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chapter 1

Setup and Walk-through

To implement a function in hardware (e.g., the Krusell and Smith (1998) algorithm), it will ulti-
mately be necessary to perform low-level placement and routing of the hardware onto the FPGA
substrate. That is, the tools must decide which particular instance of each primitive is used (place-
ment) or which wires to use for connections (routing). These tasks take typically longer time (at
least 30 minutes, sometimes hours) than the compilation time for software (a few minutes). This
means you will need to plan your time carefully for these tutorials. One way to optimize our
development time is to be careful about when we invoke low-level placement and routing and
when we can avoid it. The content of this chapter was curated by Syed Ahmed.1

1.1 Getting Started with Vitis on Amazon F1 Instance

Make sure you complete the following pre-requisites before continuing with this tutorial:

1. You have an AWS account and know how to create AWS instances. Check Getting Started
on Amazon EC2 for a refresher.

2. Read about Vitis from here.
1University of Pennsylvania, Electrical and System Engineering. email: stahmed@seas.upenn.edu

https://www.seas.upenn.edu/~ese532/fall2020/handouts/hw1/aws_tutorial.html
https://www.seas.upenn.edu/~ese532/fall2020/handouts/hw1/aws_tutorial.html
https://github.com/Xilinx/Vitis-In-Depth-Tutorial/blob/master/Getting_Started/Vitis/Part1.md
mailto:stahmed@seas.upenn.edu
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In this tutorial, we will use two instances:

• z1d.2xlarge referred to as the build instance where we will compile and build our FPGA
binary. It costs 0.744 $/hr. You can create this instance in any AWS region.

• f1.2xlarge referred to as the runtime instance where we will run our FPGA binary. It costs
1.65 $/h. We can only use us-east-1 (N. Virginia) for this instance.

1.2 Step 1: Launch the build instance

1. Navigate to the AWS Marketplace

2. Click on Continue to Subscribe

3. Accept the EULA and click Continue to Con�guration

4. Select version v1.10.0 and US East (N.Virginia)

5. Click on Continue to Launch

6. Select Launch through EC2 in the Choose Action drop-down and click Launch

7. Search and select FPGA Developer AMI

8. Select z1d.2xlarge Instance type from the Filter All instance families

9. At the top of the console, click on 6. Con�gure Security Groups

10. Click Add Rule. Note: Add a new rule. Do NOT modify existing rule.

(a) Select Custom TCP Rule from the Type pull-down menu
(b) Type 8443 in the Port Range �eld
(c) Select Anywhere from the Source pull-down

Note: This steps will enable us to install a NICE DCV Server on the instance.

11. Click Review and Launch. This brings up the review page.

12. Click Launch to launch your instance.

13. Select a valid key pair and check the acknowledge box at the bottom of the dialog

14. Select Launch Instances. This brings up the launch status page

15. When ready, select View Instances at the bottom of the page

16. Login to your build instance by doing:
1 ssh −i <AWS key pairs.pem> centos@<IPv4 Public IP of EC2 instance>

https://aws.amazon.com/marketplace/pp/B06VVYBLZZ?qid=1585105385966&sr=0-1&ref_=srh_res_product_title
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1.3 Step 2: Setup remote desktop

We will use NICE DCV as our remote desktop server on Amazon. We will use the remote
desktop to work with several Vitis GUI utilities. For the setup we follow the Amazon GUI FPGA
Development Environment with NICE DCV Tutorial.

1. Attach NICE DCV license to your z1d.2xlarge instance by doing the following:

(a) Sign in to the AWS Management Console and open the IAM console at link.

(b) In the navigation pane of the IAM console, choose Roles, and then choose Create
role.

(c) For Select type of trusted entity, choose AWS service.

(d) For Choose a use case, select EC2 and then click Next: Permissions.

(e) Click on Next: Tags to move forward.

(f) Click on Next: Review to move forward.

(g) Enter a name, e.g. “DCVLicenseAccessRole” and click Create role.

(h) Click on Policies in the left menu.

(i) Click on Create policy.

(j) Click on the JSON tab and paste the following:
1 {
2 "Version" : "2012−10−17",
3 "Statement" : [
4 {
5 " E�ect " : "Allow",
6 "Action" : "s3 :GetObject" ,
7 "Resource" : "arn:aws:s3 ::: dcv− license .us−east−1/∗ "
8 }
9 ]

10 }

Note: The NICE DCV software needs to access the NICE DCV license, and the license
is located in the s3 bucket. Change us-east-1 to the region you are using (if di�erent).
For more information, see link..

(k) Click on Next: Tags to move forward.

(l) Click on Next: Review to move forward.

(m) Enter a name, e.g. “DCVLicensePolicy” and click Create policy.

(n) Search for your new policy and click on it to open it.

(o) Click on Policy usage and then on Attach.

https://github.com/aws/aws-fpga/blob/master/developer_resources/DCV.md
https://github.com/aws/aws-fpga/blob/master/developer_resources/DCV.md
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/dcv/latest/adminguide/setting-up-license.html
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(p) Enter your DCV role name, select the role and click on Attach policy.
(q) Go to your console home page and click on Instances.
(r) Right-click on your z1d.2xlarge instance and click on Security and thenModify IAM

role.
(s) From the drop-down menu, select your DCV role name and click save. Your instance

will now be able to use the server.

2. Login to your z1d.2xlarge instance and install NICE DCV pre-requisites. More info at link.
1 sudo yum update
2 sudo yum install kernel−devel
3 sudo yum groupinstall "GNOME Desktop"
4 sudo yum install glx− utils

Note: You may receive the message: Failed to set locale, defaulting to C. Locales de�ne
language and country-speci�c setting for your programs and shell session. If you want to
�x it (not required) you can follow the instructions at this link.

3. Install also the crudini rpm package to modify the nice dcv server con�guration preferences
(see more here).

1 sudo yum install crudini

4. Install NICE DCV Server. More info at link.

sudo rpm --import https://s3-eu-west-1.amazonaws.com/nice-dcv-publish/NICE-GPG-KEY
wget https://d1uj6qtbmh3dt5.cloudfront.net/2019.0/Servers/nice-dcv-2019.0-7318-el7.tgz
tar xvf nice-dcv-2019.0-7318-el7.tgz
cd nice-dcv-2019.0-7318-el7
sudo yum install nice-dcv-server-2019.0.7318-1.el7.x86_64.rpm
sudo yum install nice-xdcv-2019.0.224-1.el7.x86_64.rpm
cd ~

sudo systemctl enable dcvserver
sudo systemctl start dcvserver

5. Setup a password
1 sudo passwd centos

6. Change �rewall settings: Disable �rewall to allow all connections
1 sudo systemctl stop �rewalld
2 sudo systemctl disable �rewalld

7. Create a virtual session to connect to.
Note: You will have to create a new session if you restart your instance. Put this in your
/.bashrc so that you automatically create a session on login..

https://docs.aws.amazon.com/dcv/latest/adminguide/setting-up-installing-linux-prereq.html
https://www.cyberciti.biz/faq/failed-to-set-locale-defaulting-to-c-warning-message-on-centoslinux/
https://docs.aws.amazon.com/dcv/latest/adminguide/config-param-ref-modify.html
https://docs.aws.amazon.com/dcv/latest/adminguide/setting-up-installing-linux-server.html
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1 dcv create−session −−type virtual −−user centos centos

8. Connect to the DCV Remote Desktop session

• Download and install the DCV Client in your computer2.

• Use the Public IP address to connect

9. Logging in should show you your new GUI Desktop

1.4 Step 3: Setup AWS CLI

1. Go to the Amazon AWS Console and then from the top right, select your account name,
and then My Security Credentials.

2. Click on Access Keys and Create New Access Key.

3. Note down your Access Key ID and Secret Access Key.

4. Login to your z1d.2xlarge instance and issue the following command:
1 aws con�gure

5. Enter your access key, add us-east-1 as region and output to be json.

1.5 Step 4: Edit Source Files in Build Instance.

To edit your source �les, you can use vim or emacs directly in the remote terminal. Or you can
ssh from an editor in your local machine to edit �les remotely. For instance: Remotely edit �les
using SSH from VS Code in Mac/Linux/Windows.

1.6 Step 5: Build Phase

The build phase is conducted entirely in the z1d.2xlarge instance. The build phase consists of

• Pro�ling of the Code, where you use the Vitis Analyzer to �gure out bottlenecks in
your application. To learn how to use Vitis Analyzer read here.

• Synthesis of the Code, which create the AFI executable which you can run on the f1
instance

2IMPORTANT: use the 2020.2 version. The latest version is not otherwise compatible with the setup.

https://download.nice-dcv.com/2020-2.html
https://console.aws.amazon.com
https://medium.com/@christyjacob4/using-vscode-remotely-on-an-ec2-instance-7822c4032cff
https://medium.com/@christyjacob4/using-vscode-remotely-on-an-ec2-instance-7822c4032cff
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Getting_Started/Vitis/Part5.md
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In order to pro�le and synthesize your code you need to use the Vitis HLS software. This section
guides you on the steps on how to launch Vitis, create aProject in Vitis. The next chapters discuss
the Code pro�ling and Synthesis in the context of the di�erent applications.

1.6.1 Initialize the Environment

If you are just starting a new project from scratch,

1. Login to your instance and initialize your environment as follows:
1 tmux
2 git clone https :// github .com/aws/aws−fpga.git $AWS_FPGA_REPO_DIR
3 source $AWS_FPGA_REPO_DIR/vitis_setup.sh
4 export PLATFORM_REPO_PATHS=$(dirname $AWS_PLATFORM)

Note: Make sure to run under tmux! It will save you hours..

2. Clone your git repository using the following command:
1 git clone GETYOURREPO

These are one-time operations which you do not need to repeat later.

1.6.2 Create a Project in Vitis HLS

Creating a new project in Vitis HLS is explained here. Make sure you enter the top-level func-
tion during the creation of the project (although you can also change it later). The top-level
function is the function that will be called by the part of your application that runs in software.
Vitis HLS needs it for synthesis. You can also indicate which �les you want to create. It is wise
to add a Testbench �le too, while you are creating the project, to check that your application
runs correctly.

1. To get started

(a) Launch (or restart) your z1d.2xlarge in AWS

(b) In a terminal, ssh into your z1d.2xlarge instance (wait for the instance to be ready!).
Start the DCV server using the following:

1 dcv create−session −−type virtual −−user centos centos
2

Note: This command launches a DCV session in the building instance to which you
can connect remotely from your computer.

(c) Open the NICE DCV Viewer in your computer

• Enter the public IP address of the z1d.2xlarge instance.

https://xilinx.github.io/Vitis-Tutorials/2020-1/docs/vitis_hls_analysis/new_project.html
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• Enter centos as user and the password you set during DCV setup.

You should now the see the desktop of your building instance!!

2. To launch the Vitis HLS Software

(a) In the desktop of your building instance, select Applications > System Tools > Ter-
minal

(b) Launch Vitis HLS by typing vitis_hls & in the terminal. You should now see the
Integrated Development Environment (IDE).

3. To create a New Project

• In the drop-down click on File and select New Project

• Give a name to the Project and select the location where to store the project.

• Specify TBD as top function.

• Add to the source �les

– all the .c �les
– all the .h �les

• Add Testbench.cpp to the TestBench �les

• Select the xcvu9p-�gb2104-2-i in the device selection.

• Use a #CLOCK SPEED ns clock, and select Vitis Kernel Flow Target.

• Click Finish.

We will specialize the Project creation depending on the target application in the Chapters to
come.

1.6.3 C Simulation and Code Debugging

We encourage you to implement a testbench �le (e.g. Testbench.cpp ) to debug your code. A
testbench application is not di�erent from any other software applications written in C:

• they have a main function that is invoked

• the main function includes any functionality needed to test your function, including calling
the top function that you would like to test.

• they return 0 if the function is correct, otherwise it should return another value

To run the Testbench.cpp

1. Select Project→ Run C Simulation from the menu.
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• A window should pop up. The default settings of the dialog should be �ne. You can
dismiss the dialog by pressing OK .

2. You can see in the Console whether your test has passed.

3. If your test fails, you can run the test in debug mode.

• This can be done by repeating the same procedure, except that you should check the
box in front of Launch Debugger this time before you dismiss the dialog.

• This will take you to the Debug perspective, where you can set breakpoints and use
the step into/step over buttons to debug.

4. You can go back to the original perspective by pressing the Synthesis button in the top,
right corner. To rebuild the code, you should go back to Synthesis mode, and click Run C
Simulation again to rebuild the code.

1.6.4 Synthesis in Vitis HLS

Once you have veri�ed that the code is free of bugs, run Solution→Run C Synthesis→Active
Solution from the menu to synthesize your design.

• C/RTL Cosimulation. You can also verify the synthesized version of your accelerator in
your testbench. If you choose to do so, Vitis HLS will run your accelerator in a simulator,
so this method is called C/RTL Cosimulation. The employed cycle-level simulation is much
slower than realtime execution, so this method may not be practical for every testbench.
It avoids needing to run low level-placement and routing and will give you more visibility
into the behavior of your design. Anyway, you can start it by choosing Solution→Run
C/RTL Cosimulation from the menu.

The Vitis HLS Kernel

• The RTL export will produce an .xo �le (Vitis Kernel)

• Then go to the terminal and use the make�le to create the xclbin

The Synthesis will produce a Vitis Kernel, that is a Xilinx object �le (.xo) that describes the
hardware implementation of our application.

The next section discusses how to optimize it.

1.6.5 HLS Kernel Optimization using the Vitis HLS IDE

The optimization follows a bottom-up approach
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1. Pro�le the Code using the Vitis Analyzer . To learn how to use the Vitis Analyzer read
here.

2. Optimize your hardware function using the Vitis HLS IDE;

• Vitis HLS controls the hardware implementation wit the #pragma command. Ex-
amples:

1 #pragma HLS unroll 2
2 #pragma HLS pipeline

The di�erent #pragma that you can use are listed in the Vitis HLS User Guide.

3. Re-compile it;

4. Once you happy, you are ready to move the code to the FPGA

Note

We are using the GUI mode of Vitis HLS (using NICE DCV) so that we can see the HLS schedule.
If your remote desktop connection is lagging, you can run Vitis HLS from the command line.
You can learn more about the TCL commands from: link 1, link 2 Note that the only way to see
the HLS schedule is through the GUI. If you are unable to use the GUI in AWS or try to install
Vitis toolchain locally.

1.6.6 Compile the Hardware Function

Once you are happy with your Vitis HLS acceleration:

1. Export Vitis Kernel: When you have obtained a satisfying hardware description in Vitis
HLS , you will Export Vitis Kernel, i.e. a Xilinx object �le (.xo). We will then use this object
�le/kernel and link it together in our existing Vitis application.

2. Compile a hardware function. Build the hardware function by doing make a� EMAIL=<your
email>, substituting your email. Depending on the complexity of your function, this build
can take hours. In the end:

• it will wait for you to con�rm a subscription from your email account.

• Open your email and con�rm the subscription and wait to receive an email that your
Amazon FPGA Image (AFI) is available (takes about 30 minutes to an hour).

3. Copy binaries to the runtime instance

• Create a github repository and clone it in your z1d.2xlarge instance.

• Add the host, mmult.awsxclbin and xrt.ini �les to the repository; commit and push

https://github.com/Xilinx/Vitis-Tutorials/blob/master/Getting_Started/Vitis/Part5.md
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/hlspragmas.html#okr1504034364623
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/tre1585063528538.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/nfj1539734250759.html
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Getting_Started/Vitis/Part2.md
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/export_rtl_vitis_hls.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/export_rtl_vitis_hls.html
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1.7 Step 6: Runtime Phase

Once you have created your executable and have your AFI it is time to run your application on
the f1.2xlarge.

1.7.1 Set up a runtime instance

Follow the steps from Section 1.2, but instead of choosing a z1d.2xlarge instance, choose f1.2xlarge.

1.7.2 Run the application on the FPGA

To run your application, execute the following commands in your f1.2xlarge instance
1 source $AWS_FPGA_REPO_DIR/vitis_runtime_setup.sh
2 # Wait till the MPD service has initialized . Check systemctl status mpd
3 ./ host ./ mmult.awsxclbin

You should see the following �les generated when you ran:
1 pro�le_summary.csv
2 timeline_trace . csv
3 xclbin . run_summary

Note: Make sure to shut down your F1 instance! It costs 1.65 $/hr..



chapter 2

Matrix Multiplier

This chapter

• illustrates the use of Vitis HLS

• discusses the main parallelism pragmas

in the context of a matrix multiplication algorithm. The content of this chapter was curated by
Syed Ahmed.1

2.1 Directory Structure

1 code/
2 Make�le
3 design . cfg
4 xrt . ini
5 common/
6 Constants.h
7 EventTimer.h
8 EventTimer.cpp
9 Utilities . cpp

10 Utilities .h
11 hls /
12 export_hls_kernel . sh
13 run_hls . tcl
14 MatrixMultiplication .h
15 MatrixMultiplication .cpp
16 Testbench.cpp
17 Host.cpp

2.2 The code

• There are 5 targets in the Make�le. Use make help to learn about them

• design.cfg de�nes several options for the v++ compiler . Learn more about it here

• xrt.ini de�nes the options necessary for Vitis Analyzer

• The common folder has header �les and helper functions.
1University of Pennsylvania, Electrical and System Engineering. email: stahmed@seas.upenn.edu

https://developer.xilinx.com/en/articles/using-configuration-files-to-control-vitis-compilation.html
mailto:stahmed@seas.upenn.edu
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• The hls/MatrixMultiplication.cpp �le has the function that gets compiled to a hardware
function (known as a kernel in Vitis). The Host.cpp �le has the “driver” code that transfers
the data to the fpga, runs the kernel, fetches back the result from the kernel and then
veri�es it for correctness.

2.2.1 Host.cpp: the main

The Host.cpp �le has the “driver” code that transfers the data to the FPGA, runs the kernel,
fetches back the result from the kernel and then veri�es it for correctness.

