$, set $j \rightsquigarrow j+1$ and go to 2 , otherwise exit.

Example IV - Evaluating the Marginal Likelihood

- Since priors are flat, the posterior is proportional to the likelihood $L\left(x^{T} \mid \equiv(p)\right)$ for all p.
- Repeat the algorithm for $p=2$.
- Let $\left\{\equiv(1)_{j}\right\}_{j=1}^{M}$ and $\left\{\equiv(2)_{j}\right\}_{j=1}^{M}$ be draws from the posterior of the $\operatorname{VAR}(1)$ and $\operatorname{VAR}(2)$ respectively.

Example V - Evaluating the Marginal Likelihood

Calculate:

$$
\equiv(p)_{M}=\frac{\sum_{j=1}^{M} \equiv(p)_{j}}{M}
$$

and

$$
\Sigma(p)_{M}=\frac{\sum_{j=1}^{M}\left(\equiv(p)_{j}-\equiv(p)_{M}\right)\left(\equiv(p)_{j}-\equiv(p)_{M}\right)^{\prime}}{M}
$$

for $p=1$ and $p=2$.

Example VI - Evaluating the Marginal Likelihood

- Calculate $\left\{f_{i}\left(\Xi(p)_{j}\right)\right\}_{j=1}^{M}$ for $p=1$ and $p=2$.
- Calculate:

$$
\frac{1}{P^{*}\left(x^{T} \mid p\right)}=M^{-1} \sum_{j=1}^{M} \frac{f_{i}\left(\equiv(p)_{j}\right)}{L\left(x^{T} \mid \equiv(p)_{j}\right)}
$$

A Problem Evaluating the Marginal Likelihood

- Sometimes, $L\left(x^{T} \mid \equiv(p)_{j}\right)$ is a to BIG number.
- For example: The log likelihood of the $\operatorname{VAR}(1)$ evaluated at the MLE equals $1,625.23$. This means that the likelihood equals $\exp ^{1,625.23}$. In Matlab, $\exp ^{1,625.23}=\operatorname{Inf}$.
- This implies that:

$$
\frac{1}{P^{*}\left(x^{T} \mid p\right)}=M^{-1} \sum_{j=1}^{M} \frac{f_{i}\left(\equiv(p)_{j}\right)}{L\left(x^{T} \mid \equiv(p)_{j}\right)}=0
$$

Solving the Problem

- In general, we want to compute

$$
\frac{1}{P^{*}\left(Y^{T} \mid i\right)}=M^{-1} \sum_{j=1}^{M} \frac{f_{i}\left(\theta_{i j}\right)}{f\left(Y^{T} \mid \theta_{i j}, i\right) \pi\left(\theta_{i j} \mid i\right)}
$$

- Instead of evaluating $f\left(Y^{T} \mid \theta_{i j}, i\right)$ and $\pi\left(\theta_{i j} \mid i\right)$, we evaluate $\log f\left(Y^{T} \mid \theta_{i j}, i\right)$ and $\log \pi\left(\theta_{i j} \mid i\right)$ for all $\left\{\theta_{i j}\right\}_{j=1}^{M}$ and for each of the models i.
- For each i, we compute $\wp_{i}=\max _{j}\left\{\log f\left(Y^{T} \mid \theta_{i j}, i\right)+\log \pi\left(\theta_{i j} \mid i\right)\right\}$.
- Then, we compute $\wp=\max _{i}\left\{\wp_{i}\right\}$.
- Compute:

$$
\log \tilde{f}\left(Y^{T} \mid \theta_{i j}, i\right)=\log f\left(Y^{T} \mid \theta_{i j}, i\right)+\log \pi\left(\theta_{i j} \mid i\right)-\wp
$$

- Compute

$$
\tilde{f}\left(Y^{T} \mid \theta_{i j}, i\right)=\exp \log \tilde{f}\left(Y^{T} \mid \theta_{i j}, i\right)
$$

- Finally, compute

$$
\frac{1}{\widetilde{P}\left(Y^{T} \mid i\right)}=M^{-1} \sum_{j=1}^{M} \frac{f_{i}\left(\theta_{i j}\right)}{\tilde{f}\left(Y^{T} \mid \theta_{i j}, i\right)}
$$

- And note that

$$
\log \widetilde{P}\left(Y^{T} \mid i\right)-\log \widetilde{P}\left(Y^{T} \mid s\right)=\log P^{*}\left(Y^{T} \mid i\right)-\log P^{*}\left(Y^{T} \mid s\right)
$$

- Why?
- Note that

$$
\frac{1}{\widetilde{P}\left(Y^{T} \mid i\right)}=M^{-1} \sum_{j=1}^{M} \frac{f_{i}\left(\theta_{i j}\right)}{\widetilde{f}\left(Y^{T} \mid \theta_{i j}, i\right)}=M^{-1} \sum_{j=1}^{M} \frac{f_{i}\left(\theta_{i j}\right)}{\frac{f\left(Y^{T} \mid \theta_{i j}, i\right) \pi\left(\theta_{i j} \mid i\right)}{\wp}}
$$

- Therefore

$$
\frac{1}{\widetilde{P}\left(Y^{T} \mid i\right)}=\frac{\wp}{P^{*}\left(Y^{T} \mid i\right)}
$$

