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This paper shows how particle filtering facilitates likelihood-based inference in dynamic macroeco-
nomic models. The economies can be non-linear and/or non-normal. We describe how to use the output
from the particle filter to estimate the structural parameters of the model, those characterizing preferences
and technology, and to compare different economies. Both tasks can be implemented from either a clas-
sical or a Bayesian perspective. We illustrate the technique by estimating a business cycle model with
investment-specific technological change, preference shocks, and stochastic volatility.

1. INTRODUCTION

This paper shows how particle filtering facilitates likelihood-based inference in dynamic equi-
librium models. The economies can be non-linear and/or non-normal. We describe how to use
the particle filter to estimate the structural parameters of the model, those characterizing prefer-
ences and technology, and to compare different economies. Both tasks can be implemented from
either a classical or a Bayesian perspective. We illustrate the technique by estimating a business
cycle model with investment-specific technological change, preference shocks, and stochastic
volatility. We highlight three results. First, there is strong evidence of stochastic volatility on
U.S. aggregate data. Second, two periods of low and falling aggregate volatility, from the late
1950’s to the late 1960’s and from the mid 1980’s to today, were interrupted by a period of high
and rising aggregate volatility from the late 1960’s to the early 1980’s. Third, variations in the
volatility of preferences and investment-specific technological shocks account for most of the
variation in the volatility of output growth over the last 50 years.

Likelihood-based inference is a useful tool to take dynamic equilibrium models to the data
(An and Schorfheide, 2007). However, most dynamic equilibrium models do not imply a likeli-
hood function that can be evaluated analytically or numerically. To circumvent this problem, the
literature has used the approximated likelihood derived from a linearized version of the model,
instead of the exact likelihood. But linearization depends on the accurate approximation of the
solution of the model by a linear relation and on the shocks to the economy being distributed
normally. Both assumptions are problematic.

First, the impact of linearization is grimmer than it appears. Fernández-Villaverde, Rubio-
Ramírez and Santos (2006) prove that second-order approximation errors in the solution of the
model have first-order effects on the likelihood function. Moreover, the error in the approxi-
mated likelihood gets compounded with the size of the sample. Period by period, small errors
in the policy function accumulate at the same rate at which the sample size grows. Therefore,
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the likelihood implied by the linearized model diverges from the likelihood implied by the exact
model. Fernández-Villaverde and Rubio-Ramírez (2005) document how those insights are quan-
titatively relevant to real-life applications. Using U.S. data, we estimate the neoclassical growth
model with two methods: the particle filter described in this paper and the Kalman filter on a lin-
earized version of the model. We uncover significant differences on the parameter estimates, on
the level of the likelihood, and on the moments generated by the model. Second, the assumption
of normal shocks precludes investigating many models of interest, such as those with fat tails
innovations, time-varying volatility, or autoregressive conditional duration.

To avoid these problems, we need to evaluate the likelihood function of non-linear and/or
non-normal macroeconomic models. The particle filter is one procedure that will allow us to
do so. We borrow from the literature on sequential Monte Carlo methods (see the book length
survey in Doucet, de Freitas and Gordon (2001)). In economics, Pitt and Shephard (1999) and
Kim, Shephard and Chib (1998) have pioneered the application of particle filters in financial
econometrics. We adapt this know-how to handle the peculiarities of macroeconomic models. In
particular, we propose and exploit in our application a novel partition of the shocks that drive the
model. This partition facilitates the estimation of some models while being general enough to
encompass existing particle filters.

The general idea of the procedure follows. First, for given values of the parameters, we solve
for the equilibrium of the model with a non-linear solution method. The researcher can employ
the solution algorithm that best fits her needs. With the solution of the model, we construct the
state-space representation of the economy. Under mild conditions, we apply a particle filter to
this state-space form to evaluate the likelihood function of the model. Then, we either maximize
the likelihood or find posterior distributions of the parameters, possibly by simulation. If we carry
out the procedure with several models, we could compare them by building likelihood ratios or
Bayes factors.

Particle filtering is a reasonably general purpose and is asymptotically efficient. However, it
is not the only procedure we can use to perform likelihood estimation with dynamic models. Kim
et al. (1998) conduct Bayesian inference on the model parameters and smoothing of states using a
Markov chain Monte Carlo method. Fiorentini, Sentanta, and Shephard (2004) obtain maximum
likelihood estimators with a simulated expectation-maximization (EM) algorithm. Fermanian and
Salanié (2004) implement a nonparametric simulated likelihood method through kernel estima-
tion. The technical appendix to this paper (available at www.econ.upenn.edu/~jesusfv) reviews
further alternatives to compute the likelihood of non-linear and/or non-normal dynamic models.