1 #include " Utilities .h"
2

3 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 // Main program
5 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 int main(int argc , char ∗∗ argv)
7 {
8 // Initialize an event timer we’ ll use for monitoring the application
9 EventTimer timer;

10 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 // Step 1: Initialize the OpenCL environment
12 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 timer .add("OpenCL Initialization " ) ;
14 cl_int err ;
15 std :: string binaryFile = argv [1];
16 unsigned �leBufSize ;
17 std :: vector<cl :: Device> devices = get_xilinx_devices () ;
18 devices . resize (1) ;
19 cl :: Device device = devices [0];
20 cl :: Context context ( device , NULL, NULL, NULL, &err);
21 char∗ �leBuf = read_binary_�le ( binaryFile , �leBufSize ) ;
22 cl :: Program:: Binaries bins {{ �leBuf , �leBufSize }};
23 cl :: Program program(context, devices , bins , NULL, &err);
24 cl :: CommandQueue q(context, device, CL_QUEUE_PROFILING_ENABLE, &err);
25 cl :: Kernel krnl_mmult(program,"mmult", &err);
26

27 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 // Step 2: Create bu�ers and initialize test values
29 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 timer .add(" Allocate contiguous OpenCL bu�ers") ;
31 // Create the bu�ers and allocate memory
32 cl :: Bu�er in1_buf( context , CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY, sizeof(matrix_type) ∗ MATRIX_SIZE, NULL, &

err);
33 cl :: Bu�er in2_buf( context , CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY, sizeof(matrix_type) ∗ MATRIX_SIZE, NULL, &

err);
34 cl :: Bu�er out_buf_hw(context, CL_MEM_ALLOC_HOST_PTR | CL_MEM_WRITE_ONLY, sizeof(matrix_type) ∗ MATRIX_SIZE, NULL,

&err);
35

36 timer .add("Set kernel arguments") ;
37 // Map bu�ers to kernel arguments, thereby assigning them to speci�c device memory banks
38 krnl_mmult.setArg(0, in1_buf) ;
39 krnl_mmult.setArg(1, in2_buf) ;
40 krnl_mmult.setArg(2, out_buf_hw);
41

42 timer .add("Map bu�ers to userspace pointers " ) ;
43 // Map host−side bu�er memory to user−space pointers
44 matrix_type ∗ in1 = (matrix_type ∗) q.enqueueMapBu�er(in1_buf, CL_TRUE, CL_MAP_WRITE, 0, sizeof(matrix_type) ∗ MATRIX_SIZE);
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45 matrix_type ∗ in2 = (matrix_type ∗) q.enqueueMapBu�er(in2_buf, CL_TRUE, CL_MAP_WRITE, 0, sizeof(matrix_type) ∗ MATRIX_SIZE);
46 matrix_type ∗out_sw = Create_matrix () ;
47

48 timer .add("Populating bu�er inputs " ) ;
49 // Initialize the vectors used in the test
50 Randomize_matrix(in1);
51 Randomize_matrix(in2);
52

53 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 // Step 3: Run the kernel
55 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 timer .add("Set kernel arguments") ;
57 // Set kernel arguments
58 krnl_mmult.setArg(0, in1_buf) ;
59 krnl_mmult.setArg(1, in2_buf) ;
60 krnl_mmult.setArg(2, out_buf_hw);
61

62 // Schedule transfer of inputs to device memory, execution of kernel , and transfer of outputs back to host memory
63 timer .add("Memory object migration enqueue host−>device") ;
64 cl :: Event event_sp;
65 q.enqueueMigrateMemObjects({in1_buf, in2_buf }, 0 /∗ 0 means from host∗/ , NULL, &event_sp);
66 clWaitForEvents (1, ( const cl_event ∗) &event_sp);
67

68 timer .add("Launch mmult kernel") ;
69 q.enqueueTask(krnl_mmult, NULL, &event_sp);
70 timer .add("Wait for mmult kernel to �nish running") ;
71 clWaitForEvents (1, ( const cl_event ∗) &event_sp);
72

73 timer .add("Read back computation results ( implicit device−>host migration) " ) ;
74 matrix_type ∗out_hw = (matrix_type ∗) q.enqueueMapBu�er(out_buf_hw, CL_TRUE, CL_MAP_READ, 0, sizeof(matrix_type) ∗

MATRIX_SIZE);
75 timer . �nish () ;
76

77 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 // Step 4: Check Results and Release Allocated Resources
79 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 multiply_gold ( in1 , in2 , out_sw);
81 bool match = Compare_matrices(out_sw, out_hw);
82 Destroy_matrix(out_sw);
83 delete [] �leBuf ;
84 q.enqueueUnmapMemObject(in1_buf, in1);
85 q.enqueueUnmapMemObject(in2_buf, in2);
86 q.enqueueUnmapMemObject(out_buf_hw, out_hw);
87 q. �nish () ;
88

89 std :: cout << "−−−−−−−−−−−−−−− Key execution times −−−−−−−−−−−−−−−" << std::endl;
90 timer . print () ;
91

92 std :: cout << "TEST " << (match ? "PASSED" : "FAILED") << std :: endl ;
93 return (match ? EXIT_SUCCESS : EXIT_FAILURE);
94 }

Listing 2.1: Host.cpp

2.2.2 MatrixMultiplication.cpp: the kernel

The MatrixMultiplication.cpp �le has the function that gets compiled to a hardware function
(known as a kernel in Vitis).
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1 #include " MatrixMultiplication .h"
2

3 void mmult(const matrix_type Input_1[MATRIX_WIDTH ∗ MATRIX_WIDTH],
4 const matrix_type Input_2[MATRIX_WIDTH ∗ MATRIX_WIDTH],
5 matrix_type Output[MATRIX_WIDTH ∗ MATRIX_WIDTH]) {
6 #pragma HLS INTERFACE m_axi port=Input_1 bundle=aximm1
7 #pragma HLS INTERFACE m_axi port=Input_2 bundle=aximm2
8 #pragma HLS INTERFACE m_axi port=Output bundle=aximm1
9 matrix_type Bu�er_1[MATRIX_WIDTH][MATRIX_WIDTH];

10 matrix_type Bu�er_2[MATRIX_WIDTH][MATRIX_WIDTH];
11

12 Init_loop_i : for ( int i = 0; i < MATRIX_WIDTH; i++)
13 Init_loop_j : for ( int j = 0; j < MATRIX_WIDTH; j++) {
14 Bu�er_1[ i ][ j ] = Input_1[ i ∗ MATRIX_WIDTH + j];
15 Bu�er_2[ i ][ j ] = Input_2[ i ∗ MATRIX_WIDTH + j];
16 }
17

18 Main_loop_i: for ( int i = 0; i < MATRIX_WIDTH; i++)
19 Main_loop_j: for ( int j = 0; j < MATRIX_WIDTH; j++) {
20 matrix_type Result = 0;
21 Main_loop_k: for ( int k = 0; k < MATRIX_WIDTH; k++) {
22 Result += Bu�er_1[ i ][k] ∗ Bu�er_2[k][ j ];
23 }
24 Output[i ∗ MATRIX_WIDTH + j] = Result;
25 }
26 }

Listing 2.2: MatrixMultiplication.cpp

2.2.3 design.cfg: Compiler Flags

De�nes several options for the v++ compiler . Learn more about it here
1 platform=xilinx_aws−vu9p−f1_shell−v04261818_201920_2
2 debug=1
3 pro�le_kernel =data: all : all : all
4 save−temps=1
5

6 [ connectivity ]
7 nk=mmult:1:mmult_1
8 sp=mmult_1.Input_1:DDR[1]
9 sp=mmult_1.Input_2:DDR[2]

10 sp=mmult_1.Output:DDR[1]

Listing 2.3: design.cfg

2.2.4 xrt.ini: Vitis Analyzer
xrt.ini de�nes the options necessary for Vitis Analyzer

[Debug]
profile=true
timeline_trace=true
data_transfer_trace=fine
stall_trace=all

https://developer.xilinx.com/en/articles/using-configuration-files-to-control-vitis-compilation.html
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Figure 2.1: CPU Implementation

2.3 CPU implementation.

To set a benchmark for our HLS acceleration, let us �rst run our application on the CPU. Con-
nect to your z1d.2xlarge and execute the following commands from the terminal to run your
application on the CPU.

1 # compile
2 source $AWS_FPGA_REPO_DIR/vitis_setup.sh
3 export PLATFORM_REPO_PATHS=$(dirname $AWS_PLATFORM)
4 make all TARGET=sw_emu
5

6 # run
7 source $AWS_FPGA_REPO_DIR/vitis_runtime_setup.sh
8 export XCL_EMULATION_MODE=sw_emu
9 ./ host mmult.xclbin

The latency is 86.93ms and will provide our benchmark.
Note: The .xclbin is a binary format optimized for FPGA. Yet, you can run as a normal app on
your CPU (although you would not run it usually as it is not optimized for it).

2.4 Create a Project in Vitis

1. Launch the build instance z1d.2xlarge and Vitis HLS following the steps in Section 1.6.2

2. Create a Project in Vitis HLS as follows

• In the drop-down click on File and select New Project

• Give a name to the Project and select the location where to store the project.

• Specify mmult as top function.

• Add to the source �les

– hw5/fpga/hls/MatrixMultiplication.cpp
– hw5/fpga/hls/MatrixMultiplication.h

• Add Testbench.cpp to the TestBench �les

• Select the xcvu9p-�gb2104-2-i in the device selection.

• Use a 8 ns clock, and select Vitis Kernel Flow Target.
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• Click Finish.

Vitis HLS automatically does loop pipelining. For the purpose of this project, we will turn it
o�, since we are going to do it ourselves. To do so,

• Right-click on solution 1 and select Solution Se�ings.

• In the General tab, click on Add.

• Select con�g_compile command and set pipeline_loops to 0.

2.5 C Simulation and Code Debugging

We will now follow the steps in 1.6.3 to debug the code using Testbench.cpp in Vitis HLS .
Note: The test bench generates random matrices and attempts matrix multiplication using both
our mmult function (from HW) and the standard software matrix multiply function. The test-
bench then compares both of the outputs and makes sure they are exactly the same..

• Run C simulation by right-clicking on the project on the Explorer view

• Figure 2.2 veri�es that the test passes

Figure 2.2: Testbench Console

2.6 Synthesis in Vitis HLS

Let us now synthesize our code using Vitis HLS . To do so, run
Solution→Run C Synthesis→Active Solution
from the menu to synthesize your design.

2.6.1 Synthesis Report

To open the Synthesis Report

• Expand the solution 1 tab in the Explorer View

• Browse to syn/report and open the .rpt �le.
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Figure 2.3: Scheduler View

2.6.2 Latency

The total latency of the hardware accelerator is 16.976, so slower than the CPU (86.93). The
reason is that the current implementation does not use any kind of parallelism of the computation
which the software baseline may have. Table 2.1 reports the resource utilization.

Resources BRAM DSP Units Flip-Flops LUTs
Usage 20 5 1793 1933

Table 2.1: Resource Utilization

2.6.3 Scheduler View

Use the Scheduler View under the Analysis Perspective to analyze how the computations are
scheduled in time. From the Scheduler View it appears that the multiplication takes 1 cycle
(Figure 2.4)

2.6.4 Data Flow

Data�ow and FSM diagram for main loop of MatrixMultiplication.cpp

2.7 HLS Kernel Optimization: Loop Unrolling

• Go back to the Synthesis perspective

• Unroll the loop with label Main_loop_k 2 times using #pragma HLS UNROLL .
1 Main_loop_k: for ( int k = 0; k < MATRIX_WIDTH; k++) {
2 #pragma HLS unroll factor =2
3 Result += Bu�er_1[ i ][k] ∗ Bu�er_2[k][ j ];

Listing 2.4: MatrixMultiplication.cpp with #pragma HLS UNROLL

For other examples see here.

https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/hlspragmas.html#ariaid-title25
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Figure 2.4: Scheduler View

• Synthesize the code

• Look at the Scheduler View

The unroll is able to save cycles by performing the multiplies in parallel. (The original loop
had to wait for next read to perform another multiply). To understand how the unrolling work,
notice that we could have performed the unrolling manually as shown here

1 Main_loop_k: for ( int k = 0; k < MATRIX_WIDTH; k=k+2) {
2 Result += Bu�er_1[ i ][k] ∗ Bu�er_2[k][ j ] + Bu�er_1[ i ][k+1] ∗ Bu�er_2[k+1][j ];
3 }

Listing 2.5: MatrixMultiplication.cpp

2.7.1 Resource Pro�le

Now use the Resource Pro�le view of the Analysis Perspective to inspect the resource usage.
As we unroll more and more, the number of:

• fadd’s increases but

• the number of fmul’s does not.

This implies that the fmul s are shared by multiple operations!

2.7.2 Full Unroll

• Unroll the loop with label Main_loop_k completely.

• Synthesize the design again.
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You may notice that the estimated clock period in the Synthesis Report is shown in red. Due
to variation among Vitis HLS versions, sometimes it works and nothing is �agged.

Change the clock

Change the clock period to 20ns, and synthesize it again. The new latency is 4.062ms.

Resources

Resources BRAM DSP Units Flip-Flops LUTs
Usage 20 14 5586 5174

Table 2.2: Resource Utilization

Note: You may have noticed that all �oating-point additions are scheduled in series. This suggests
that they cannot be parallelized. Floating-Point addition is non-associative; this forces us to
perform them in the original serial order in order to guarantee we achieve the same result as the
original, serial C code. In contrast, Integer and Fixed-Point additions are associative, giving the
compiler more freedom to re-order operations and exploit parallelism.

2.8 HLS Kernel Optimization: Pipelining

Pipeline using #pragma HLS PIPELINE

• Remove the unroll pragma, and pipeline the Main_loop_j loop with the minimal initiation
interval (II) of 1 using the #pragma HLS PIPELINE. (Xilinx link)

• Restore the clock period to 8ns.

• Synthesize the design again.

2.8.1 Understanding the Initiation Interval (II)

Note the initiation interval is 32 for the pipelined loop j. To understand this result, Figure 2.5
draws a schematic for the data path of Main_loop_j and shows how it is connected to the mem-
ories. You can �nd the variables that are mapped onto memories in the Resource Pro�le view
of the Analysis Perspective . The memory for each of the Bu�ers is stored in one bank, in 8
BRAMS. There are only two port to read from, despite needing 64 values. Assuming a continuous
�ow of input data, we need to read a full row of Bu�er1, meaning 64 values. The BRAM only lets
us read at most 2 words per cycle, but we need 64 for loop iteration, which results in a delay (II)
of 32.

https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/fde1504034360078.html
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Figure 2.5: Scheduler View

2.8.2 Partitioning Arrays to Improve Pipelining

To improve the II of the pipelining, we can partition Bu�er_1 and Bu�er_2 to achieve a better
performance. To do so, we partition the input bu�er into 32 pairs of columns for Bu�er 1. This
way, the two ports can read both the values in each BRAM at once and get all 64 values in 1 cycle.
For bu�er 2, we need to read all the rows of one column at once so we partition it into 32 pairs of
rows. To partition the bu�ers we use the #pragma HLS ARRAY_PARTITION. For examples
on how to use the pragma see here.

2.8.3 Export the Vitis Kernel

To conclude pipeline the Init_loop_j loop also with an II of 1.
1 #include " MatrixMultiplication .h"
2

3 void mmult(const matrix_type Input_1[MATRIX_WIDTH ∗ MATRIX_WIDTH],
4 const matrix_type Input_2[MATRIX_WIDTH ∗ MATRIX_WIDTH],
5 matrix_type Output[MATRIX_WIDTH ∗ MATRIX_WIDTH]) {
6 #pragma HLS INTERFACE m_axi port=Input_1 bundle=aximm1
7 #pragma HLS INTERFACE m_axi port=Input_2 bundle=aximm2
8 #pragma HLS INTERFACE m_axi port=Output bundle=aximm1
9 matrix_type Bu�er_1[MATRIX_WIDTH][MATRIX_WIDTH];

10 matrix_type Bu�er_2[MATRIX_WIDTH][MATRIX_WIDTH];
11

12 #pragma HLS ARRAY_PARTITION variable=Bu�er_1 complete dim=2
13 #pragma HLS ARRAY_PARTITION variable=Bu�er_2 complete dim=1
14

15 Init_loop_i : for ( int i = 0; i < MATRIX_WIDTH; i++)
16 Init_loop_j : for ( int j = 0; j < MATRIX_WIDTH; j++) {
17 Bu�er_1[ i ][ j ] = Input_1[ i ∗ MATRIX_WIDTH + j];
18 Bu�er_2[ i ][ j ] = Input_2[ i ∗ MATRIX_WIDTH + j];
19 }
20

21 Main_loop_i: for ( int i = 0; i < MATRIX_WIDTH; i++)
22 Main_loop_j: for ( int j = 0; j < MATRIX_WIDTH; j++) {
23 #pragma HLS PIPELINE II=1
24 matrix_type Result = 0;
25 Main_loop_k: for ( int k = 0; k < MATRIX_WIDTH; k++) {
26 Result += Bu�er_1[ i ][k] ∗ Bu�er_2[k][ j ];
27 }
28 Output[i ∗ MATRIX_WIDTH + j] = Result;
29 }

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1399-vitis-hls.pdf#page=231
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30 }

Listing 2.6: MatrixMultiplication.cpp

• Synthesize your design.

• Export. Export your synthesized design:

– right-click on solution 1 and then select Export RTL.

– Choose Vitis Kernel (.xo) as the Format.

– Select output location to be your directory

– Select OK.

• Save your design and quit Vitis HLS .

• Open a terminal and go to your directory. Make sure your terminal environment is initial-
ized as follows.

1 source $AWS_FPGA_REPO_DIR/vitis_setup.sh
2 export PLATFORM_REPO_PATHS=$(dirname $AWS_PLATFORM)

2.9 Run on the FPGA

Connect to your f1.2xlarge and execute the following commands from the terminal to run your
application on the FPGA.

1 source $AWS_FPGA_REPO_DIR/vitis_runtime_setup.sh
2 # Wait till the MPD service has initialized . Check systemctl status mpd
3 ./ host ./ mmult.awsxclbin

You should see the following �les generated when you ran:
1 pro�le_summary.csv
2 timeline_trace . csv
3 xclbin . run_summary

Listing 2.7: FPGA Run Output

Add, commit and push these �les in the repository you created and then shutdown your F1
instance.
Note: Make sure to shut down your F1 instance! It costs 1.65 $/hr.

2.10 Additional Documentation

• Read this to learn about the syntax of the code in hls/MatrixMultiplication.cpp.

• Read this to learn about how the hardware function is utilized in Host.cpp.

https://github.com/Xilinx/Vitis-Tutorials/blob/master/Getting_Started/Vitis/Part3.md##the-source-code-for-the-vector-add-kernel
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Getting_Started/Vitis/Part3.md##the-source-code-for-the-vector-add-kernel
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• Read this to learn about simple memory allocation and OpenCL execution.

• Read this to learn about aligned memory allocation with OpenCL.

https://developer.xilinx.com/en/articles/example-1-simple-memory-allocation.html
https://developer.xilinx.com/en/articles/example-3-aligned-memory-allocation-with-opencl.html


chapter 3

Krusell Smith (1998)

This section describes the FPGA acceleration of the Krusell and Smith (1998) algorithm in Cheela
et al. (2022).

3.1 Directory Structure

The directory is structured in four folders. The folder common contains code shared by FPGA and
CPU acceleration. The folders cpu and fpga contain code which is speci�c to the two acceleration
platforms. Results are stored in the folder results.

1 code/
2 /common
3 / libs
4 ap_common.h
5 ap_decl .h
6 ap_�xed_base .h
7 ap_�xed_ref .h
8 ap_�xed_special .h
9 ap_�xed .h

10 ap_int_base .h
11 ap_int_ref .h
12 ap_int_special .h
13 ap_int .h
14 xcl2 . cpp
15 xcl2 .hpp
16 xcl2 .mk
17 /shocks
18 agshock. txt
19 idshock . txt
20 / util
21 2run_me.sh
22 compare_results .py
23 input_pack.py
24 matlab_compare.m
25 OpenMPI_install.sh
26 power.sh
27 save_results . sh
28 app.cpp
29 app.h
30 cons.h

31 de�nitions .h
32 dev_options .h
33 init . cpp
34 init .h
35 stopwatch.h
36 /cpu
37 sw.cpp
38 sw.h
39 / executables
40 / fpga_a�
41 / host_executables
42 /fpga
43 design . cfg
44 hls_con�g . tcl
45 hw.cpp
46 hw.h
47 / results
48 /fpga
49 /double
50 / �xed
51 /matlab
52 /openmpi
53 /double
54 /power_usage
55 /double
56 /seq_cpu
57 /double
58

59 Make�le
60 README.md
61 xrt . ini
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3.2 The Code

• Make�le. Run the Make�le to execute the application. The Make�le has 3 main targets
that allow you to choose the execution mode:

- Serial execution on CPU: make cpu,

- Parallel execution on CPU using Open MPI: make openmpi,

- Speci�ed FPGA Target and Device: make fpga.

There are other auxiliary targets. Execute make help to learn more about them. See section
3.3 for a complete guide on how to setup and launch the application.

• Main. The /common/app.cpp is the main �le that initializes the variables, transfers the
data to the fpga, launches the hardware execution (cpu serial, cpu parallel, fpga), fetches
back the result from the kernel.

• Kernel. The /fpga/hw.cpp contains the Vitis kernel for FPGA execution. The /cpu/sw.cpp
contains the kernel executed on the CPU.

• Results. Results are stored in /results.

• Header Files. Header �les and helper functions are contained in the following directory

– /common: �les shared by FPGA and CPU codes

– /common/libs: libraries for FPGA software emulation

– /cpu: �les unique to CPU execution

– /fpga: �les unique to FPGA execution

• Hardware Design.

– design.cfg, hls_con�g.tcl de�nes several options for the v++ compiler . Learn more
about it here.

– xrt.ini de�nes the options necessary for Vitis Analyzer .

3.3 Setup and Launch

This section summarizes the steps required to compile and run the application under the di�erent
acceleration modes provided in the Make�le.

https://developer.xilinx.com/en/articles/using-configuration-files-to-control-vitis-compilation.html
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3.3.1 Shared Instructions

1. Open /code/common/app.cpp and set the number of models N_MODEL you want to com-
pute (1200 in our benchmark speci�cation):

10 #de�ne N_MODEL 6 // total number of models

2. Open /code/common/de�nitions.h and set the grid size:
76 #de�ne NKGRID 100 ///< number of grid points
77 #de�ne NKM_GRID 4 ///< number of grid points for the mean of capital distribution grid

In the FPGA execution the user can only choose NKGRID ∈ {100, 200, 300} and NKM_GRID ∈
{4, 8}.

3. Open /code/common/dev_options.h and set:
9 // Set only one of the below 4 to 1. For best performance, set _ACROSS_ECONOMY to 1 and rest 0

10 #de�ne _BASELINE 0
11 #de�ne _PIPELINE 0
12 #de�ne _WITHIN_ECONOMY 0
13 #de�ne _ACROSS_ECONOMY 1

3.3.2 Serial execution on CPU

- Setup. Complete the steps 1-3 in section 3.3.1

- Setup. To use the Jump search algorithm similar to that implemented in the FPGA, select
the _CUSTOM_BINARY_SEARCH in /code/common/dev_options.h

16 // set only one for the below 3 to 1. For best CPU performance, set _CUSTOM_BINARY_SEARCH to 1 and rest 0
17 #de�ne _LINEAR_SEARCH 0
18 #de�ne _BINARY_SEARCH 0
19 #de�ne _CUSTOM_BINARY_SEARCH 1

- Compile and run. Go to the directory /code. From there, you can use the following
terminal instructions to compile and run two alternative versions of the application:

1 make cpu
2 ./ app

3.3.3 Parallel execution on CPU using Open MPI

1 sh OpenMPI_install.sh

- Set the environment by executing the following commands in the terminal from the parent
directory
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1 export PATH=$PATH:$HOME/openmpi/bin
2 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/openmpi/lib

- Setup. Complete the steps 1-3 in section 3.3.1

- Compile and run. Go to the directory /code. From there, you can use the following
terminal instructions to compile and run two alternative versions of the application:

1 make openmpi
2 mpirun −n N ./openmpi_app // replace N with the number of CPU cores

3.3.4 FPGA execution

- Go to the directory /code.

- Setup. Complete the steps 1-3 in section 3.3.1

- The FPGA execution has two running modalities: the software emulation and the hardware
image generation

1. Software emulation

- Description. The main goal of software emulation (sw_emu) is to ensure func-
tional correctness of the host program and kernels. Software emulation pro-
vides a purely functional execution, without any modeling of timing delays, or
latency; it does not give any indication of the accelerator performance. Hence,
the sw_emu target can be built and executed on the build instance which may
not have an FPGA connected to it. Click here to know more about this.

- Compile and Run. From the folder /code, execute the following instruction in
the terminal to compile and run the application:

1 // setup environment
2 source $AWS_FPGA_REPO_DIR/vitis_setup.sh
3 export PLATFORM_REPO_PATHS=$(dirname $AWS_PLATFORM)
4 // build the target
5 make fpga TARGET=sw_emu
6 // run
7 source $AWS_FPGA_REPO_DIR/vitis_runtime_setup.sh
8 export XCL_EMULATION_MODE=sw_emu
9 ./ host ./ fpga/ build /runOnfpga.xclbin

2. System Hardware Target

- Description. . When the build target is the hardware, v++ builds the FPGA
binary for the Xilinx device by running Vivado synthesis and implementation

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Software-Emulation
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on the design. It is normal for this build target to take a longer period of time
than generating either the software or hardware emulation targets in the Vitis
IDE. Therefore, we recommend using a lower cost build instance (z1d.2xlarge) to
generate the fpga target. Click here to know more about this.

- Compile. From the folder /code, execute the following instruction in the termi-
nal to generate the host and the fpga target �les on the build instance:

1 make clean
2 // setup environment
3 source $AWS_FPGA_REPO_DIR/vitis_setup.sh
4 export PLATFORM_REPO_PATHS=$(dirname $AWS_PLATFORM)
5 export XCL_EMULATION_MODE=hw
6 // build the target
7 make a� EMAIL=<email address>

- Run. Launch a new runtime instance (f1.2xlarge) and copy the host and the
fpga targets (host, runOnfpga.awsxclbin) �les from build instance to the runtime
instance. Then execute the following commands to set up the vitis environment
and run on the fpga device. If you like to recreate the results from the paper
using the fpga binaries from the git repository, refer to section 3.8 that makes
use of a bash script �le.

1 git clone https :// github .com/aws/aws−fpga.git $AWS_FPGA_REPO_DIR //AWS repo
2 git clone https :// github .com/AleP83/KS−FPGA.git −b "dev_accel" // KS−FPGA Project
3 source $AWS_FPGA_REPO_DIR/vitis_setup.sh
4 source $AWS_FPGA_REPO_DIR/vitis_runtime_setup.sh
5 export PLATFORM_REPO_PATHS=$(dirname $AWS_PLATFORM)
6 ./ host ./ runOnfpga.awsxclbin

3.4 Header Files

File: /code/common/de�nitions.h
Description: This is the main header �les. It de�nes all variables and structures, it de�nes and
initializes the model parameters, the simulation parameters, the number of states, the tolerance
for convergence or the number of iterations, the �le paths, among others.
Note. The �le describes the main structures:

• env_t: stores model parameters, stochastic transition matrix, grids, wealth function, tax
rate, wage, interest rate, and auxiliary variables for the agents optimization problem;

• input_t: stores aggregate and idiosyncratic shocks;

• var_t: stores equilibrium individual capital holdings, cross-sectional distribution, coe�-
cients of aggregate law of motion of capital and time series of aggregate capital holdings;

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/System-Hardware-Target
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• out_t: stores the computed results of cross-sectional distribution, individual capital policy
functions, coe�cients for good and bad states, r2 values;

• preinit_t: stores the initial values of the aggregate capital and wealth.

File: /code/common/dev_options.h
Description: This header �le de�nes the macros used for the hardware acceleration, including:
unrolling factors, �nite precision of operations, and associated debugging macros.

File: /code/common/app.h
Description: This header �le contains auxiliary C libraries in support of I/O operations, math
operations, timing etc.

File: /code/common/cons.h
Description: This header �le stores as constant the encoded aggregate and idiosyncratic shocks
used in the Krusell and Smith simulation.

Files: /code/common/libs/*.h
Description: This folder contains a collection of header �les which provides both integer and
�xed-point arbitrary precision data types for OpenCL C++ API. The advantage of arbitrary preci-
sion data types is that they allow the C code to be updated to use variables with smaller bit-widths
and then for the C simulation to be re-executed to validate that the functionality remains iden-
tical or acceptable.

Files: /code/fpga/hw.h
Description: This header �le declares variables and functions in support of the FPGA accelera-
tion kernel. In particular it declares:

• the kernel function runOnfpga;

• the structure hw_env_t which is a stripped down version excluding the of the env_t with
only necessary structure members. This can be removed in the future by utilizing the
de�nition from de�nitions.h;

• the regression functions;

• the linear interpolation function hw_�ndrange and its variations;

• auxiliary math functions.

Files: /code/cpu/sw.h
Description: This header �le declares variables and functions in support of the CPU accelera-
tion kernel, and it is comparable to hw.h for the FPGA.
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Files: /code/cpu/init.h
Description: This header �le declares the functions used in init.cpp

Files: /code/cpu/stopwatch.h
Description: This header �le contains the class de�nition for the stopwatch timer which is used
for measuring all latencies.
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3.5 Main: app.cpp

The �le /common/app.cpp is the main. The application uses the following macros to activate
the alternative acceleration options: serial CPU (_SERIAL_CPU_MODE), Open MPI parallel CPU
cores (_OPENMPI_MODE), FPGA acceleration (_FPGA_MODE)

1 # ifdef _OPENMPI_MODE
2 #de�ne OMPI_MODE 1 // 1 ON, 0 OFF
3 # elif _FPGA_MODE
4 #de�ne FPGA_MODE 1 // 1 ON, 0 OFF
5 # elif _SERIAL_CPU_MODE
6 #de�ne SERIAL_CPU_MODE 1 // 1 ON, 0 OFF
7 #endif

When we issue the make commands make cpu, make openmpi, make fpga, the appropriate �ag
gets de�ned using -D �ag which would set only one of the above modes.

3.5.1 Overview

The rest of the section describes the FPGA acceleration associated with _FPGA_MODE.

1. Setting up the OpenCL environment

2. Allocating the bu�ers

3. Set up the kernels and Initialize Bu�ers

4. Bu�er transfer to the FPGA

5. Kernel execution on FPGA

6. Bu�er transfer from FPGA

7. Event synchronization

8. Post processing and release of resources

3.5.2 Setting up the OpenCL environment

The host code in the Vitis core development kit follows the OpenCL programming paradigm.
To setup the runtime environment properly, the host application needs to initialize the standard
OpenCL structures: target platform, devices, context, command queue, and program.
Note: The users can follow the native OpenCL C API. However, in this tutorial, we use OpenCL
C++ wrapper API which is supported by XRT and many of the Vitis Examples are written using
the C++ API. For more information on this C++ wrapper API, refer to this link.. However, for
the CPU implementation, we only use C programming language apart from the object-oriented
class in stopwatch.h �le.

https://github.com/Xilinx/Vitis_Accel_Examples
https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.2.pdf
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It is always a good coding practice to use error checking after each of the OpenCL API calls. This
can help debugging and improve productivity when you are debugging the host and kernel code
in the emulation �ow, or during hardware execution.

368 cl_int err = CL_SUCCESS;

The second argument to the host executable stores the path to the FPGA binary �le (.xclbin or
.awsxclbin)

369 std :: string binaryFile = argv [1];

After a Xilinx platform is found, the application needs to identify the corresponding Xilinx de-
vices. In case of larger f1 instances, this may go up to 8 devices.

373 auto devices = xcl :: get_xil_devices () ;

and count them.
374 auto device_count = devices . size () ;
375 int NUM_DEVICES = (int) device_count;

The OpenCL program is written such that it automatically scales up depending on the number of
FPGA devices that are found attached to the device. Since each of the FPGA’s can be individually
programmed, we create a 1 dimensional vectors of context, programs, queues, binaries. In the
code example, the cl::Context API is used to create a context for each of the device.

380 vector<cl :: Context> contexts (device_count) ;

Create a program from a vector of source strings and the default context. Does not compile or
link the program.

381 vector<cl :: Program> programs(device_count);

Create one command queue vector for each of the FPGA devices
382 vector<cl :: CommandQueue> queues(device_count);

Create a vector of kernels. Since the design makes use of three-kernel compute units per FPGA
device, we create a vector of 3 kernels for each device

383 vector< vector<cl :: Kernel> > kernels (device_count , vector<cl :: Kernel>(NUM_KERNELS));

Attribute device name to each FPGA device
384 vector<std :: string > device_name(device_count);

cl::Program creates an OpenCL program object for a context and loads the binary bits speci-
�ed by the binary in each element of the vector binaries into the program object.

385 vector<cl :: Program:: Binaries > bins (device_count) ;

Upon initialization, the host application needs to identify a platform composed of one or more
Xilinx devices. The command cl::Platform::get stores the list of available platforms in the vector
platform.
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368 vector<cl :: Platform> platform ;

Our application assigns NUM_KERNELS kernels per device to the variable. So each FPGA-kernel
compute unit is in charge of computing sequentially COMP_PER_DEVICE economies

390 int COMP_PER_DEVICE = ceil(N_MODEL/(NUM_DEVICES∗NUM_KERNELS));

For example in our baseline application we execute 1200 models, N_MODEL. When we accelerate
using the f1.16xlarge instance we can launch 3 kernels on each of the 8 devices in parallel. Each
of the 24 FPGA-kernel compute units is in charge of computing (1200/(8*3)) = 50 economies
sequentially.

3.5.3 Allocate the Bu�ers and Events

In the OpenCL API, data transfer between the host and the device (fpga) can be achieved by
creating bu�ers using the command cl::Bu�er API and then assigning the data pointer to it. In
order to create these bu�ers in the stack memory, we need the size of the bu�ers (in bytes). This
variable is used to keep track of the number of IHP iterations. Since the hardware expects a �xed
size bu�er, 300 elements is arbitrarily chosen for our algorithm.

393 const size_t hw_iter_size = 300; // /< arbitrary number chosen to represent max iterations

To determine the amount of bytes allocated per bu�er we multiply total number of elements
by the size of the data type used to represent the data

395 const size_t hw_preinit_size_bytes = sizeof ( preinit_t ) ;
396 const size_t hw_out_size_bytes = sizeof (out_t ) ;
397 const size_t hw_iter_size_bytes = sizeof ( int ) ∗ ( hw_iter_size ) ;

Initialize a 2D vector array for inputs and outputs. In this example, we are going to run the same
economy several times, therefore we only need to initialize the input once which can be sent
several times to di�erent kernels on di�erent fpga’s. The output result from each of the fpga
kernel is copied to di�erent �les and stored.

403 vector<vector< preinit_t > > hw_preinit(NUM_DEVICES, vector<preinit_t> (NUM_KERNELS));
404 vector<vector<out_t> > hw_out(NUM_DEVICES, vector<out_t> (NUM_KERNELS));

Initialize a 3D vector array, in which the size of the 1st dimension is the number of devices, the
size of the 2nd dimension is the number of kernels (per device), and the 3rd dimension is the
length of each of the variable.

For example, in the previous code, we instantiate a 2D vector structure variable of type preinit_t.
The dimensions of this vector is the number of FPGA-kernel computing units NUM_DEVICES x
NUM_KERNELS.

Initialize 2 dimensional OpenCL bu�ers for each of the variable that needs to be transferred
between the host and the device.



3.5 Main: app.cpp 33

408 vector< vector<cl :: Bu�er> > bu�er_agshock(device_count , vector<cl :: Bu�er>(NUM_KERNELS));
409 vector< vector<cl :: Bu�er> > bu�er_idshock (device_count , vector<cl :: Bu�er>(NUM_KERNELS));
410 vector< vector<cl :: Bu�er> > bu�er_preinit (device_count , vector<cl :: Bu�er>(NUM_KERNELS));
411 vector< vector<cl :: Bu�er> > bu�er_out (device_count , vector<cl :: Bu�er>(NUM_KERNELS));
412 vector< vector<cl :: Bu�er> > bu�er_hw_iter (device_count , vector<cl :: Bu�er>(NUM_KERNELS));

Vector of events are created to coordinate the read, compute, and write operations such that each
iteration is independent of each other, which allows for overlap between the data transfer and
compute.

416 vector< vector< vector<cl :: Event> >> memory_read_events(NUM_DEVICES, vector< vector<cl::Event> >(NUM_KERNELS, std::vector<cl::
Event>(1)));

417 vector< vector< vector<cl :: Event> >> task_events (NUM_DEVICES, vector< vector<cl::Event> >(NUM_KERNELS, std::vector<cl::Event>(1))
) ;

418 vector< vector< vector<cl :: Event> >> memory_write_events(NUM_DEVICES, vector< vector<cl::Event> >(NUM_KERNELS, std::vector<cl::
Event>(1)));

For example, in the above code, we instantiate a 3D vector of type cl::Event for using it for read
events in later sections. The dimensions of this vector are NUM_DEVICES x NUM_KERNELS x
1.

3.5.4 Set Up Kernels and Initialize Bu�ers

After setting up the runtime environment, such as identifying devices, creating the context, com-
mand queue, and program, the host application should identify the kernels that will execute on
the device, and set up the kernel arguments.

OpenCL context, queues and device names are initialized for each of the FPGA’s.
429 OCL_CHECK(err, contexts[d] = cl :: Context(devices [d ], props, nullptr , nullptr , &err) ) ;
430 OCL_CHECK(err, queues[d] = cl::CommandQueue(contexts[d], devices[d], CL_QUEUE_PROFILING_ENABLE |

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err));
431 OCL_CHECK(err, device_name[d] = devices[d].getInfo<CL_DEVICE_NAME>(&err));

Each of the FPGA devices needs to be loaded and programmed with a binary �le.
434 �leBuf [d] = xcl :: read_binary_�le ( binaryFile ) ;
435 bins[d ]. push_back({ �leBuf [d ]. data () , �leBuf [d ]. size () }) ;
436 programs[d] = load_cl2_binary ( bins[d ], devices [d ], contexts [d]) ;

The OpenCL API cl::Kernel should be used to access the kernels contained within the .xclbin �le
(the "program"). The cl::Kernel object identi�es a kernel in the program loaded into the FPGA that
can be run by the host application. In our paper we propose a design that can at most instantiate
three kernels into the three di�erent compute units (SLRs) of our FPGA device. Therefore, we
identify each of the three kernels with the extension shown below. The kernel names are de�ned
as in the design.cfg �le. For example, in the below code, we have the NUM_KERNELS set to 3.
So, the three kernel names that will be implemented in a single FPGA will be of the names
runOnfpga_1, runOnfpga_2 and runOnfpga_3. Bu�ers are created for each of the FPGA devices
separately as shown below.

438 for ( int k = 0; k < NUM_KERNELS; k++) {
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439 if ( k% 5 == 0 ) {
440 OCL_CHECK(err, kernels[d][k] = cl :: Kernel(programs[d], "runOnfpga:{runOnfpga_1}", &err) ) ;
441 }
442 if ( k% 5 == 1 ) {
443 OCL_CHECK(err, kernels[d][k] = cl :: Kernel(programs[d], "runOnfpga:{runOnfpga_2}", &err) ) ;
444 }
445 if ( k% 5 == 2 ) {
446 OCL_CHECK(err, kernels[d][k] = cl :: Kernel(programs[d], "runOnfpga:{runOnfpga_3}", &err) ) ;
447 }
448 }

Interactions between the host program and hardware kernels rely on creating bu�ers and trans-
ferring data to and from the memory in the device. This process makes use of functions like
cl::Bu�er and clEnqueueMigrateMemObjects. There are two methods for allocating memory
bu�ers, and transferring data:

1. Letting XRT Allocate Bu�ers

2. Using Host Pointer Bu�ers

In the case where XRT allocates the bu�er, use cl::enqueueMapBu�er to capture the bu�er han-
dle. In the second case, allocate the bu�er directly with CL_MEM_USE_HOST_PTR, so you do
not need to capture the handle.