There are also other routes to estimate dynamic models that do not rely on the likelihood
function. One procedure is indirect inference (Gallant and Tauchen, 1996), which can, in the-
ory, achieve the same asymptotic efficiency as maximum likelihood by an appropriate choice
of auxiliary models. Moreover, simulated methods of moments like indirect inference will yield
consistent estimators regardless of the number of simulations, while in our approach consistency
can be guaranteed only if the number of simulations goes to infinity. However, the choice of
an appropriate auxiliary model may be a challenging task. Alternatively, there is an important
literature on simulated likelihood and simulated pseudo-likelihood applied to macroeconomic
models (Laroque and Salanié, 1989, 1993). The approach taken in these papers is to minimize a
distance function between the observed variables and the conditional expectations, weighted by
their conditional variances.1

As an application, we estimate a model of the U.S. business cycle with stochastic volatil-
ity on the shocks that drive the economy. Introducing stochastic volatility is convenient for two

1. We thank one referee for his help with the content of the last two paragraphs.
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reasons. First, Kim and Nelson (1998), McConnell and Pérez-Quirós (2000), and Stock and
Watson (2002) show that time-varying volatility is crucial for understanding U.S. data. This
makes the application of interest per se. Second, stochastic volatility induces both fundamen-
tal non-linearities in the model and non-normal distributions. If we linearized the laws of motion
for the shocks, the stochastic volatility terms would drop, killing any possibility of exploring this
mechanism. Hence, our application demonstrates how the particle filter is an important tool to
address empirical questions at the core of macroeconomics.

In our estimation, we identify the process driving investment-specific technology shocks
through the relative price of new equipment to consumption. We learn about the neutral tech-
nology and preference shocks from output, investment, and hours worked. The data reveal three
patterns. First, there is compelling evidence for the presence of stochastic volatility in U.S. ag-
gregate time series. Second, the decline in macro-volatility has been a gradual process since the
late 1950’s, interrupted by the turbulence of the 1970’s, and not, as emphasized by the literature,
an abrupt change around 1984. Third, the evolution in the volatility of preference and investment-
specific technological shocks accounts for the variations in the volatility of output growth over
the last 50 years. In addition, we provide evidence of how inference is crucially affected both by
the non-linear component of the solution and by stochastic volatility.

We are aware of only one other paper that combines stochastic volatility and a dynamic
general equilibrium model: the fascinating contribution of Justiniano and Primiceri (2005). Their
innovative paper estimates a rich New Keynesian model of the business cycle with nominal and
real rigidities. One difference between our papers is that the particle filter allows us to charac-
terize the non-linear behaviour of the economy induced by stochastic volatility that Justiniano
and Primiceri cannot handle. We document how including this non-linear component may be
quantitatively important for inference.

We organize the rest of the paper as follows. We describe the particle filter in Section 2. We
present our application in Section 3. We discuss computational details in Section 4. We conclude
in Section 5.

2. A FRAMEWORK FOR LIKELIHOOD INFERENCE

In this section, we describe a framework to perform likelihood-based inference on a large class
of non-linear and/or non-normal dynamic macroeconomic models. Cooley (1995) provides many
examples of models in this class. Each of these economies implies a joint probability density
function for observables given the model’s structural parameters. This density, the likelihood
function of the model, is in general difficult to evaluate. Particle filtering is a powerful route
(although not the only one) to accomplish this goal.

We structure this section as follows. First, we present the state-space representation of a
dynamic macroeconomic model. Second, we define the likelihood function of a dynamic model.
Third, we discuss some of our technical assumptions. Fourth, we present a particle filter to evalu-
ate that likelihood. Fifth, we link the filter with the estimation of the structural parameters of the
model. We finish by discussing the smoothing of unobserved states.