On data center platforms, it is more e�cient to allocate memory aligned on 4k page bound-
aries. On embedded platforms it is more e�cient to perform contiguous memory allocation. In
either case, you can let the XRT allocate host memory when creating the bu�ers. This is done by
using the CL_MEM_ALLOC_HOST_PTR �ag when creating the bu�ers, and then mapping the
allocated memory to user-space pointers using cl::EnqueueMapBu�er . With this approach, it is
not necessary to create a host space pointer aligned to the 4K boundary.

The cl::EnqueueMapBu�er API maps the speci�ed bu�er and returns a pointer created by
XRT to this mapped region. Then, �ll the host side pointer with your data, followed by
cl::EnqueueMigrateMemObject to transfer the data to and from the device. The following code
example uses this style:

450 std :: cout << "Creating Bu�ers [" << d << "] [" << k << " ]... " << std :: endl ;
451 OCL_CHECK(err, bu�er_agshock[d][k] = cl :: Bu�er ( contexts [d ], CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY, (cl::size_type)

AGSHOCK_ARR_SIZE, NULL, &err));
452 OCL_CHECK(err, bu�er_idshock[d][k] = cl :: Bu�er ( contexts [d ], CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY, (cl::size_type)

IDSHOCK_ARR_SIZE, NULL, &err));
453 OCL_CHECK(err, bu�er_preinit[d][k] = cl :: Bu�er ( contexts [d ], CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,

hw_preinit_size_bytes, &hw_preinit[d][k], &err));
454 OCL_CHECK(err, bu�er_out[d][k] = cl :: Bu�er ( contexts [d ], CL_MEM_USE_HOST_PTR | CL_MEM_WRITE_ONLY, hw_out_size_bytes, &

hw_out[d][k], &err));
455 OCL_CHECK(err, bu�er_hw_iter[d][k] = cl :: Bu�er ( contexts [d ], CL_MEM_USE_HOST_PTR | CL_MEM_WRITE_ONLY,

hw_iter_size_bytes, hw_iter[d][k].data(), &err));

There are two main parts of a cl_mem object: host side pointer and device side pointer. Before
the kernel starts its operation, the device side pointer is implicitly allocated on the device side
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memory (for example, on a speci�c location inside the device global memory) and the bu�er
becomes a resident on the device. Using cl::EnqueueMigrateMemObjects this allocation and data
transfer occur upfront, much ahead of the kernel execution. This especially helps to enable
software pipelining if the host is executing the same kernel multiple times, because data transfer
for the next transaction can happen when kernel is still operating on the previous data set, and
thus hide the data transfer latency of successive kernel executions.
In the Vitis software platform, two types of arguments can be set for kernel objects:

1. Scalar arguments are used for small data transfer, such as constant or con�guration type
data. These are write-only arguments from the host application perspective, meaning they
are inputs to the kernel.

2. Memory bu�er arguments are used for large data transfer. The value is a pointer to a
memory object created with the context associated with the program and kernel objects.
These can be inputs to, or outputs from the kernel.

Kernel arguments can be set using the cl::Kernel::setArg command, as shown in the following
example for setting kernel arguments for two scalar and two bu�er arguments.

461 for ( int d = 0; d < NUM_DEVICES; d++) {
462 for ( int k = 0; k < NUM_KERNELS; k++) {
463 OCL_CHECK(err, err = kernels[d][k ]. setArg (0, bu�er_agshock[d][k]) ) ;
464 OCL_CHECK(err, err = kernels[d][k ]. setArg (1, bu�er_idshock [d][k]) ) ;
465 OCL_CHECK(err, err = kernels[d][k ]. setArg (2, bu�er_preinit [d][k]) ) ;
466 OCL_CHECK(err, err = kernels[d][k ]. setArg (3, bu�er_out [d][k]) ) ;
467 OCL_CHECK(err, err = kernels[d][k ]. setArg (4, bu�er_hw_iter [d][k]) ) ;
468 std :: cout << "Comleted Setting Arguments"<< std::endl ;
469 agshock_ptr[d][k] = (unsigned char ∗) queues[d].enqueueMapBu�er(bu�er_agshock[d][k], CL_TRUE, CL_MAP_WRITE, 0,

AGSHOCK_ARR_SIZE);
470 idshock_ptr[d][k] = (unsigned char ∗) queues[d].enqueueMapBu�er(bu�er_idshock[d][k ], CL_TRUE, CL_MAP_WRITE, 0,

IDSHOCK_ARR_SIZE);
471 }
472 }

We then allocate NUM_DEVICES X NUM_KERNELS number of inputs that we keep reusing
to launch across these kernels COMP_PER_DEVICE number of times.

483 env_t env[NUM_DEVICES][NUM_KERNELS];
484 input_t in[NUM_DEVICES][NUM_KERNELS];
485 vars_t vars[NUM_DEVICES][NUM_KERNELS];

For each of the economy, we initialize the inputs that will be transferred to the fpga device.
495 init_all (&env[d][k ], &in[d][k ], &vars[d][k]) ;
496

497 for ( int i =0; i<NSTATES; i++){
498 hw_preinit[d][k ]. kprime[i] = vars[d][k ]. kprime_a[i ];
499 }
500

501 for ( int i =0; i<NSTATES; i++){
502 hw_preinit[d][k ]. wealth[ i ] = env[d][k ]. wealth[ i ];
503 }
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513 memcpy(agshock_ptr[d][k], in[d][k ]. agshock, AGSHOCK_ARR_SIZE);
514 memcpy(idshock_ptr[d][k], in[d][k ]. idshock , IDSHOCK_ARR_SIZE);

3.5.5 Copy Input from Host to Device

Transfer the data from host to global memory using the OpenCL API call enqueueMigrateMem-
Objects. The de�nition of this API can be found here.

526 printf ( "Migrating bu�ers to kernel \n") ;
527 if ( i == 0) {
528 OCL_CHECK(err,
529 err = queues[d].enqueueMigrateMemObjects( {
530 bu�er_agshock[d][k ], bu�er_idshock [d][k ], bu�er_preinit [d][k] },
531 0 /∗ 0 means from host∗/ , nullptr , &memory_read_events[d][k][0]));
532 }
533 else {
534 OCL_CHECK(err,
535 err = queues[d].enqueueMigrateMemObjects( {
536 bu�er_agshock[d][k ], bu�er_idshock [d][k ], bu�er_preinit [d][k] },
537 0 /∗ 0 means from host∗/ , &memory_write_events[d][k], &memory_read_events[d][k][0]));
538 }

3.5.6 Submit Kernel for Execution

Often the compute intensive task required by the host application can be de�ned inside a sin-
gle kernel, and the kernel is executed only once to work on the entire data range. Though the
kernel is executed only one time, and works on the entire range of the data, the parallelism is
achieved on the FPGA inside the kernel hardware. If properly coded, the kernel is capable of
achieving parallelism by various techniques such as instruction-level parallelism (loop pipeline)
and function-level parallelism (data�ow).
In this tutorial, to keep things less complicated, we create a single kernel for each of the SLR com-
pute units in the FPGA device(s). Therefore we can have a maximum of 24 independent kernels
(in the f1.16xlarge) running in parallel. Each kernel has a command queue. When organizing the
allocation of economies across kernels, it is advisable to break them equally among all available
kernels. In this case, an out-of-order command queue can determine how the kernel tasks are
processed as explained in Command Queues.

549 OCL_CHECK(err,
550 err = queues[d].enqueueTask(kernels[d][k ], &memory_read_events[d][k],
551 &task_events[d][k ][0]) ) ;

3.5.7 Copy the results back

After the kernel computation is completed, the host code can initiate the read back of the com-
puted results. Depending on whether the kernel tasks are launched In-Order or Out-of-Order,

https://registry.khronos.org/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueMigrateMemObjects.html
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the results are read back once the cl::event indicates that the data is ready as explained in the
next sections.

562 OCL_CHECK(err,
563 err = queues[d].enqueueMigrateMemObjects( {bu�er_out[d][k ], bu�er_hw_iter [d][k ]},
564 CL_MIGRATE_MEM_OBJECT_HOST, &task_events[d][k], &memory_write_events[d][k][0]));

3.5.8 Event Synchronization

All OpenCL enqueue-based API calls are asynchronous. These commands will return immedi-
ately after the command is enqueued in the command queue. To pause the host program to wait
for results, or resolve any dependencies among the commands, an API call such as clFinish or
clWaitForEvents can be used to block execution of the host program.

578 queues[d]. �nish () ;

Note how the commands have been used in the example above:

1. The clFinish API has been explicitly used to block the host execution until the kernel exe-
cution is �nished. This is necessary otherwise the host can attempt to read back from the
FPGA bu�er too early and may read garbage data.

2. cl::Event

3.5.9 Printing Results

We copy the results into text �les and store the values of each of the computed economy.
590 for ( int d = 0; d < NUM_DEVICES; d++) {
591 for ( int k=0; k < NUM_KERNELS; k++){
592

593 FILE ∗ c�le ;
594 char FileName[512];
595 printf ( "Migrating bu�ers from kernel \n") ; // add kgrid , km grid to �le names
596 sprintf (FileName, "%sfpga_nkM%d−nk%d_i%d_d%d_k%d.txt", KP_OUT_FILE, NKM_GRID, NKGRID, i, d, k);
597 c�le = fopen(FileName, "w") ;
598 for ( int i =0; i<NSTATES; i++){
599 fprintf ( c�le , "%.15 lf \n" , hw_out[d][k].kprime[i ]) ;
600 }
601 fclose ( c�le ) ;
602 .
603 .
604 .
605 }
606 }

In addition to storing several values, we print some of the main results on the serial console for
a quick check.

639 for ( int d=0; d<NUM_DEVICES; d++){
640 for ( int k = 0; k < NUM_KERNELS; k++) {
641 printf ( " i=%d d=%d k=%d Bad Coe� 0: %.15 lf \n" , i , d, k, hw_out[d][k]. coe� [0]) ;
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642 printf ( " i=%d d=%d k=%d Bad Coe� 1: %.15 lf \n" , i , d, k, hw_out[d][k]. coe� [1]) ;
643 printf ( " i=%d d=%d k=%d Bad R2: %.15lf \n" , i , d, k, hw_out[d][k].r2 [0]) ;
644 printf ( " i=%d d=%d k=%d Good Coe� 0: %.15 lf \n" , i , d, k, hw_out[d][k]. coe� [2]) ;
645 printf ( " i=%d d=%d k=%d Good Coe� 1: %.15 lf \n" , i , d, k, hw_out[d][k]. coe� [3]) ;
646 printf ( " i=%d d=%d k=%d Good R2: %.15lf\n\n" , i , d, k, hw_out[d][k].r2 [1]) ;
647 printf ( " i=%d d=%d k=%d Total EGM iter: %d\n", i , d, k, total_egm_iter [d][k]) ;
648 printf ( " i=%d d=%d k=%d Total Main loop iter : %d\n\n" , i , d, k, hw_iter[d][k ][0]) ;
649 }
650 }

Free resources. At the end of the host code, all the allocated resources in the heap memory
should be released. If the resources are not properly released, the Vitis core development kit
might not able to generate a correct performance related pro�le and analysis report. Most of the
OpenCL C++ API’s have the destructor de�ned. Therefore we do not have to de-allocate most of
them.

655 for ( int d=0; d<NUM_DEVICES; d++){
656 for ( int k = 0; k < NUM_KERNELS; k++) {
657 free_all (&in[d][k]) ;
658 }
659 }

3.5.10 Open MPI

This subsection describes the Open MPI-speci�c code associated with _OPENMPI_MODE.
Begin by initializing the MPI environment.

64 mpi_enabled = MPI_Init(NULL, NULL);

Collect the number of processes (available cores).
72 int n_tasks ;
73 MPI_Comm_size(MPI_COMM_WORLD, &n_tasks);

Collect the rank of the processes.
76 int id_task ;
77 MPI_Comm_rank(MPI_COMM_WORLD, &id_task);

Block all processes in the communicator MPI_COMM_WORLD until all processes have called
it.

91 MPI_Barrier(MPI_COMM_WORLD);

Specify the range of models for each process to compute. We assign the economies equally
across processes.

93 // Range of tasks per processor .
94 int i_min_task_id , i_max_task_id;
95

96 // De�ne the Block to be assigned to each task
97 parameters_range_pertask (0, N_MODEL−1,n_tasks,id_task,&i_min_task_id,&i_max_task_id);

Next, the processes compute their assigned economies in parallel.
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107 for ( int i = i_min_task_id ; i <= i_max_task_id; i++) {
108 .
109 .
110 .
111 env_t env;
112 input_t in ;
113 vars_t vars ;
114 out_t out ;
115 int hw_iter [500];
116

117 init_all (&env, &in, &vars) ;
118 .
119 .
120 .
121 runOncpu(&env, &vars, in .agshock, in . idshock , &out, hw_iter) ;
122 }

Save the results of each of the computed model.
137 FILE ∗ c�le ;
138 char FileName[512];
139 printf ( "Migrating bu�ers from kernel \n") ;
140 sprintf (FileName, "%scpu−core−%d_of_%d_nKM%d−nk%d.txt", OPENMPI_KP_OUT_FILE, id_task, n_tasks, NKM_GRID, NKGRID);
141 c�le = fopen(FileName, "w") ;
142 for ( int i =0; i<NSTATES; i++){
143 fprintf ( c�le , "%.15 lf \n" , out .kprime[i ]) ;
144 }
145 fclose ( c�le ) ;
146 .
147 .
148 .

Print the �nal values of R2 score and the Coe�cient values for each model in the terminal.
176 printf ( " Total EGM iter: %d\n", total_egm_iter ) ;
177 printf ( " Total Main loop iter : %d\n", hw_iter [0]) ;
178 printf ( "Bad Coe� 0: %.15 lf \n" , out . coe� [0]) ;
179 printf ( "Bad Coe� 1: %.15 lf \n" , out . coe� [1]) ;
180 printf ( "Good Coe� 0: %.15 lf \n" , out . coe� [2]) ;
181 printf ( "Good Coe� 1: %.15 lf \n" , out . coe� [3]) ;
182 printf ( "Bad R2: %.15 lf \n" , out . r2 [0]) ;
183 printf ( "Good R2: %.15 lf \n\n" , out . r2 [1]) ;

After the processes have completed their assigned economies, terminate the MPI environ-
ment and exit.

223 MPI_Finalize () ;
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3.6 Kernel: hw.cpp

The �le /common/hw.cpp contains the hardware design of the kernel.

3.6.1 Common HLS Optimization Pragmas

This section describes the main #PRAGMAs used to design the hardware acceleration of our
algorithm.

3.6.1.1 #pragma HLS ARRAY_PARTITION

Each memory block (BRAM, URAM) consists of a limited number of memory ports to read or
write from the memory. For example a BRAM block usually consist of 2 ports. When data is
stored in a BRAM in a contiguous manner, we can only read a maximum of 2 elements in the
same clock cycle for a dual port BRAM block. This may create a bottleneck when we want to
access more than two elements simultaneously. To overcome this challenge, Xilinx suggest to
store the data across multiple blocks of memory instead of storing it in a contiguous manner. By
partitioning an array across N memory blocks, we utilize N number of memory blocks each of
which can have up to 2 memory ports thereby enabling a maximum of 2N memory accesses in
a single cycle. We can instruct the Vitis complier to split the elements of an array and then map
them to smaller arrays using #pragma HLS ARRAY_PARTITION. There are 3 main ways to
partition an array as described in Figure 3.1. Source: Xilinx link.

Figure 3.1: Partitioning Arrays: Three types

Note: Array partition using the three types: (i) Block; (ii) Cyclic; and (iii) Complete. The image is taken
from Xilinx UG1393.

3.6.1.2 #pragma HLS UNROLL

In order to make use of the fpga resources, the designer can spatially unroll loops to create
multiple independent operations rather than a single collection of operations. The #pragma

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Array-Configuration
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/gle1504034361378.html
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Array-Configuration
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-unroll
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-unroll
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Figure 3.2: Partitioning Dimensions of an Arrays

Note: This �gure shows how the same array can be partitioned across di�erent axis (0, 1, 3) resulting in
240, 10 and 4 separate arrays respectively. The image is taken from Xilinx UG1393.

HLS UNROLL transforms loops by creating in hardware multiple copies of a loop body such
that they can all occur in parallel. By default the unrolling is set to complete, however, the user
can set a speci�c number using the object factor. Source: Xilinx link.

3.6.1.3 #pragma HLS PIPELINE

A pipelined function (or loop) processes new inputs every N clock cycles, where N is the Initia-
tion Interval (II) of the loop or a function. By default, the II for the #pragma HLS PIPELINE is
set to 1. However, a user can specify the required value using the II option for the pragma.

The Figure 3.4 shows a case where placing the pipeline pragma at di�erent loop locations
results in 3 di�erent unrolling of the inner loops along with the increased hardware resources
and memory accesses. The user needs to make a conscious choice about the placement of the
pipeline pragma. If the data accessed inside the loop is unable to process in a single cycle, the
II of the loop would change from 1 to N, where N is the number of clock cycles after which the
data of the next loop iteration can be accessed.

The loop pipelining can be prevented when there are loop carry dependency or if the inner
loops consist of variable loop bounds. It can also be limited if the required data is unable to be
accessed in a single clock cycle. In that case, the designer can solve the problem by using the
#pragma HLS ARRAY_PARTITION discussed in the previous section. Source: Xilinx link.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-unroll
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Array-Configuration
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-unroll
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#uyd1504034366571
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/fde1504034360078.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/fde1504034360078.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/fde1504034360078.html
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Figure 3.3: Impact of various factors of loop Unrolling

Note: This �gure shows how the unrolling by di�erent factors decreasing the overall latency of the loop
while increasing the hardware resources.

Figure 3.4: Impact of Pipeline pragma at di�erent levels

3.6.1.4 #pragma HLS LOOP_TRIPCOUNT

This pragma does not perform any optimization and has no impact on the results of the synthesis.
However, for a unde�ned loop bounds, this can be applied to manually specify the expected
number of iterations.

When we are in the process of generating the output binary �le, after the �rst step of C
synthesis, the Vitis HLS provides us with the synthesis reports. This reports consists of several
important information regarding the latencies for all the major loops. Wherever, the loop has
a data dependent variable, the tool will be unable to estimate the latencies. Hence, the above
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Figure 3.5: Data dependency preventing II=1

Note: This �gure shows how the data dependency in a loop prevents the pipeline in achieving an II=1.

pragma instructs the tool to calculate the latencies for the given number of iterations. This
information helps us to keep track of the results of the optimizations that we perform.

In this example, the loop_1 is speci�ed to have a minimum, average and maximum trip counts
of 12, 14 and 16 respectively. Without this pragma, the tool cannot determine the loop latency.

1 void foo (num_samples, ...) {
2 int i ;
3 ...
4 loop_1: for ( i =0; i< num_samples;i++) {
5 #pragma HLS loop_tripcount min=12 max=16
6 ...
7 result = a + b;
8 }
9 }

Source: Xilinx link.