2.1. The state-space representation of a dynamic macroeconomic model

Many dynamic macroeconomic models can be written in the following state-space form. First,
the equilibrium of the economy is characterized by some states St that evolve over time according
to the transition equation

St = f (St−1,Wt ; γ ), (1)
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where {Wt } is a sequence of independent random variables and γ ∈ ϒ is the vector of parameters
of the model. Second, the observables Yt are a realization of the random variable Yt governed by
the measurement equation

Yt = g(St ,Vt ; γ ), (2)

where {Vt } is a sequence of independent random variables that affect the observables but not
the states. The sequences {Wt } and {Vt } are independent of each other. The random variables
Wt and Vt are distributed as p(Wt ; γ ) and p(Vt ; γ ). We only require the ability to evaluate
these densities. The vector γ also includes any parameters characterizing the distributions of
Wt and Vt . Assuming independence of {Wt } and {Vt } is only for notational convenience.
Generalization to more involved stochastic processes is achieved by increasing the dimension
of the state space.

The functions f and g come from the equations that describe the behaviour of the model:
policy functions, resource and budget constraints, equilibrium conditions, and so on. Along some
dimension, the function g can be the identity mapping if a state is observed without noise.
Dynamic macroeconomic models do not generally admit closed-form solutions for functions
f and g. Our algorithm requires only a numerical procedure to approximate them.

2.2. The likelihood function of the model

To continue our analysis we need to make three assumptions. Section 2.3 will explain in more
detail the role of these assumptions.

Assumption 1. There exists a partition of {Wt } into two sequences {W1,t } and {W2,t }, such
that Wt = (W1,t ,W2,t ) and dim(W2,t )+dim(Vt ) ≥ dim(Yt ) for all t .

The standard particle filter requires a stronger assumption, that is, dim(Vt ) ≥ dim(Yt ) for
all t . This stronger assumption is restrictive in macroeconomics, where most researchers do not
want to have a profusion of shocks. To extend the particle filter to a larger class of macroe-
conomic models, we relax that assumption by extracting from {Wt } the sequence {W2,t }. If
dim(Vt ) ≥ dim(Yt ), we can set W1,t = Wt ∀t , that is, {W2,t } is a zero-dimensional sequence.
Conversely, if dim(Wt ) + dim(Vt ) = dim(Yt ), we set W2,t = Wt for ∀t , that is, {W1,t } is a
zero-dimensional sequence. We see our partition of the shocks as an important advantage of our
approach.

Our partition, however, raises a question: Do the identities of {W1,t } and {W2,t } matter
for the results presented in this section? The short answer is no. If, for example, dim(Wt ) = 2
and dim(W1,t ) = dim(W2,t ) = 1, we can exchange the identities of {W1,t } and {W2,t } without
affecting the theoretical results. Of course, the identities of {W1,t } and {W2,t } will affect the
results for any finite number of particles, but as the number of particles grows, this problem
vanishes. Luckily, as is the case with our application below, often there is a natural choice of
{W2,t } and, therefore, of {W1,t }. Our partition of {Wt } into two nontrivial sequences {W1,t } and
{W2,t } will allow us to estimate a model with four observables.

As notation for the rest of the paper, let W t
i = {Wi,m}t

m=1 and let wt
i be a realization of the

random variable W t
i for i = 1,2 and for ∀t . Let V t = {Vm}t

m=1 and let v t be a realization of the
random variable V t for ∀t . Let St = {Sm}t

m=0 and let st be a realization of the random variable
St for ∀t . Let Y t = {Ym}t

m=1 and let Y t be a realization of the random variable Yt = {Ym}t
m=1

for ∀t . Finally, we define W 0
i = {∅} and Y0 = {∅}.
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Our goal is to evaluate the likelihood function of a sequence of realizations of the observable
YT at a particular parameter value γ :

L(YT ; γ ) = p(YT ; γ ). (3)

In general the likelihood function (3) cannot be computed analytically. The particle filter
relies on simulation methods to estimate it. Our first step is to factor the likelihood as

p(YT ; γ ) =
T∏

t=1

p(Yt |Y t−1; γ ) =
T∏

t=1

∫∫
p(Yt |W t

1, S0,Y t−1; γ )p(W t
1, S0|Y t−1; γ )dW t

1dS0,

(4)
where S0 is the initial state of the model, the p’s represent the relevant densities. In the case that
{W1t } has zero dimensions∫∫

p(Yt |W t
1, S0,Y t−1; γ )p(W t

1, S0|Y t−1; γ )dW t
1dS0 =

∫
p(Yt |S0,Y t−1; γ )p(S0|Y t−1; γ )dS0.

To save on notation, we assume herein that all the relevant Radon–Nikodym derivatives
exist. Extending the exposition to the more general case is straightforward but cumbersome.

Expression (4) shows that the problem of evaluating the likelihood (3) amounts to solv-
ing an integral, with conditional densities p(Yt |W t

1, S0,Y t−1; γ ) and p(W t
1, S0|Y t−1; γ ) that are

difficult to characterize. When the state-space representation is linear and normal, the integral
simplifies notably because all the relevant densities are conditionally normal. Then, tracking the
mean and variance–covariance matrix of the densities is enough to compute the likelihood. The
Kalman filter accomplishes this objective through the Riccati equations. However, when the state
representation is non-linear and/or non-normal, the conditional densities are no any longer nor-
mal, and we require a more powerful tool than the Kalman filter.

Before continuing, we present two additional assumptions.

Assumption 2. For all γ , s0, wt
1, and t, the following system of equations

S1 = f (s0, (w1,1,W2,1); γ ),

Ym = g(Sm,Vm ; γ ) for m = 1,2, . . . t,

Sm = f (Sm−1, (w1,m,W2,m); γ ) for m = 2,3, . . . t

has a unique solution (v t (wt
1,s0,Y t ; γ ),st (wt

1,s0,Y t ; γ ),wt
2(w

t
1,s0,Y t ; γ )), and we can evalu-

ate the probabilities p(v t (wt
1,s0,Y t ; γ ); γ ) and p(wt

2(w
t
1,s0,Y t ; γ ); γ ).

Assumption 2 implies that we can evaluate the conditional densities p(Yt |wt
1,s0,Y t−1; γ )

for all γ , s0, wt
1, and t in a very simple way. To simplify the notation, we write (v t ,st ,wt

2),
instead of the more cumbersome (v t (wt

1,s0,Y t ; γ ),st (wt
1,s0,Y t ; γ ),wt

2(w
t
1,s0,Y t ; γ )). Then,

we have
p(Yt |wt

1,s0,Y t−1; γ ) = p(vt ,w2,t ; γ )|dy(vt ,w2,t ; γ )|−1 (5)

for all γ , s0, wt
1, and t , where |dy(vt ,w2,t ; γ )| is the absolute value of the determinant of the

jacobian of Yt with respect to Vt and W2,t evaluated at vt and w2,t . Assumption 2 requires only
the ability to evaluate the density; it does not require having a closed form for it. Thus, we may
employ numerical or simulation methods for the evaluation if this is convenient.

An implication of (5) is that, to compute p(Yt |wt
1,s0,Y t−1; γ ), we only need to solve

a system of equations and evaluate the probability of observing the solution to the system,

c© 2007 The Review of Economic Studies Limited
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p(vt ,w2,t ; γ ), times the absolute value of the determinant of the Jacobian evaluated at the solu-
tion, |dy(vt ,w2,t ; γ )|. The evaluation of p(vt ,w2,t ; γ ) is generally very simple. How difficult is
it to evaluate the Jacobian? Often, this is also a simple task because the Jacobian depends on the
derivatives of f and g, which can evaluate, at least, numerically for any given γ . For example,
if, given γ , we employ a second-order perturbation method to solve the model and get f and g,
the Jacobian is a constant matrix that comes directly from the solution procedure.

Finally, we assume that the model assigns positive probability to the data, yT . This is for-
mally reflected in the following assumption:

Assumption 3. For all γ ∈ ϒ , s0, wt
1, and t, the model gives some positive probability to

the data YT , that is,
p(Yt |wt

1,s0,Y t−1; γ ) > 0,

for all γ ∈ ϒ , s0, wt
1, and t.

If Assumptions 1–3 hold, conditional on having N draws {{ŵt,i
1 , ŝi

0}N
i=1}T

t=1 from the
sequence of densities {p(W t

1, S0|Y t−1; γ )}T
t=1 (note that the hats and the superindex i on the

variables denote a draw), the likelihood function (4) is approximated by

p(YT ; γ ) �
T∏

t=1

1

N

N∑
i=1

p(Yt |ŵt,i
1 , ŝi

0,Y t−1; γ ) (6)

because of the law of large numbers. Hence, the problem of evaluating the likelihood of a
dynamic model is equivalent to the problem of drawing from {p(W t

1, S0|Y t−1; γ )}T
t=1. This is

a challenging problem because this conditional density is a complicated function of Y t−1.