3.6.1.5 #pragma HLS INLINE

Removes a function as a separate entity in the hierarchy. This reduces the overhead for the
function call and can allow the function to be optimized into the caller. When you inline, you
will have a separate set of hardware for each place where the function is inlined. Source: Xilinx
link.

3.6.2 Overview

The kernel is organized in:

• a parent function that manages data transfers from and to the host and executes the �xed
point algorithm: runOnfpga;

• four functions that executes the KS algorithm: hw_sim_alm, hw_sim_ihp, hw_sim_ast,
sim_alm_coe�;

https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#sty1504034367099
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#jka1504034359550
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#jka1504034359550
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• auxiliary functions that support or accelerate the algorithm: hw_pow, hw_exp, hw_log,
hw_sqrt, hw_fabs, hw_init_env, hw_rail_values, hw_fxd_rail_values„ hw_�ndrange, hw_�ndrange_n4,
hw_�ndrange_n100, regression, RSqauredCalc.

3.6.3 Parent Kernel Function: runOnfpga

runOnfpga is the parent kernel function which:

1. manages the FPGA interface

2. manages the memory allocation

3. executed the nested �xed point algorithm

4. send the results back to the host

3.6.3.1 Memory Management

The kernel function name of the complete synthesised logic is runOnfpga. The code snippet
below lists the parameter that are passed to the kernel from host. Most of the parameters here
refers to the pointers to the o�-chip DRAM memory which resides in the external DDR memory
in the data center. The memory latency to an o�-chip memory access is extremely large and
cost a lot of energy compared to on-chip memory access. Therefore, the �rst step is to allocate
on-chip memories for all the data-variables which are accessed multiple times and then initialize
the on-chip memories with the data from the o�-chip memory. We discuss some of the memory
allocations of di�erent variables by making use of the di�erent on-chip memory resources such
as BRAM, URAM and Registers.

99 void runOnfpga(
100 const unsigned char ∗hw_agshock,
101 const unsigned char ∗hw_idshock,
102 preinit_t ∗ preinit ,
103 out_t ∗ results ,
104 int ∗hw_iter)

The structure variables which are declared outside the main function are treated as static
variables and the data is retained across multiple inferences. It is recommended to limit the
usage of global variables.

10 /∗ ∗ Static on−PL memories ∗/
11 static hw_env_t st_env;

Throughout the program, we make use of the structure variable st_env which is derived of the
structure type hw_env_t consisting of the calibration parameters and some of the temporary
data variables as de�ned in the �ne hw.h.
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We can create local variables whose scope is limited to the function that they are allocated in.
In our program, we allocate the following variables that are common across di�erent functions.
By default, the Vitis compiler would try to choose a memory type depending on the data access
patterns. For example, if the program only reads a value from a pre-initialized data variable,
the tool may choose to synthesize that variable using single ported BRAM. This consumes less
hardware resources as compared to the dual port BRAM resources. Most of the default memory
allocations work well with the designs. However, the user is free to change the default memory
types as per their requirement using the #pragma HLS BIND_STORAGE.

We optimize the memory resource for storing the Individual Shocks which is declared here
as idshock. The program uses a #ifdef condition which checks for PACK_IDS. If this is enabled in
the dev_options.h �le, we instruct the tool to allocate NEW_IDSHOCK_SIZE number of rows of
width 72bits. Usually, the x86 machines are limited to using a double to store large numbers.
However, we can choose to use a custom �xed point number that can be larger than 64 bits. More
details about this is explained below. In the case where the PACK_IDS is disabled, the tool is free
to choose a suitable memory, which is observed to be BRAM18.

106 unsigned char agshock[AGSHOCK_ARR_SIZE];
107 # if PACK_IDS
108 ap_uint<72> idshock[NEW_IDSHOCK_SIZE] = {0};
109 #else
110 unsigned char idshock[IDSHOCK_ARR_SIZE] = {0};
111 #endif
112

113 real st_kcross [N_AGENTS];
114 real st_kprimes[NUM_KPRIMES][NSTATES];
115 real kmts[SIM_STEPS];
116 real r2[NSTATES_AG];
117 real kmprime[NSTATES_AG ∗ NKM_GRID];
118 real coe� [NCOEFF] = {0, 1, 0, 1};
119 real metric_coe� = 1000; // some large number

121 # if PACK_IDS
122 #pragma HLS bind_storage variable = idshock type = RAM_1P impl = URAM
123 #endif

In our program, we optimize the memory usage for some of the data variables. the variable
is speci�ed using the keyword variable, the type of memory is selected using type and the im-
plementation using impl. Xilinx provides a complete list of possible combinations that can be
found here. By choosing these options, the tool will now use URAM memory of type single port
RAM to implement the idshock variable. We choose a single port RAM as we are going to write
the data to this variable only once and read the data from here only once in a single clock cycle.
The data read for idshock is further explained in the section (hw_sim_ast). Note that for all the
arrays, the size needs to be speci�ed for it to be synthesised.

130 #pragma HLS array_partition variable = st_env .k complete dim = 1
131 #pragma HLS array_partition variable = st_env .km complete dim = 1

The memory containing the individual capital and the mean of the aggregate capital distribution
needs to be accessed multiple times in the same clock cycle. Therefore, these two variables are

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-bind_storage
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-bind_storage
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partitioned completely.
After allocating the on-chip memories for the di�erent data variables, we now need to ini-

tialize the local on-chip memories with the data from the o�-chip memory before we start using
them in Eq. ??. To perform this step e�ceintly, Xilinx recommends to use Burst Transfer . Burst
transfer refers to reading or writing chunks of data to or from the global memory in a single
request. This is the most e�ective optimization to reads/writes data to external memory which
is usually the DDR. The below code copies the aggregate shocks using the pointer hw_agshock
pointing to a location in the external memory to the data variable agshock which resides on the
on-chip memory.

136 for ( int i = 0; i < AGSHOCK_ARR_SIZE; i++)
137 {
138 agshock[i] = hw_agshock[i];
139 }

Similarly, now we want to burst transfer the id shocks. In the code snippet below, we have
two di�erent options provided to demonstrate the improvement by using URAM. When the
PACK_IDS is enabled, we instruct the compiler to copy 8 elements of the input data elements
which is of 8 bits size into a single element of on-chip unsigned �xed point data type that is of
size 64 bits. By doing so, we can access 64 bits of idshocks by accessing a single element of the
idshocks. Otherwise, the compiler would use the default BRAM memory to store the idshock
where we can access a maximum of 8 di�erent idshock s for each access to an element in the
array.

141 # if PACK_IDS
142 // use URAM to store the idshocks
143 // 8 idshocks are packed into 1 byte−> (1,100 ∗ 10,000 / 8) = 1,375,000 bytes
144 // copy to data variable of size 64 bits . Hence, 8 input bytes are copied to one element
145 main_2: // loop over each of the 1,100 time step . (10,000 / 8) = 1250
146 for ( int i = 0, j = 0; i < IDSHOCK_ARR_SIZE; i = i + 1250)
147 {
148 main_2_2: // for each time step , copy 8 bytes into a single element of size 64 bits
149 for ( int k = 0; k < 1250; j++)
150 {
151 // handle edge case where last 2 bytes are remaining since 1,250 is not devisible by 8
152 if (k == 1248)
153 {
154 idshock[ j ] = (hw_idshock[i + k + 1] << 8) | (hw_idshock[i + k]) ;
155 k = k + 2;
156 }
157 else
158 {
159 idshock[ j ] = ((( ap_uint<72>)hw_idshock[i + k + 7] << 56) |
160 (( ap_uint<72>)hw_idshock[i + k + 6] << 48) |
161 (( ap_uint<72>)hw_idshock[i + k + 5] << 40) |
162 (( ap_uint<72>)hw_idshock[i + k + 4] << 32) |
163 (( ap_uint<72>)hw_idshock[i + k + 3] << 24) |
164 (( ap_uint<72>)hw_idshock[i + k + 2] << 16) |
165 (( ap_uint<72>)hw_idshock[i + k + 1] << 8) |
166 (( ap_uint<72>)hw_idshock[i + k + 0]) ) ;
167 k = k + 8;
168 }
169 }

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimizing-AXI-System-Performance
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170 }
171

172 #else
173 // use BRAM to store the idshocks
174 main_2:
175 for ( int i = 0; i < IDSHOCK_ARR_SIZE; i++)
176 {
177 idshock[ i ] = hw_idshock[i];
178 }
179 #endif

Further, we created a function call to initialize the remaining data variables.
182 hw_top_init(st_kprimes , st_kcross ) ;

The capital function for t=0 - kprimes, and kcross are burst copied from the global memory.
16 void hw_top_init(
17 real st_kprimes[NUM_KPRIMES][NSTATES], real st_kcross[N_AGENTS]
18 )
19 {
20 init_1 :
21 for ( int j = 0; j < NSTATES; ++j)
22 {
23 real val = kp_in[j ];
24 for ( int k = 0; k < NUM_KPRIMES; ++k)
25 {
26 st_kprimes[k][ j ] = val ;
27 }
28 }
29

30 init_2 :
31 for ( int j = 0; j < N_AGENTS; ++j)
32 {
33 st_kcross [ j ] = env__kss;
34 }

Note that the initialization from here on-wards can be moved to the host side and the initial-
ized data can be sent to the device. This is left for future experiments. To minimize some of the
one-time initialized data variables, we pre-compute the result and store it locally.

36 st_env . irate_factor [0] = 0.356400000000000;
37 st_env . irate_factor [1] = 0.363600000000000;
38

39 st_env .wage_factor[0] = 0.633600000000000;
40 st_env .wage_factor[1] = 0.646400000000000;
41

42 st_env . cons2_factor [0] = 0.150000000000000;
43 st_env . cons2_factor [1] = 1.094444444444445;
44 st_env . cons2_factor [2] = 0.150000000000000;
45 st_env . cons2_factor [3] = 1.104861111111111;
46

47 hw_init_env() ;
48

49 return ;

After all the burst reads, we initialize the global env structure variable using the following
code.
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900 void hw_init_env()
901 {
902 #pragma HLS inline
903 st_env . alpha = env__alpha; // 0.36 (Output capital share)
904 st_env . beta = env__beta; // 0.99 (Quarterly subjective discount factor )
905 st_env . delta = env__delta ; // 0.025 (Quarterly depreciation rate )
906 st_env .mu = env__mu; // 0.15 (Unemployment bene�ts in terms of wages)
907 st_env . l_bar = env__l_bar; //
908 st_env . delta_a = env__delta_a ; // 0.01
909

910 st_env . l_bar_inv = env__l_bar_inv; // 0.9 (Time endowment) ?
911 st_env .gamma_inv = env__gamma_inv;
912 st_env .gamma_neg = env__gamma_neg;
913 st_env .gamma_neg_inv = env__gamma_neg_inv;
914

915 st_env . epsilon_u = env__epsilon_u;
916 st_env . epsilon_e = env__epsilon_e;
917

918 st_env .ur[0] = env__ur_0;
919 st_env . er [0] = (1 − st_env .ur [0]) ;
920 st_env .ur[1] = env__ur_1;
921 st_env . er [1] = (1 − st_env .ur [1]) ;
922

923 st_env . er_inv [0] = 1 / st_env . er [0];
924 st_env . er_inv [1] = 1 / st_env . er [1];
925

926 // st_env . kss = hw_pow((1./st_env.beta−(1.−st_env . delta ) ) /st_env . alpha ,1./( st_env . alpha−1)) ;
927 st_env . kss = env__kss;
928

929 // transition
930 st_env .P[0] = 0.525;
931 st_env .P[1] = 0.35;
932 st_env .P[2] = 0.03125;
933 st_env .P[3] = 0.09375;
934 st_env .P[4] = 0.038889;
935 st_env .P[5] = 0.836111;
936 st_env .P[6] = 0.002083;
937 st_env .P[7] = 0.122917;
938 st_env .P[8] = 0.09375;
939 st_env .P[9] = 0.03125;
940 st_env .P[10] = 0.291667;
941 st_env .P[11] = 0.583333;
942 st_env .P[12] = 0.009115;
943 st_env .P[13] = 0.115885;
944 st_env .P[14] = 0.024306;
945 st_env .P[15] = 0.850694;
946

947 // parmshocks
948 st_env . epsilon [0] = st_env . epsilon_u ;
949 st_env . epsilon [1] = st_env . epsilon_e ;
950 # if AST_UNROLL
951 for ( int k = 0; k < NUM_KCROSS; ++k)
952 {
953 #pragma HLS pipeline o�
954 st_env . epsilon2 [k][0] = 0;
955 st_env . epsilon2 [k][1] = 1;
956 }
957 #else
958 st_env . epsilon2 [0] = 0;
959 st_env . epsilon2 [1] = 1;
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960 #endif
961

962 st_env .ag[0] = 1 − st_env . delta_a ;
963 st_env .ag[1] = 1 + st_env . delta_a ;
964 st_env .ag2[0] = 0;
965 st_env .ag2[1] = 1;
966 return ;
967 }

3.6.3.2 Fixed Point Algorithm

The following data variables are used to keep track of the total number of iterations required for
the convergence of the ALM coe�cients hw_main_iter and individual household IHP problem
curr_ihp_iter, and an array to store the number of IHP iterations at every ALM coe�cient loop
iteration. These variables (among others) are used in the validation phase to debug and compare
the results with the MATLAB code.

155 int hw_main_iter = 0; // total number of ihp calls
156 int curr_ihp_iter = 0; // number of ihp iterations in each ihp call
157 int hw_ihp_iter[300] = {0}; // local mem array to store the number of ihp iterations

After completing all the memory initialization, the runOnfpga function launches the nested
�xed point algorithm:

• hw_sim_alm: updates the expectations about the �rst moment of the capital distribution,
m′;

• hw_sim_ihp: solves the individual household (IHP) problem

• hw_sim_ast: performs the stochastic simulation

• sim_alm_coe�: updates the estimates of the Aggregate Law of Motion coe�cients.

163 while ( metric_coe� > TOLL_COEFF)
164 {
165 hw_main_iter++;
166 hw_sim_alm(kmprime, coe�); // step 1
167

168 curr_ihp_iter = 0;
169 hw_sim_ihp(st_kprimes, kmprime, curr_ihp_iter ) ; // step 2
170 hw_ihp_iter[hw_main_iter] = curr_ihp_iter ; // start from 1st element of hw_ihp_iter
171

172 real kcross_l [N_AGENTS];
173 kc_t kcross_mean = 0;
174

175 ast_kcross :
176 for ( int is = 0; is < N_AGENTS; is++)
177 {
178 kcross_l [ is ] = st_kcross [ is ];
179 kcross_mean += (kc_t) st_kcross [ is ];
180 }
181

182 hw_sim_ast(kmts, st_kprimes , kcross_l , agshock, idshock , kcross_mean); // step3
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183

184 sim_alm_coe�(kmts, coe� , &metric_coe� , r2 , agshock); // step 4
185

186 if ( metric_coe� > TOLL_COEFF ∗ 100)
187 {
188 // Replace the old with new capital distribution
189 for ( int j = 0; j < N_AGENTS; j++)
190 {
191 st_kcross [ j ] = kcross_l [ j ];
192 }
193 }
194

195 # if PRINT_LOOP_CNT
196 iter_main++;
197 printf ( "main loop iter = %d\n", iter_main ) ;
198 #endif
199 }

3.6.4 Aggregate Law of Motion: hw_sim_alm

Description:This function computes the next period expected aggregate physical capital.
Acceleration: None / Instruction Level Parallelism.

237 void hw_sim_alm(real ∗kmprime, real ∗ coe� )
238 {
239 small_idx_t cidx = 0;
240 real c0 , c1 ;
241 small_idx_t kidx = 0;
242

243 alm_1:
244 for ( int ia = 0; ia < NSTATES_AG; ++ia)
245 {
246 c0 = coe� [cidx ];
247 c1 = coe� [cidx + 1];
248 cidx += REGRESSORS;
249 alm_2:
250 for ( int ikm = 0; ikm < NKM_GRID; ++ikm)
251 {
252 #pragma HLS unroll factor = 1
253 // add pipeline registers to split the computation into multiple stages
254 real t_log = hw_log(km_grid[ikm]);
255 real t_mul = c1 ∗ t_log ;
256 real t_add = c0 + t_mul;
257 real val = hw_exp(t_add); // hw_exp(c0 + c1 ∗ st_env . log_env_km[ikm])
258 hw_rail_values(&val , KM_MAX, KM_MIN); // eq 15
259 kmprime[kidx++] = val;
260 }
261 }
262 return ;
263 }

The function computes the next period expected aggregate physical capital. We note that the
important step (in the code snippet above) is the computation of the logarithm of the coe�cient
and updating the kmprime. The exponential operator consumes a large number of resources to
implement and this function only takes a small fraction of the total compute time. Therefore, we
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instruct the vitis compiler to only create 1 copy of the inner loop using the unroll pragma. Further,
we increase the number of pipeline registers in this inner loop by storing the intermediate results
in separate registers thereby improving the setup and hold timing.

3.6.5 Individual Household Problem: hw_sim_ihp

Description:This function solves the individual agent problem

k′ =
[
µ(1 – ε) + (1 – τ )̄lε

]
w + (1 – δ + r)k

–
{
λ + βE

[
1 – δ + r ′(

(µ(1 – ε′) + (1 – τ ′)̄lε′)w′ + (1 – δ + r ′)k′ – k′(k′)
)γ
]}–1/γ

(3.1)

at every state, k, ε,m,A ∈ K× {0, 1}ε ×M× A. More compactly,

k̂′i+1 = Φk′i

Acceleration: Array Partition, Pipeline, Unroll.

3.6.5.1 Memory Management.

253 # if (NUM_KPRIMES == 8 && _WITHIN_ECONOMY)
254 #pragma HLS array_partition variable = st_env .P complete
255 #pragma HLS array_partition variable = st_kprimes complete dim = 1
256 #pragma HLS bind_storage variable = st_kprimes type = RAM_1WNR impl = BRAM
257 #else
258 #pragma HLS array_partition variable = st_kprimes complete dim = 1
259 #pragma HLS bind_storage variable = st_kprimes type = RAM_2P impl = BRAM
260 #endif
261

262 # if AST_UNROLL
263 #pragma HLS array_partition variable = st_env . epsilon2 complete dim = 1
264 #endif

We will later see that the st_env.P is accessed only once in the inner most loop. Therefore, it
needs to have at least 4 read ports when the outerloop, ihp_2 is pipelined. Since the size of this
structure member consist of only 16 elements, we partition it completely. However, it is su�cient
to have a cyclic partition with a factor of 4.

253 /∗ ∗ Lookup tables ∗/
254 // substitute for IXV call
255 static const small_idx_t li_2d_aux_idx_base [4] = {
256 0,
257 NKGRID,
258 NKM_GRID ∗ NSTATES_ID ∗ NKGRID,
259 (NKGRID + NKM_GRID ∗ NSTATES_ID ∗ NKGRID)};
260

261 #pragma HLS array_partition variable = li_2d_aux_idx_base complete
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262

263 // Local kprime/new copies
264 real kprime_new[NSTATES];
265 real metric = 1;
266 # if PRINT_LOOP_CNT
267 unsigned int iter_cnt = 0;
268 #endif

We then proceed with initializing a lookup table to calculate the indexes of nested loops and un-
roll it completely. Further, we allocate memory for kprime_new and do not perform any memory
optimization as it only accessed once for every iteration of ihp_2 and therefore a single memory
port is su�cient.