2.3. Assumptions and stochastic singularity

Before continuing, we present some further discussion of our assumptions and relate them to
stochastic singularity. Assumption 1 is a necessary condition for the model not to be stochasti-
cally singular. If Assumption 1 does not hold, that is, dim(Wt )+dim(Vt ) < dim(Yt ), the model
cannot assign positive probability to the data because for an arbitrary St−1 it is not possible to find
a combination of Wt and Vt such that the model can explain Yt . This paper does not contribute to
the literature on how to solve the problem of stochastic singularity of dynamic macroeconomic
models. Therefore, we do not impose any restrictions on how the researcher adjusts the number
of shocks and observables to satisfy this assumption. When we complement Assumption 1 with
Assumption 3, we get a sufficient condition for the model not to be stochastically singular.

The need to combine Assumptions 1 and 3 also motivates our notation in terms of the history
of innovations W t

1. This notation is slightly more complicated than the standard notation in terms
of states, St :

p(YT ; γ ) =
T∏

t=1

p(Yt |Y t−1; γ ) =
T∏

t=1

∫
p(Yt |St ,Y t−1; γ )p(St |Y t−1; γ )dSt . (7)

We chose our notation because, as explained above, we want to deal with the common case
in macroeconomics where dim(Vt ) < dim(Yt ). This case is difficult to handle with the standard
notation. If dim(Vt ) < dim(Yt ), then p(Yt |St ,Y t−1; γ ) = 0 almost surely (and hence (7) is
also 0) because there is no Vt that is able to generate Yt for an arbitrary St . In comparison, with
the appropriate partition of the shocks, we can evaluate the likelihood given by (4).

c© 2007 The Review of Economic Studies Limited
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Finally, note that Assumption 2 is a technical assumption to compute p(Yt |wt
1,s0,Y t−1; γ )

using the simple formula described in (5). If Assumption 2 does not hold, but Assumptions 1
and 3 do, the model is not stochastically singular and the particle filter can be applied. In that
case, we will need to generalize formula (5) to consider cases where the solution to the system
of equations is not unique.

2.4. A particle filter

The goal of the particle filter is to draw efficiently from {p(W t
1, S0|Y t−1; γ )}T

t=1 to estimate the
likelihood function of the model as given by (6).

Before introducing the particle filter, we fix some additional notation. Let {wt−1,i
1 ,st−1,i

0 }N
i=1

be a sequence of N i.i.d. draws from p(W t−1
1 , S0|Y t−1; γ ). Let {wt |t−1,i

1 ,st |t−1,i
0 }N

i=1 be a sequence
of N i.i.d. draws from p(W t

1, S0|Y t−1; γ ). We call each draw (wt,i
1 ,st,i

0 ) a particle and the se-
quence {wt,i

1 ,st,i
0 }N

i=1 a swarm of particles. Also, let h(St ) be any measurable function for which
the expectation

E p(W t
1,S0|Y t ;γ )(h(W t

1, S0)) =
∫

h(W t
1, S0)p(W t

1, S0|Y t ; γ )dW t
1dS0

exists and is finite.
The following proposition, a simple and well-known application of importance sampling

(e.g. Geweke, 1989, Theorem 1), is key for further results.

Proposition 1. Let {wt |t−1,i
1 ,st |t−1,i

0 }N
i=1 be a draw from p(W t

1, S0|Y t−1; γ) and the weights:

qi
t = p(Yt |wt |t−1,i

1 ,st |t−1,i
0 ,Y t−1; γ )∑N

i=1 p(Yt |wt |t−1,i
1 ,st |t−1,i

0 ,Y t−1; γ )
.

Then

E p(W t
1,S0|Y t ;γ )(h(W t

1, S0)) �
N∑

i=1

qi
t h(w

t |t−1,i
1 ,st |t−1,i

0 ).

Proof. By Bayes’ theorem

p(W t
1, S0|Y t ; γ ) ∝ p(W t

1, S0|Y t−1; γ )p(Yt |W t
1, S0,Y t−1; γ ).

Therefore, if we take p(W t
1, S0|Y t−1; γ ) as an importance sampling function to draw from

the density p(W t
1, S0|Y t ; γ ), the result is a direct consequence of the law of large numbers. ‖

Rubin (1988) proposed to combine Proposition 1 and p(W t
1, S0|Y t−1; γ ) to draw from

p(W t
1, S0|Y t ; γ ) in the following way:

Corollary 1. Let {wt |t−1,i
1 ,st |t−1,i

0 }N
i=1 be a draw from p(W t

1, S0|Y t−1; γ ). Let the
sequence {w̃i

1, s̃i
0}N

i=1 be a draw with replacement from {wt |t−1,i
1 ,st |t−1,i

0 }N
i=1 where qi

t is the
probability of (wt |t−1,i

1 ,st |t−1,i
0 ) being drawn ∀i . Then {w̃i

1, s̃i
0}N

i=1 is a draw from p(W t
1, S0|Y t ; γ).