3.6.5.2 Individual Household Problem (IHP) Loop.

This loop determines the number of iterations hw_egm_iter = i required to estimate the individ-
ual capital-holdings policy functions, k′(k, ε,m,A) : K × {0, 1}ε ×M × A → R+. endogenous
convergence : This modality is for determining the policy functions. TOLL_K stores the con-
vergence tolerance εk , while metric is initialized to 1 and it is iteratively updated.

253 // Convergence loop: 4 x NSTATES interp over kprime[]
254 ihp_1:
255 while (metric > ( real )TOLL_K) // eq 14
256 {
257 hw_ihp_iter++;

Since the ihp_1 loop iterations are data dependent, the vitis compiler will not be able to
estimate the loop latencies as discussed in the section??. Hence, we use the #pragma HLS
LOOP_TRIPCOUNT to inform the compiler about the maximum number of iterations.

287 #pragma HLS loop_tripcount min = 1 avg = 200 max = 2000

Initializations. Before executing the IAP Iteration Step (in the next section):
289 spread_t spread_scalar = VERY_SMALL_SCALAR;
290

291 // Reset index values for [1600] loop
292 pidx_t p_idx_outer = 0b0100; // 4
293 small_idx_t hundreds_cnt = NKGRID;
294 small_idx_t kp_iter_cnt = (NSTATES_ID ∗ NKGRID);
295 small_idx_t kidx = 0;

• we initialize spread_scalar to a small number. spread_scalar stores the maximum absolute
di�erence (across the state space) between the guessed policy function and the policy func-
tion implied by Equation (3.1), max

(k,ε,m,A)∈K×{0,1}ε×M×A
|k′i+1 – k′i |. This variable is updated

in the next loop.

• we reset the indexes

At each iteration the loop iterates over the states

ρ
(
k′i+1, k′i

)
= max

(k,ε,m,A)∈K×{0,1}ε×M×A
|k′i+1 – k′i | < εk = 1e(–8)
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3.6.5.3 IHP Iteration Step.

This loop over the state space (k, ε,m,A) ∈ K× {0, 1}ε ×M× A
296 ihp_2:
297 for ( small_idx_t is = 0; is < NSTATES; ++is)
298 {
299 # if SMALL_PL
300 #pragma HLS unroll factor = 1
301 #else
302 #pragma HLS pipeline
303 #endif

takes as given:

• tomorrow’s predicted aggregate capital kmp = m′, as computed in hw_sim_alm

• the guessed individual capital-holding policy function, kp = k′i(k, ε,m,A)

and uses Equation (3.1) to update the guess

k̂′i+1 = Φk′i (a) Solve (3.1)

k′i+1 = ηkk̂′i+1 + (1 – ηk)k′i (b) Update Guess

To do so, the IAP Iteration Step performs the following operations:

1. Index Handling (Technical).
305 pidx_t p_idx_inner = 0; // IIDP x IAP
306 real kmp, temp_base;
307 emu_s_t emu_s = 0.;
308 real kp = st_kprimes [0][ is ];
309

310 // Index handling
311 if (++kp_iter_cnt >= NSTATES_ID ∗ NKGRID)
312 {
313 kp_iter_cnt = 0;
314 kmp = kmprime[kidx++];
315 temp_base = kmp ∗ ( real )env__l_bar_inv;
316 }
317 if (++hundreds_cnt >= NKGRID)
318 {
319 hundreds_cnt = 0;
320 // (changes between 0 and 4 for every 100 iterations uptil is = 800,
321 // and changes between 8 and 12 for every 100 iterations uptil is = 1600)
322 p_idx_outer ^= ( pidx_t )0b0100; // (XOR at every bit ) 0100 ^ 0100 = 0000 −> 0 ( explicit conversion to short ) decimal

value
323 }
324 if ( is == (NKM_GRID ∗ NSTATES_ID ∗ NKGRID)) // 800 ia
325 p_idx_outer |= ( pidx_t )0b1000; // (OR at every bit ) 0000 | 1000 = 1000 −> 8 ( explicit conversion to short ) decimal

value
326
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2. Compute the conditional expectation emu_s:

E

[
1 – δ + r ′(

(µ(1 – ε′) + (1 – τ ′)̄lε′)w′ + (1 – δ + r ′)k′i – k′i(k′i)
)γ
]

To compute the conditional expectation the algorithm iterates over next period aggregate
and idiosyncratic shocks’ states:

(a) For each tomorrow’s aggregate-shock state, A′, compute wages, interest rate and
labor-income taxes:

328 ihp_3:
329 for ( int iap = 0; iap < NSTATES_AG; ++iap)
330 {
331 # if SMALL_PL
332 #pragma HLS unroll factor = 1
333 #endif
334 real temp = temp_base ∗ st_env . er_inv[iap ];
335 real irate = st_env . irate_factor [ iap] ∗ hw_pow(temp, env__alpha_c);
336 real imrt = env__delta_c + irate ;
337 real wage = st_env.wage_factor[iap] ∗ hw_pow(temp, env__alpha);
338 small_idx_t kpb = iap << 2;

(b) For each tomorrow’s aggregate shock, A′, and idiosyncratic-shock, ε′, state
339 ihp_4:
340 for ( int iidp = 0; iidp < NSTATES_ID; ++iidp)
341 {

(c) Use a linear interpolation scheme to determine tomorrow’s individual capital-holding
choice fp = k′′ = k′i(k′i) =

(
k′(k, ε,m,A), ε′,m′,A′)

)
345 small_idx_t i1_min = hw_�ndrange(( �xed_t )kmp, fxd_km_grid, NKM_GRID);
346 small_idx_t i1_max = i1_min + 1;
347 real i1_min_val = km_grid[i1_min];
348 real i1_max_val = km_grid[i1_max];
349 small_idx_t i2_min = hw_�ndrange(( �xed_t )kp, fxd_k_grid , NKGRID);
350 small_idx_t i2_max = i2_min + 1;
351 real i2_min_val = k_grid[i2_min];
352 real i2_max_val = k_grid[i2_max];
353 small_idx_t idx_base = li_2d_aux_idx_base[p_idx_inner ];
354 small_idx_t i1_min_base = idx_base + (NSTATES_ID ∗ NKGRID ∗ i1_min);
355 small_idx_t i1_max_base = idx_base + (NSTATES_ID ∗ NKGRID ∗ i1_max);
356 real tz_num = (kmp − i1_min_val);
357 real tz_den = (i1_max_val − i1_min_val) ;
358 real tz = tz_num / tz_den;
359 real tw_num = (kp − i2_min_val) ;
360 real tw_den = (i2_max_val − i2_min_val) ;
361 real tw = tw_num / tw_den;
362 real sub_tz = (1.0 − tz ) ;
363 real sub_tw = (1.0 − tw) ;
364 real sub_tz_sub_tw = sub_tz ∗ sub_tw;
365 real tz_tw = tz ∗ tw;
366 real sub_tz_tw = sub_tz ∗ tw;
367 real tz_sub_tw = tz ∗ sub_tw;
368 # if (NUM_KPRIMES == 1)
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369 real fp_1 = st_kprimes [0][ i1_min_base + i2_min] ∗ sub_tz_sub_tw +
370 st_kprimes [0][ i1_min_base + i2_max] ∗ sub_tz_tw;
371 real fp_2 = st_kprimes [0][ i1_max_base + i2_min] ∗ tz_sub_tw +
372 st_kprimes [0][ i1_max_base + i2_max] ∗ tz_tw;
373 # elif (NUM_KPRIMES == 4)
374 real fp_1 = st_kprimes [0][ i1_min_base + i2_min] ∗ sub_tz_sub_tw +
375 st_kprimes [1][ i1_min_base + i2_max] ∗ sub_tz_tw;
376 real fp_2 = st_kprimes [2][ i1_max_base + i2_min] ∗ tz_sub_tw +
377 st_kprimes [3][ i1_max_base + i2_max] ∗ tz_tw;
378 # elif (NUM_KPRIMES == 8)
379 real fp_1 = st_kprimes[kpb + 0][i1_min_base + i2_min] ∗ sub_tz_sub_tw +
380 st_kprimes[kpb + 1][i1_min_base + i2_max] ∗ sub_tz_tw;
381 real fp_2 = st_kprimes[kpb + 2][i1_max_base + i2_min] ∗ tz_sub_tw +
382 st_kprimes[kpb + 3][i1_max_base + i2_max] ∗ tz_tw;
383 #endif
384 real fp = fp_1 + fp_2 ;

Note: The algorithm implements a �xed-size, parallel search algorithm as discussed
in the paper..

(d) Given tomorrow’s individual capital-holding choice fp and tomorrow’s wealth, com-
pute tomorrow’s consumption cons2 = (µ(1 – ε′) + (1 – τ ′)̄lε′)w′ + (1 – δ + r ′)k′i – k′i(k′i)
and the marginal utility of tomorrow’s consumption mu2

339 real cons2_1 = imrt ∗ kp;
340 real cons2_2 = wage ∗ st_env . cons2_factor [p_idx_inner ];
341 real cons2 = (cons2_1 + cons2_2) − fp ;
342 if (cons2 < 0) // eq 11
343 cons2 = CONS2_MIN;
344 real mu2 = hw_pow(cons2, env__gamma_neg);
345 real emu_s_1 = imrt ∗ mu2;
346 emu_s += (emu_s_t)(st_env .P[p_idx_outer + p_idx_inner] ∗ emu_s_1);
347 ++p_idx_inner;

(e) Compute E

[
1 – δ + r ′(

(µ(1 – ε′) + (1 – τ ′)̄lε′)w′ + (1 – δ + r ′)k′i – k′i(k′i)
)γ
]

307 emu_s_t emu_s = 0.;

328 ihp_3:
329 for ( int iap = 0; iap < NSTATES_AG; ++iap)
330 {

339 ihp_4:
340 for ( int iidp = 0; iidp < NSTATES_ID; ++iidp)
341 {

3. Compute the RHS of Equation (3.1) and store it in new_kp = k̂′i+1

k̂′i+1 =
[
µ(1 – ε) + (1 – τ )̄lε

]
w + (1 – δ + r)k

–
{
λ + βE

[
1 – δ + r ′(

(µ(1 – ε′) + (1 – τ ′)̄lε′)w′ + (1 – δ + r ′)k′i – k′i(k′i)
)γ
]}–1/γ
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397 real new_kp = init_wealth[ is ] − hw_pow(env__beta ∗ (real )emu_s, env__gamma_neg_inv); // eq 10

Note: Notice, following Maliar et. al (2010) we set the multipler λ to 0..

3.6.5.4 Closing the IAP Loop.

1. Update the guess.
406 ihp_5:
407 for ( small_idx_t is = 0; is < NSTATES; ++is)
408 {
409 #pragma HLS pipeline
410 real updated_kp = UPDATE_K ∗ kprime_new[is] + UPDATE_K_C ∗ st_kprimes[0][is]; // eq 13
411 for ( small_idx_t k = 0; k < NUM_KPRIMES; ++k)
412 st_kprimes[k][ is ] = updated_kp;
413 }

k′i+1 = ηkk̂′i+1 + (1 – ηk)k′i

Note: To reduce the memory ports access bottleneck we created NUM_KPRIMES copies of
the policy function guess k′i , which all need to be initialized with the new guess..

2. Update the metric = ρ
(
k′i+1, k′i

)
.

ρ
(
k′i+1, k′i

)
= max

(k,ε,m,A)∈K×{0,1}ε×M×A
|k′i+1 – k′i | < εk = 1e(–8)

406 ihp_5:
407 for ( small_idx_t is = 0; is < NSTATES; ++is)
408 {
409 #pragma HLS pipeline
410 real updated_kp = UPDATE_K ∗ kprime_new[is] + UPDATE_K_C ∗ st_kprimes[0][is]; // eq 13
411 for ( small_idx_t k = 0; k < NUM_KPRIMES; ++k)
412 st_kprimes[k][ is ] = updated_kp;
413 }

The metric is updated and before the start of next iteration, it is checked if lower (equal)
to TOLL_K (εk), the loop exits.

415 // ~ Update metric
416 metric = ( real ) spread_scalar ;

3.6.6 Stochastic Simulation: hw_sim_ast

Description: This function simulates the time series of the cross-sectional average (per-capita)
stock of capital {mt }1100

t=1 which is then used by the aggregate law of motion function sim_alm_coe�
to estimate the expected evolution of the capital distribution.
Acceleration: Array Partition, Pipeline, Unroll.
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3.6.6.1 Memory Management.

We �rst determine the number of reads for each of the arrays and perform the array_partition
as per the requirement. For example, the array st_kcross is a double precision 1D array with
10,000 (N_AGENTS) elements. As we will see in later section of the code, for every iteration of
the inner most loop, there is a read and write operation requiring at least 2 ports for a single
pipeline. In the baseline model, we require 8 parallel pipelines which translates to requiring 16
IO ports. In the below code, where the PARTITION_KCROSS is set to 8, we partition the array
in a cyclic manner with a factor of 8 resulting us with 16 ports. Since we explicitly specify the
memory type to be RAM_S2P, we get 8 read ports and 8 write ports all of which can be accessed
in the same clock cycle.

439 # if (PARTITION_KCROSS == 1)
440 #pragma HLS array_partition variable = st_kcross type = cyclic factor = 1
441 # elif (PARTITION_KCROSS == 4)
442 #pragma HLS array_partition variable = st_kcross type = cyclic factor = 4
443 # elif (PARTITION_KCROSS == 8)
444 #pragma HLS array_partition variable = st_kcross type = cyclic factor = 8
445 #endif
446

447 #pragma HLS bind_storage variable = st_kcross type = RAM_S2P impl = BRAM

The interpolated values are read 4 times in a random manner for each of the pipeline.In the
baseline model, we have 8 parallel pipelines. Therefore, we allocate the memory for two copies
each of which have NUM_KCROSS number of copies. In total, we create NUM_KCROSS ∗ 2 = 16
copies of the interpolated values. When we partition then using a dual port RAM across the
�rst dimension, we get 32 read ports which can then satisfy our requirement of 4 reads over 8
pipelines.

448 # if AST_UNROLL
449 real kprime_interp0[NUM_KCROSS][NSTATES_ID ∗ NKGRID];
450 real kprime_interp1[NUM_KCROSS][NSTATES_ID ∗ NKGRID];
451 #pragma HLS array_partition variable = kprime_interp0 complete dim = 1
452 #pragma HLS array_partition variable = kprime_interp1 complete dim = 1
453 #pragma HLS array_partition variable = st_env . epsilon2 complete dim = 1
454 #else
455 real kprime_interp0[NSTATES_ID ∗ NKGRID];
456 real kprime_interp1[NSTATES_ID ∗ NKGRID];
457 #endif

As discussed in section ??, we provide an option to optimize the memory usage for storing
the IDSHOCKS when the PACK_IDS is enabled. In the below code, we set the count to start from
the number of IDSHOCKS stored in each of the array elements.

459 # if PACK_IDS
460 small_idx_t idshock_cnt = 64;
461 ap_uint<72> temp_ids = idshock [0];
462 #else
463 small_idx_t idshock_cnt = 8;
464 #endif

The temporary variables are declared to keep track of the shocks.
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465 int idshock_idx = 0;
466 idx_t agshock_idx = 0;
467 shock_t curr_ids ;
468 shock_t curr_ags ;
469 small_idx_t ags_phase = AGS_PACK_FACTOR;

The initial value of the moment of the capital distribution is passed in to this function. For
every next iteration, this value is calculated at the end of its previous iteration. This value is then
checked to be within the bounds of 30,50.

476 real curr_kmts = ( real )kcross_mean ∗ N_AGENTS_INV;
477 hw_rail_values(&curr_kmts, KM_MAX, KM_MIN);

3.6.6.2 Loop.

For each time period t ∈ {0, . . . , 1099}1

479 ast_1 :
480 for ( int t = 0; t < SIM_STEPS; ++t)
481 {

1. Interpolation. For each individual j = 1, . . . , 10, 000, use an interpolation scheme to deter-
mine the next period individual capital holdings, given the period t idiosyncratic (kt,j , εt,j)
and aggregate (mt ,At) state.

486 kmts[t] = curr_kmts;
487

488 // Read next packed agshock value when needed
489 if (++ags_phase >= AGS_PACK_FACTOR)
490 {
491 curr_ags = agshock[agshock_idx++];
492 ags_phase = 0;
493 }
494

495 bool p0 = (curr_ags & 0b1) ? 0b1 : 0b0;
496

497 curr_ags >>= 1;
498 real p1 = kmts[t ];
499 small_idx_t i2_min = hw_�ndrange(( �xed_t )p1, fxd_km_grid, NKM_GRID);
500 small_idx_t i2_max = i2_min + 1;
501 real i2_min_val = km_grid[i2_min];
502 real i2_max_val = km_grid[i2_max];
503 real ty = (p1 − i2_min_val) / (i2_max_val − i2_min_val) ;
504 real P = (p0 == 1) ? 0 : (1.0 − ty ) ;
505 real Q = (p0 == 1) ? 0 : ( ty ) ;
506 real R = (p0 == 1) ? (1.0 − ty ) : 0;
507 real S = (p0 == 1) ? ( ty ) : 0;
508 small_idx_t i1_min_base = 0; // L4D_D3 ∗ i1 .min(0)
509 small_idx_t i1_max_base = L4D_D3; // L4D_D3 ∗ i1 .max
510 small_idx_t i2_min_base = L4D_D2 ∗ i2_min;

1Notice the recasting of the time indexes from {1, . . . , 1100} to {0, . . . , 1099} in order to accommodate the array
indexing convention in C.
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511 small_idx_t i2_max_base = L4D_D2 ∗ i2_max;
512 small_idx_t i12_min_min = i1_min_base + i2_min_base;
513 small_idx_t i12_min_max = i1_min_base + i2_max_base;
514 small_idx_t i12_max_min = i1_max_base + i2_min_base;
515 small_idx_t i12_max_max = i1_max_base + i2_max_base;
516 small_idx_t kpi_idx = 0;
517

Begin by initializing values of the aggregate shock At and the average of individual capital
holdings mt for interpolation Initialize values for interpolation given each idiosyncratic
shock to the employment status, εt,j ∈ {0, 1}ε

517 small_idx_t i3_min_base = 0; // L4D_D1 ∗ i3 .min (0)
518 small_idx_t i3_max_base = L4D_D1; // L4D_D1 ∗ i3 .max (1)
519 real tz = st_env . epsilon [ iid ];
520

Initialize values for interpolation given each point in the individual capital holdings grid,
kt,j ∈ K

523 ast_3 :
524 for ( int ik = 0; ik < NKGRID; ++ik)
525 {
526 #pragma HLS pipeline
527 int i4_min = ik ;
528 real p = (1.0 − tz ) ;
529 real r = tz ;
530 }
531

Use linear interpolation to determine the next period individual capital holdings fp = k′(k, ε,m,A)
530 small_idx_t kp_idx_0 = i4_min + i3_min_base + i12_min_min;
531 small_idx_t kp_idx_2 = i4_min + i3_max_base + i12_min_min;
532 small_idx_t kp_idx_4 = i4_min + i3_min_base + i12_min_max;
533 small_idx_t kp_idx_6 = i4_min + i3_max_base + i12_min_max;
534 small_idx_t kp_idx_8 = i4_min + i3_min_base + i12_max_min;
535 small_idx_t kp_idx_10 = i4_min + i3_max_base + i12_max_min;
536 small_idx_t kp_idx_12 = i4_min + i3_min_base + i12_max_max;
537 small_idx_t kp_idx_14 = i4_min + i3_max_base + i12_max_max;
538 // ∗∗ LI3D
539 # if (( NUM_KPRIMES == 4) || (NUM_KPRIMES == 8))
540 real fp = st_kprimes [0][ kp_idx_0] ∗ P ∗ p +
541 st_kprimes [0][ kp_idx_2] ∗ P ∗ r +
542 st_kprimes [1][ kp_idx_4] ∗ Q ∗ p +
543 st_kprimes [1][ kp_idx_6] ∗ Q ∗ r +
544 st_kprimes [2][ kp_idx_8] ∗ R ∗ p +
545 st_kprimes [2][ kp_idx_10] ∗ R ∗ r +
546 st_kprimes [3][ kp_idx_12] ∗ S ∗ p +
547 st_kprimes [3][ kp_idx_14] ∗ S ∗ r ;
548 # elif (NUM_KPRIMES == 1)
549 real fp = st_kprimes [0][ kp_idx_0] ∗ P ∗ p +
550 st_kprimes [0][ kp_idx_2] ∗ P ∗ r +
551 st_kprimes [0][ kp_idx_4] ∗ Q ∗ p +
552 st_kprimes [0][ kp_idx_6] ∗ Q ∗ r +
553 st_kprimes [0][ kp_idx_8] ∗ R ∗ p +
554 st_kprimes [0][ kp_idx_10] ∗ R ∗ r +
555 st_kprimes [0][ kp_idx_12] ∗ S ∗ p +
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556 st_kprimes [0][ kp_idx_14] ∗ S ∗ r ;
557 #endif
558

Store the solution given each point in the capital holdings grid as kprime_interp0 and
kprime_interp1

558 # if AST_UNROLL
559 for ( int k = 0; k < NUM_KCROSS; ++k)
560 {
561 kprime_interp0[k][kpi_idx] = fp ;
562 kprime_interp1[k][kpi_idx] = fp ;
563 }
564 #else
565 kprime_interp0[kpi_idx] = fp ;
566 kprime_interp1[kpi_idx] = fp ;
567 #endif
568 ++kpi_idx;
569

Initialise the aggregate capital to 0
572 // aggregate capital initialized to 0
573 kc_t agg_capital = 0;
574

Iterate over N_AGENTS using 8 parallel pipelines. The #pragma HLS PIPELINE unrolls
the inner loop completely creating 8 pipelines. The IDSHOCKS when the PACK_IDS is
enabled, consists of 64 shocks in each element, hence a new element is fetched from the
array only once for every 8 iterations of ast_4

576 small_idx_t kidx = 0;
577 // Loop 1.3: AST agents interp over kprime_interp
578 // Unroll factor dictated by inner loop over k
579 # if PACK_IDS
580 idshock_cnt = 8;
581 #endif
582 ast_4 :
583 for ( int j = 0; j < (N_AGENTS / IDS_PACK_FACTOR) / IDS_AGG_X; j++)
584 {
585 #pragma HLS pipeline
586 # if PACK_IDS
587 if ( idshock_cnt >= 8)
588 {
589 idshock_cnt = 0;
590 temp_ids = idshock[idshock_idx ];
591 idshock_idx++;
592 }
593 curr_ids = temp_ids & 0xFF;
594 idshock_cnt++;
595 temp_ids >>= 8;
596 #else
597 curr_ids = idshock[idshock_idx++];
598 #endif
599

Initialize values for interpolation over kprime_interp0 and kprime_interp1 from above
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603 real p1b = st_kcross [kidx ];
604 small_idx_t i2b_min = hw_�ndrange(( �xed_t ) st_kcross [kidx ], fxd_k_grid , NKGRID);
605 small_idx_t i2b_max = i2b_min + 1;
606 real i2b_min_val = k_grid[i2b_min];
607 real i2b_max_val = k_grid[i2b_max];
608 bool p0b = ( curr_ids & 0b1) ? 0b1 : 0b0;
609 curr_ids >>= 1;
610 small_idx_t i1b_min_base = 0; // NKGRID ∗ i1b_min(0)
611 small_idx_t i1b_max_base = NKGRID; // NKGRID ∗ i1b_max(1)
612 real bw = (p1b − i2b_min_val) / (i2b_max_val − i2b_min_val) ;
613 real sub_bw = (1.0 − bw);
614 real bz_bw = (p0b == 1) ? bw : 0;
615 real sub_bz_sub_bw = (p0b == 1) ? 0 : sub_bw;
616 real bz_sub_bw = (p0b == 1) ? sub_bw : 0;
617 real bw_sub_bz = (p0b == 1) ? 0 : bw;
618

Use linear interpolation to compute and store next period aggregate capital given each
agent’s individual savings decision

618 real fbp_1 = (kprime_interp0[k][i1b_min_base + i2b_min] ∗ sub_bz_sub_bw) +
619 (kprime_interp0[k][i1b_min_base + i2b_max] ∗ bw_sub_bz);
620 real fbp_2 = (kprime_interp1[k][i1b_max_base + i2b_min] ∗ bz_sub_bw) +
621 (kprime_interp1[k][i1b_max_base + i2b_max] ∗ bz_bw);
622 kc_t fpb = kc_t (fbp_1 + fbp_2) ;
623 hw_fxd_rail_values(&fpb, KMAX, KMIN);
624 st_kcross [kidx] = ( real )fpb ;
625 agg_capital += fpb ;
626 kidx++;
627

2. Accumulation. For each time period t, compute mt , the cross-sectional average of indi-
vidual capital holdings

mt = 1
J

J∑
j=1

kj,t .

688 curr_kmts = (( real ) agg_capital ∗ N_AGENTS_INV);
689

For values that fall outside the capital grid, M = [mmin,mmax], set as the range value
689 hw_rail_values(&curr_kmts, KM_MAX, KM_MIN);
690

3.6.7 Aggregate Law of Motion: sim_alm_coe�

Description: This function estimates the i-iteration ALM coe�cients b̂i(a) = (b̂i1(a), b̂i2(a)) and
updates them.
Acceleration: Array Partitioning, Pipelining..
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1. House keeping. Store old coe�cient bil(a), a ∈ {ab, ag}, Prevent automatic array parti-
tioning of coe� array

701 real coe� [NCOEFF] = {0.};
702 sim_alm_1:
703 for ( small_idx_t i = 0; i < NCOEFF; i++)
704 {
705 #pragma HLS pipeline o�
706 coe� [ i ] = coe�_updated[ i ];
707 }

Initializations
707 small_idx_t agshock_idx = 0;
708 small_idx_t ags_phase = AGS_PACK_FACTOR;
709 shock_t curr_ags = 0;
710 shock_t curr_shock_val = 0;
711 real coe�_new[NCOEFF] = {0.};
712 real x_good_v[1000] = {0.};
713 real y_good_v[1000] = {0.};
714 real x_bad_v[1000] = {0.};
715 real y_bad_v[1000] = {0.};
716

717 int ibad = 0;
718 int igood = 0;
719 agshock_idx = 0;
720 ags_phase = AGS_PACK_FACTOR;

721 sim_alm_2:
722 for ( int t = 0; t < SIM_STEPS; t++)
723 {
724 #pragma HLS pipeline o�
725 #pragma HLS unroll factor = 1
726 // Read new value when needed
727 if (++ags_phase >= AGS_PACK_FACTOR)
728 {
729 curr_ags = agshock[agshock_idx++];
730 ags_phase = 0;
731 }
732 curr_shock_val = curr_ags & 0b1; // take the least signi�cant bit from the byte
733 curr_ags >>= 1; // right shift by 1
734 // Discard �rst 100
735 sim_alm_3:
736 if ( t < NDISCARD || t > SIM_STEPS − 2)
737 continue ;

Organize the time series. The best linear approximation of the conditional expectation
of next period log-aggregate capital depends on the aggregate shock. So after discarding
the �rst 100 observations the code split the simulated data {mt }1,100

t=100 into two time series.
To estimate the coe�cients:

2. • when the aggregate shock is at = ab, {b1(at), b2(ab)}

E[lnmt+1|at = ab] = b1(ab) + b2(ab) lnmt , t = 100, . . . , 1100
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738 sim_alm_4:
739 if (curr_shock_val == 0)
740 {
741 y_bad_v[ibad] = hw_log(kmts[t + 1]) ;
742 x_bad_v[ibad] = hw_log(kmts[t]) ;
743 ibad++;
744 }

it collects
{lnml+1, lnml}l∈{t∈{100,...,1100}:at=ab}

• when the aggregate shock is at = ag , {b1(at), b2(ag)}

E[lnmt+1|at = ag] = b1(ag) + b2(ag) lnmt , t = 100, . . . , 1100

745 else
746 {
747 y_good_v[igood] = hw_log(kmts[t + 1]) ;
748 x_good_v[igood] = hw_log(kmts[t]) ;
749 igood++;
750 }

it collects
{lnml+1, lnml}l∈{t∈{100,...,1100}:at=ag}

752 real badcoe� [2] = {0.}; // initialize to prevent garbage values
753 real goodcoe�[2] = {0.};
754 regression ( badcoe� , x_bad_v, y_bad_v, ibad) ;
755 regression (goodcoe� , x_good_v, y_good_v, igood) ;
756 real rbad = RSquaredCalc(badcoe� , x_bad_v, y_bad_v, ibad) ;
757 real rgood = RSquaredCalc(goodcoe�, x_good_v, y_good_v, igood) ;
758 coe�_new[0] = badcoe� [0]; // bb
759 coe�_new[1] = badcoe� [1];
760 coe�_new[2] = goodcoe� [0];
761 coe�_new[3] = goodcoe� [1];
762 R2[0] = rbad;
763 R2[1] = rgood;

Estimate the coe�cients. For each aggregate state at ∈ {ab, ag} it uses the matrixfunc-
tion to run the OLS regressions

lnml+1 = b1(al) + b2(al) lnml + εl+1, l ∈ {t ∈ {100, . . . , 1100} : al = ab}
lnml+1 = b1(al) + b2(al) lnml + εl+1, l ∈ {t ∈ {100, . . . , 1100} : al = ag}

and estimate the coe�cients governing the transition from a bad state badcoe� = {b1(at), b2(ab)}.
and good state goodcoe� = {b1(at), b2(ag)}.

765 // Update metric for convergence test (eq 17)
766 real norm = 0.;
767 sim_alm_5:



64 Krusell Smith (1998)

768 for ( int ib = 0; ib < NCOEFF; ++ib)
769 {
770 #pragma HLS pipeline o�
771 norm += (coe�_new[ib] − coe� [ ib ]) ∗ (coe�_new[ib] − coe� [ ib ]) ;
772 }
773 ∗metric = hw_sqrt(norm);

Compute the Euclidean Norm.√ ∑
l∈{1,2},a∈{ab,ag}

(bi+1
l (a) – bil(a))2 < εb = 1e(–8)

773 // Update ALM coe�cients vector
774 sim_alm_6:
775 for ( int ib = 0; ib < NCOEFF; ++ib)
776 {
777 #pragma HLS pipeline o�
778 coe�_updated[ ib] = coe�_new[ib] ∗ UPDATE_B + coe�[ib] ∗ (1. − UPDATE_B); //
779 }

Update the Coe�cients.

bi+1
l (a) = ηbb̂il(a) + (1 – ηb)bil(a), l ∈ {1, 2}, a ∈ {ab, ag}

3.6.7.1 Regression Coe�cients: Regression

Description:This function computes the estimated coe�cients. Since the mathematical oper-
ators such as pow, div consumes signi�cant amount of hardware resources, and the execu-
tion time of this function is considerably small, we decided to turn-o� the automatic pipeline
to make use of the hardware resources for more time-consuming tasks. We instruct the com-
piler using #pragma HLS UNROLL to unroll the loop by a factor of 1 and use #pragma HLS
LOOP_TRIPCOUNT to specify the number of loop iterations.
Acceleration: No acceleration.

783 void regression ( real ∗ resultmatrix , real ∗x, real ∗y, int ndim)
784 {
785 real twobytwo[4] = {0, 0, 0, 0};
786 RG_1:
787 for ( int i = 0; i < ndim; i++)
788 {
789 #pragma HLS loop_tripcount min = 100 avg = 494 max = 1000
790 #pragma HLS unroll factor = 1
791 #pragma HLS pipeline o�
792 twobytwo[0] += 1;
793 twobytwo[1] += x[i ];
794 twobytwo[2] += x[i ];
795 twobytwo[3] += hw_pow(x[i], 2) ;
796 }
797 // get inverse
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798 real a = twobytwo[0]; // switching indices and multiplying by determinant
799 real b = twobytwo[1];
800 real c = twobytwo[2];
801 real d = twobytwo[3];
802 real det = (a ∗ d − b ∗ c) ;
803

804 real inv_det = (1.0 / det ) ;
805 real inv_d = inv_det ∗ d;
806 real inv_b = inv_det ∗ (b) ∗ −1;
807 real inv_c = inv_det ∗ (c) ∗ −1;
808 real inv_a = inv_det ∗ a;
809 real acc1 = resultmatrix [0];
810 real acc2 = resultmatrix [1];
811 // multiply by transpose of matrix and y
812 RG_2:
813 for ( int i = 0; i < ndim; i++)
814 {
815 #pragma HLS loop_tripcount min = 100 avg = 494 max = 1000
816 #pragma HLS unroll factor = 1
817 #pragma HLS pipeline o�
818 real acc_t1 = inv_b ∗ x[ i ];
819 real acc_t2 = inv_d + acc_t1 ;
820 acc1 += acc_t2 ∗ y[i ];
821 }
822 resultmatrix [0] = acc1 ;
823 RG_3:
824 for ( int i = 0; i < ndim; i++)
825 {
826 #pragma HLS loop_tripcount min = 100 avg = 494 max = 1000
827 #pragma HLS unroll factor = 1
828 #pragma HLS pipeline o�
829 real acc2_t1 = inv_a ∗ x[ i ];
830 real acc2_t2 = inv_c + acc2_t1 ;
831 acc2 += acc2_t2 ∗ y[i ];
832 }
833 resultmatrix [1] = acc2 ;
834 return ;
835 }

3.6.7.2 Regression R squared: RSquaredCalc

Description:This function calculates the R squared coe�cient.
Acceleration: No Acceleration.
Initialize the temporary variables and compute the rsquared result using the minimal hardware
resources. Since this computation involves several complex mathematical operators, #pragma
HLS PIPELINE is explicitly set to o� and #pragma HLS UNROLL is set to use a factor of 1.
R2_1 computes the average �tted values and R2_2 computes the sum of squared residuals (rss)
and the total sum of squares (tss).

837 real RSquaredCalc(real ∗ coe� , real ∗x, real ∗y, int ndim)
838 {
839 real r_value = 0;
840 real predict [1000] = {0};
841 real rss = 0;
842 real tss = 0;
843 real y_mean = 0;
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844 R2_1:
845 for ( int i = 0; i < ndim; i++)
846 {
847 #pragma HLS pipeline o�
848 #pragma HLS unroll factor = 1
849 #pragma HLS loop_tripcount min = 100 avg = 494 max = 1000
850 y_mean += y[i];
851 }
852 y_mean = (y_mean / ndim);
853

854 R2_2:
855 for ( int i = 0; i < ndim; i++)
856 {
857 #pragma HLS pipeline o�
858 #pragma HLS unroll factor = 1
859 #pragma HLS loop_tripcount min = 100 avg = 494 max = 1000
860 predict [ i ] = ( coe� [0] + ( coe� [1] ∗ x[ i ]) ) ;
861 rss += hw_pow((predict[i] − y[i ]) , 2) ;
862 tss += hw_pow((y[i] − y_mean), 2) ;
863 }
864 r_value = (1.0 − ( rss / tss ) ) ;
865

866 return r_value ;

3.6.8 Math Functions

Collection of double precision operatiors - (hw_exp, hw_log, hw_sqrt, hw_fabs, hw_pow)
When the math operators are implemented in the fpga, they use the bit-approximate HLS

math library functions which do not have the same accuracy as the standard C function. To
achieve the same result, these functions use a di�erent underlying algorithm from the standard
C functions. The accuracy of this is between 1-4 ULP (Unit of Least Precision). If the stan-
dard math.h is used, there can be di�erences between the C simulation results and the RTL co-
simulation results due to the fact of having di�erent underlying function de�nitions as explained
above. However, if we use the Vitis HLS Math Library (hls_math.h), there will be no di�erence
between the C simulation and the RTL co-simulation. However, as hls_math.h is not optimized
to run on CPU, using the hls mathematical operators results in longer execution times during
the sw_emu. For example, In hw_exp function hls::exp uses the function from hls_math.h. This
function is also inlined.

938 real hw_exp(real b)
939 {
940 #pragma HLS inline
941 # if USE_HLS_LIB
942 return hls :: exp(b) ;
943 #else
944 return exp(b) ;
945 #endif
946 }

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Vitis-HLS-Math-Library
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3.6.9 Linear Interpolation

3.6.9.1 hw_�ndrange

Description:This function uses an optimized routine to �nd the interpolation range. The func-
tion comes in �ve versions, which di�er in the size of the interpolation grids: new_hw_�ndrange_n4,
hw_�ndrange_n8, hw_�ndrange_n100, hw_�ndrange_n200, hw_�ndrange_n300.
Acceleration: Unrolling, Pipelining..

1096 small_idx_t hw_�ndrange(�xed_t p, const �xed_t ∗ src , int n_elem)
1097 {
1098 # if !_BASELINE
1099 #pragma HLS inline
1100 # if (NKM_GRID == 4)
1101 if (n_elem == 4)
1102 return hw_�ndrange_n4(p, src ) ;
1103 # elif (NKM_GRID == 8)
1104 if (n_elem == 8)
1105 return hw_�ndrange_n8(p, src ) ;
1106 #endif
1107 # if (NKGRID == 100)
1108 else if (n_elem == 100)
1109 return hw_�ndrange_n100(p, src ) ;
1110 # elif (NKGRID == 200)
1111 else if (n_elem == 200)
1112 return hw_�ndrange_n200(p, src ) ;
1113 # elif (NKGRID == 300)
1114 else if (n_elem == 300)
1115 return hw_�ndrange_n300(p, src ) ;
1116 #endif
1117 else
1118 return 0;
1119 #else
1120 small_idx_t result = 1;
1121 for (signed short i = (n_elem − 1) ; i > 0; −−i)
1122 {
1123 if (p <= src [ i ])
1124 {
1125 result = i − 1;
1126 }
1127 }
1128 return result ;
1129 #endif
1130 }

Based on the selection of the NKGRID, NKM_GRID, the appropriate functions will be synthesized
and the rest will be disabled. A generic function can be designed that could work e�ciently for
all the di�erent grids, but that is left for future experiments.

We accelerate interpolation as follows. First, we declare the loop bounds of the individual and
aggregate capital grids (namely, {0,Nk} and {0,NM }) as �xed constants, allowing the compiler to
autonomously physically place the required CL resources (space dimension). Next, we implement
a jump search algorithm to �nd the interpolation interval over the individual capital grid. The
compiler instructs the hardware to pipeline a parallel reduce tree algorithm with three stages.
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Each stage determines the index of the smallest grid value larger than the interpolation point
k′(k, ε,m,A) by performing comparisons in parallel. The number of comparisons varies by stage
and grid size and ensures that the entire grid is examined, i = {0, . . . ,Nk}. The winner of each
stage determines the search area of the successive stage. Since the result of this operation is
part of a pipeline where the only dependence on subsequent loop iterations is through a �nal
accumulation, we achieve an II of 1.

Notice that the input to this function is of �xed point data type rather than the standard
double precision. The �oating point comparison is implemented using dcmp (Double precision
comparator) operator which consumes signi�cant amount of hardware resources. Therefore, we
type cast the input data type of �xed point data type and use the grid of values which are in �xed
point representation to perform all the 100 comparisons using icmp (Integer comparator) which
consumes minimal resources.

Importantly for context, the CPU cannot physically place CL resources to make these com-
parisons in parallel, as its silicon is pre-manufactured and cannot be programmed. We could
potentially implement the described parallel-search algorithm using multiple cores. But this de-
sign would be very ine�cient, as the data transfer overhead costs would dominate the increase in
performance. Conversely, our single FPGA vs. single CPU core and multi-core CPU benchmark-
ing exercises are e�cient, as they keep all CPU cores busy, minimizing data transfer overhead
costs.2

1179 small_idx_t hw_�ndrange_n100(�xed_t p, const �xed_t ∗ src )
1180 {
1181 #pragma HLS pipeline
1182 small_idx_t result_1 = 0;
1183 small_idx_t result_2 = 0;
1184 small_idx_t result_3 = 0;
1185 small_idx_t result = 0;
1186

1187 fr100_1 :
1188 for (signed short i = 99; i > 0; i=i−20) // 5 comparators
1189 {
1190 fr100_2 :
1191 if (p <= src [ i ])
1192 {
1193 result_1 = i ; // send the max idex
1194 }
1195 }
1196

1197 fr100_3 :
1198 for (signed short i = 4; i > 0; i−−) // 4 comparators
1199 {
1200 fr100_4 :
1201 if (p <= src [ result_1 ])
1202 {
1203 result_2 = result_1 ; // send the max index
1204 }
1205 result_1 = result_1 − ( small_idx_t ) 5;
1206 }

2The C++ to CPU compiler can autonomously decide to perform these operations in parallel, but this step is
not controlled by the coder.
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1207

1208 fr100_5 :
1209 for (signed short i = 5; i > 0; i−−) // 5 comparators
1210 {
1211 fr100_6 :
1212 if (p <= src [ result_2 −−])
1213 {
1214 result_3 = result_2 ; // send the min index
1215 }
1216 }
1217

1218 result = (p==src[0]) ? ( small_idx_t )0 : result_3 ;
1219 return result ;
1220 }

3.6.9.2 hw_rail_values

Description:This function set the values outside the range to the range values.
Acceleration: Inline..
The #pragma HLS INLINE synthesizes separate hardware each time the function is called.

1118 void hw_rail_values ( real ∗val , const real max, const real min)
1119 {
1120 #pragma HLS inline
1121 real src = ∗val ;
1122 bool over_max = (src > max);
1123 bool under_min = (src < min);
1124

1125 hw_rail_1:
1126 if (over_max)
1127 ∗val = max;
1128 else if (under_min)
1129 ∗val = min;
1130 return ;
1131 }

3.7 FPGA Con�guration & Runtime Initialization

3.7.1 Con�guration File: design.cfg

Description. The Vitis allows the user to control the compiler and the linker behavior using the
con�guration �le. More information regarding the di�erent options can be found here.

1 #check if the platform is the latest version
2 platform=xilinx_aws−vu9p−f1_shell−v04261818_201920_3
3 debug=1
4 pro�le_kernel =data: all : all : all
5 save−temps=1
6

7 [ hls ]
8 pre_tcl =hls_con�g . tcl
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In our baseline model, we use three kernels. Therefore, the three kernel names are de�ned
here under the connectivity. We further specify the SLR names for each of these three kernels
followed by the DDR port assignment. The xclbin utility provides us with the information about
the DDR ports that are attached to each of the SLR. By using the respective ports, we can minimize
the SLR crossings. If no details are speci�ed in the con�guration �le, the compiler automatically
tries to con�gure the ports which may not be optimal.

The following command can be executed in the terminal after setting the environment vari-
ables to get the information of the DDR ports.

1 source $AWS_FPGA_REPO_DIR/vitis_setup.sh
2 export PLATFORM_REPO_PATHS=$(dirname $AWS_PLATFORM)
3 platforminfo −$AWS_FPGA_REPO_DIR

10 #Enable either single kernel or three kernel
11 ##############single kernel start ################
12 # [ connectivity ]
13 # nk=runOnfpga:1:runOnfpga_1
14 ##############single kernel end##################
15

16 ###############three kernel start ################
17 [ connectivity ]
18 nk=runOnfpga:3:runOnfpga_1.runOnfpga_2.runOnfpga_3
19

20 # slr =<compute_unit_name>:<slr_ID>
21 slr =runOnfpga_1:SLR2
22 slr =runOnfpga_2:SLR1
23 slr =runOnfpga_3:SLR0
24

25 # [ connectivity ]
26 sp=runOnfpga_1.hw_agshock:DDR[1]
27 sp=runOnfpga_1.hw_idshock:DDR[1]
28 sp=runOnfpga_1.preinit :DDR[1]
29 sp=runOnfpga_1.results :DDR[1]
30 sp=runOnfpga_1.hw_iter:DDR[1]
31

32 sp=runOnfpga_2.hw_agshock:DDR[0]
33 sp=runOnfpga_2.hw_idshock:DDR[0]
34 sp=runOnfpga_2.preinit :DDR[0]
35 sp=runOnfpga_2.results :DDR[0]
36 sp=runOnfpga_2.hw_iter:DDR[0]
37

38 sp=runOnfpga_3.hw_agshock:DDR[3]
39 sp=runOnfpga_3.hw_idshock:DDR[3]
40 sp=runOnfpga_3.preinit :DDR[3]
41 sp=runOnfpga_3.results :DDR[3]
42 sp=runOnfpga_3.hw_iter:DDR[3]
43 ###############three kernel end##################

45 [vivado]
46 #prop=run.impl_1. strategy =Performance_Explore
47 #prop=run.impl_1. strategy =Performance_NetDelay_high
48 #prop=run.impl_1. strategy =Performance_WLBlockPlacementFanoutOpt
49 #prop=run.impl_1. strategy =Performance_WLBlockPlacement
50 #prop=run.impl_1. strategy =Performance_ExploreWithRemap
51 # prop=run.impl_1. strategy =Performance_BalanceSLRs
52 # prop=run.impl_1. strategy =Performance_EarlyBlockPlacement

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/xclbinutil-Utility
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53 prop=run.impl_1. strategy =Performance_ExtraTimingOpt
54 #prop=run.impl_1. strategy =Performance_NetDelay_low
55 # prop=run.impl_1. strategy =Congestion_SpreadLogic_low
56 #param=place.runPartPlacer=0

3.7.2 Con�guration File: hls_con�g.tcl

Description. While implementing the logic, some of the mathematical operators consumes con-
siderably large number of hardware resources. The user needs to make conscious of the num-
ber of pipelines that are to be implemented whenever it involves several mathematical opera-
tors. As discussed during hw.cpp �le, the functions sim_alm_coe�, regression, RsquaredCalc,
hw_sim_alm consumes several resources when it is left to compile with the default settings.
Therefore, we intsruct the compiler to limit the number of hardware operators using the follow-
ing directives. For example, we limit the number of calls to the regression function to 1 from
sim_alm_coe� function. This implies that if the prior function is being called 3 times, the com-
piler will implement the logic only once but utilize it thrice.

1 con�g_interface −m_axi_max_widen_bitwidth 512
2 set_directive_allocation − limit 1 −type function sim_alm_coe� regression
3 set_directive_allocation − limit 1 −type function sim_alm_coe� RSquaredCalc
4 set_directive_allocation − limit 1 −type function sim_alm_coe� hw_log
5 set_directive_allocation − limit 1 −type function regression hw_pow
6 set_directive_allocation − limit 1 −type function RSquaredCalc hw_pow
7 set_directive_allocation − limit 1 −type function hw_sim_alm hw_exp
8 set_directive_allocation − limit 1 −type function hw_sim_alm hw_log
9 set_param route . enableGlobalHoldIter true

3.7.3 Xilinx Runtime Library: xrt.ini

Description. The Xilinx runtime (XRT) uses various parameters to control execution �ow, de-
bug, pro�ling, and message logging during host application and kernel execution in software
emulation, hardware emulation, and system run on the acceleration board. These control pa-
rameters are optionally speci�ed in a runtime initialization �le xrt.ini. This �le needs to be
created manually and saved to the same directory as the host executable. The runtime library
checks if xrt.ini exists in the same directory as the host executable and automatically reads the
�le to con�gure the runtime.

In our program, we place this �le in the parent directory. Alternatively, the �le can be placed
in a di�erent location and the following command can be used to set the directory of the xrt.ini
�le.

1 export XRT_INI_PATH=/path/to/xrt.ini

The below code snippet of the xrt.ini �le shows that the pro�le, data transfer trace and sum-
mary are set to true.

1 # Start of Debug group
2 [Debug]

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/xrt.ini-File
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3 pro�le =true
4 timeline_trace =true
5 data_transfer_trace =coarse
6 opencl_summary=true
7 opencl_device_counter=true
8 opencl_trace=true

3.8 Run on the FPGA

Connect to your f1.2xlarge and execute the following commands from the terminal for setting
up the Xilinx environment and to clone the project.

1 git clone https :// github .com/aws/aws−fpga.git $AWS_FPGA_REPO_DIR //AWS repo
2 git clone https :// github .com/AleP83/KS−FPGA.git −b "dev_accel" // KS−FPGA Project

Navigate to the parent directory (KS-FPGA/baseline/codes/accel/src/fpga) within the cloned
KS-FPGA folder and execute the following command to generate the computations of the baseline
economy for 1200 computations.

1 make results

Once the results are computed, execute the following command to copy all the logs, reports
and summary �les into a single folder (single.zip) and download this folder to your local PC to
analyze the results.

1 make zip

Note: Make sure to terminate your F1 instance! It costs 1.65$/hr.



3.8 Run on the FPGA 73

Figure 3.6: Information from xclbinutil
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3.9 Make�le

This �le is in the parent directory (KS-FPGA/baseline/codes/accel/src/fpga) within the cloned KS-
FPGA project. Make�le is a tool that we use to compile source code into executable programs,
run scripts, parse and combine �les. It is designed to automatically update the outputs when
there is a change in any of the dependencies. A simple tutorial for the Make�le can be found
here.

In the below code snippet, we show the build process of the AWSXCLBIN �le that can be
executed on AWS f1 instance. We start by de�ning the variables that we use in the later section
of the code.

41 TARGET := hw
42 MPICXX := mpic++
43 CC := g++
44 INCLUDES := −I./common −I./common/libs −I./cpu −I ./ fpga −I ./ −I$(XILINX_XRT)/include/ −I$(XILINX_VIVADO)/include/
45 PLATFORM := xilinx_aws−vu9p−f1_shell−v04261818_201920_3
46 HOST_EXE := host
47 CPU_EXE := app
48 OPENMPI_EXE := openmpi_app
49 XO := ./ fpga/ build /runOnfpga.xo
50 XCLBIN := ./fpga/ build /runOnfpga.xclbin
51 S3_BUCKET_NAME := ksfpga−$(shell aws sts get−caller− identity | grep "Account" | tr −dc ’0−9’ )
52 S3_DCP_DIR := vitis−dcps
53 S3_LOG_DIR := vitis−logs
54 EMAIL := # enter your email address
55 SHELL := /bin/bash
56 CPU_CORES := 1 #set the number of CPU cores

These three �ags are de�ned so that the host program can determine the target application.
Notice that –D lets us pass a particular �ag during compilation. As we see that the below code
is for fpga, the FPGA_FLAG is being passed while building the host program.

57 OPENMPI_FLAG := −D_OPENMPI_MODE
58 FPGA_FLAG := −D_FPGA_MODE
59 SERIAL_CPU_FLAG := −D_SERIAL_CPU_MODE

The below script is drawn from the tutorial provided by AWS. We utilize the scripts provided
by AWS to generate the .AWSXCLBIN �le from the .XCLBIN �le.

70 . PHONY: a�
71 a� : a�gen
72 source $(AWS_FPGA_REPO_DIR)/hdk_setup.sh
73 pip install −−user −−upgrade boto3
74 wait_for_a� .py −−a� $( shell cat ∗ a�_id . txt | sed −n ’2p’ | tr −d ’ ", ’ | sed ’ s /.∗:// ’ ) −−notify −−email $(EMAIL) &
75

76 . PHONY: a�gen
77 a�gen : fpga
78 aws s3 mb s3 :// $(S3_BUCKET_NAME) −−region us−east−1
79 touch FILES_GO_HERE.txt
80 aws s3 cp FILES_GO_HERE.txt s3://$(S3_BUCKET_NAME)/$(S3_DCP_DIR)
81 touch LOGS_FILES_GO_HERE.txt
82 aws s3 cp LOGS_FILES_GO_HERE.txt s3://$(S3_BUCKET_NAME)/$(S3_LOG_DIR)
83 rm −rf to_aws
84 $(VITIS_DIR)/tools / create_vitis_a� . sh −xclbin=$(XCLBIN) −s3_bucket=$(S3_BUCKET_NAME) −s3_dcp_key=$(S3_DCP_DIR) −

s3_logs_key=$(S3_LOG_DIR)

https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_6_Make.pdf
https://github.com/aws/aws-fpga/tree/master/Vitis#2-create-an-amazon-fpga-image-afi


3.9 Make�le 75

85

86 fpga : $(XO) $(XCLBIN) $(HOST_EXE) emcon�g

The dependency for the following code snippet is shown in the Figure 3.7.
98 # Building kernel
99 $(XO): ./ fpga/hw.cpp

100 v++ −I ./ common −I./fpga −I ./ $(FPGA_FLAG) $(EGM_UNTIL_CONV_FLAG) $(KRNL_COMPILE_OPTS) −c −k runOnfpga −o’$@’ ’$<’
101

102 $(XCLBIN): $(XO)
103 v++ −I ./ common −I./fpga −I ./ $(KRNL_LINK_OPTS) −l −o’$@’ $(+)
104

105 # Building fpga Host for EGM until convergence
106 $(HOST_EXE): ./common/libs/xcl2.cpp ./ common/app.cpp ./common/init.cpp
107 $(CC) $(FPGA_FLAG) $(EGM_UNTIL_CONV_FLAG) $(CXXFLAGS) $^ −o $@ $(CXXFLAGS2)

Figure 3.7: Simpli�ed Data dependency chart for generating AWSXCLBIN
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3.10 Command Guidelines

3.10.1 OpenCL Commands Description

This section provides a comprehensive list of the OpenCL commands used to design the com-
munications between host and FPGA device(s) and the computation work�ow. Source: Open CL
O�cial Manual. Xilinx Documentation - UG1393 Kronos OpenCL Documentation.

3.10.1.1 Gathering information about platforms

• Command: cl::Context

• Description: The cl::Context API is used to create a context that contains a Xilinx device
that will communicate with the host machine.

• Command: cl::Platform

• Description: Upon initialization, the host application needs to identify a platform com-
posed of one or more Xilinx devices.

• Command: cl::Platform::get

• Description: Gets a list of available platforms.

3.10.1.2 Programming the device

• Command: cl::Program::Binaries

• Description:

• Command: cl::Program

• Description: Program interface that implements cl_program

3.10.1.3 Command Queue

• Command: cl::CommandQueue

• Description: The cl::CommandQueue API creates one or more command queues for each
device. The FPGA can contain multiple kernels, which can be either the same or di�er-
ent kernels. When developing the host application, there are two main programming ap-
proaches to execute kernels on a device:

– Single out-of-order command queue: Multiple kernel executions can be requested
through the same command queue. XRT dispatches kernels as soon as possible, in
any order, allowing concurrent kernel execution on the FPGA.

https://github.khronos.org/OpenCL-CLHPP/classcl_1_1_context.html
https://github.khronos.org/OpenCL-CLHPP/classcl_1_1_context.html
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Context
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueMigrateMemObjects.html
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– Multiple in-order command queue: Each kernel execution is requested from di�erent
in-order command queues. In such cases, XRT dispatches kernels from the di�er-
ent command queues, improving performance by running them concurrently on the
device.

The following is an example of standard API calls to create in-order and out-of-order com-
mand queues.

1 // In-order Command Queue
commands = clCreateCommandQueue(context, deviceid, 0, err);

3.10.1.4 Kernels

• Command: cl::Kernel

• Description: Identi�es a kernel in the program loaded into the FPGA that can be run by
the host application.

3.10.1.5 Bu�ers

• Command: cl::Bu�er

• Description: Interactions between the host program and hardware kernels rely on cre-
ating bu�ers and transferring data to and from the memory in the device. cl::Bu�er con-
structs a bu�er in a speci�ed context.

3.10.1.6 Events

• Command: cl::Event

• Description: Class interface for cl_event

3.10.1.7 Memory Transfer & Kernel Computation Management

• Command: cl::enqueueMigrateMemObjects

• Description: Enqueues a command to indicate which device a set of memory objects
should be associated with. Using this API, memory migration can be explicitly performed
ahead of the dependent commands.

• Command: cl::enqueueTask

• Description: When the kernel is compiled to a single hardware instance (or CU) on the
FPGA, the simplest method of executing the kernel is using cl::EnqueueTask which en-
queues a command to execute a kernel on a device.
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3.10.2 Error Management

• cl_int err

• OCL_CHECK(err, bu�er_in_coe�s[d][k] = cl::Bu�er(contexts[d], CL_MEM_USE_HOST_PTR
| CL_MEM_READ_ONLY, hw_coe�_size_bytes, in_coe�[d][k].data(), err));

3.10.2.1 Computation Flow

3.10.3 Pragmas Description

This section provides a comprehensive list of the pragmas used to accelerate the code.

• Command: #pragma HLS PIPELINE

• What it does: The PIPELINE pragma tells the compiler to start each iteration of the loop
immediately, if possible, rather than waiting for the loop body to �nish before starting the
next iteration of the loop. This allows multiple loop iterations to run concurrently on the
same hardware, decreasing runtime. Xilinx link

• Command: #pragma HLS ARRAY_PARTITION

• What it does: Partitions an array into smaller arrays or individual elements. This can
allow the on-chip memories to perform more reads in parallel. Xilinx link

• Command: #pragma HLS UNROLL

• What it does: The UNROLL pragma transforms loops by creating multiples copies of the
loop body in the RTL design, which allows some or all loop iterations to occur in parallel.
Xilinx link

• Command: #pragma HLS BIND_STORAGE

• What it does: The BIND_STORAGE pragma assigns a variable (array, or function argu-
ment) in the code to a speci�c memory type in the RTL Xilinx link

• Command: #pragma HLS LOOP_TRIPCOUNT

• What it does: When manually applied to a loop, speci�es the total number of iterations
performed by a loop. This can help the tools in estimating the performance for the appli-
cation. Xilinx link

• Command: #pragma HLS INLINE

• What it does: Removes a function as a separate entity in the hierarchy. This reduces the
overhead for the function call and can allow the function to be optimized into the caller.
When you inline, you will have a separate set of hardware for each place where the function
is inlined. Xilinx link

https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/fde1504034360078.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/gle1504034361378.html
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#uyd1504034366571
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#chr1584844747152
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#sty1504034367099
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#jka1504034359550
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