Corollary 1 shows how a draw {wt |t−1,i
1 ,st |t−1,i

0 }N
i=1 from p(W t

1, S0|Y t−1; γ ) can be used to
get a draw {wt,i

1 ,st,i
0 }N

i=1 from p(W t
1, S0|Y t ; γ ). How do we get the swarm {wt |t−1,i

1 ,st |t−1,i
0 }N

i=1?
By taking a swarm {wt−1,i

1 ,st−1,i
0 }N

i=1 from p(W t−1
1 , S0|Y t−1; γ ) and augmenting it with draws

c© 2007 The Review of Economic Studies Limited
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from p(W1,t ; γ ) since p(W t
1, S0|Y t−1; γ ) = p(W1,t ; γ )p(W t−1

1 , S0|Y t−1; γ ). Note that w
t |t−1,i
1

is a growing object with t (it has the additional component of the draw from p(W1,t ; γ )), while
st |t−1,i

0 is not. Corollary 1 is crucial for the implementation of the particle filter. We discussed
before how, when the model is non-linear and/or non-normal, the particle filter keeps track
of a set of draws from p(W t

1, S0|Y t−1; γ ) that are updated as new information is available.
Corollary 1 shows how importance resampling solves the problem of updating the draws in such
a way that we keep the right conditioning. This recursive structure is summarized in the following
pseudo-code for the particle filter:

Step 0, Initialization: Set t ; 1 . Initialize p(W t−1
1 , S0|Y t−1; γ ) = p(S0; γ ) .

Step 1, Prediction: Sample N values
{
w

t |t−1,i
1 ,st |t−1,i

0

}N

i=1
from the conditional

density p(W t
1, S0|Y t−1; γ ) = p(W1,t ; γ )p(W t−1

1 , S0|Y t−1; γ ) .

Step 2, Filtering: Assign to each draw (w
t |t−1,i
1 ,st |t−1,i

0 ) the weight qi
t defi-

ned in proposition 1.

Step 3, Sampling: Sample N times from
{
w

t |t−1,i
1 ,st |t−1,i

0

}N

i=1
with replacement

and probabilities
{
qi

t

}N
i=1. Call each draw (wt,i

1 ,st,i
0 ). If t < T set t ; t +

1and go to step 1. Otherwise stop.

With the output of the algorithm,

{{
w

t |t−1,i
1 ,st |t−1,i

0

}N

i=1

}T

t=1
, we compute the likelihood

function as

p(YT ; γ ) � 1

N

(
T∏

t=1

1

N

N∑
i=1

p(Yt |wt |t−1,i
1 ,st |t−1,i

0 ,Y t−1; γ )

)
. (8)

Since the particle filter does not require any assumption on the distribution of the shocks
except the ability to evaluate p(Yt |W t

1, S0,Y t−1; γ ), either analytically or numerically, the al-
gorithm works effortlessly with non-normal innovations. Del Moral and Jacod (2002) and Kün-
sch (2005) provide weak conditions under which the R.H.S. of (8) is a consistent estimator of
p(YT ; γ )
and a central limit theorem applies. However, the conditions required to apply those results
may not hold in practice and they need to be checked (see, for further details, Koopman and
Shephard, 2003).

The intuition of the algorithm is as follows. Given a swarm of particles up to period t − 1,{
wt−1,i

1 ,st−1,i
0

}N

i=1
, distributed according to p(W t−1

1 , S0|Y t−1; γ ), the Prediction Step gener-

ates draws
{
w

t |t−1,i
1 ,st |t−1,i

0

}N

i=1
from p(W t

1, S0|Y t−1; γ ). In the case where dim(W1,t ) = 0, the
algorithm skips this step. The Sampling Step takes advantage of Corollary 1 and resamples from{
w

t |t−1,i
1 ,st |t−1,i

0

}N

i=1
with the weights {qi

t }N
i=1 to draw a new swarm of particles up to period t,{

wt,i
1 ,st,i

0

}N

i=1
distributed according to p(W t

1, S0|Y t ; γ ). A resampling procedure that minimizes
the numerical variance (and the one we implement in our application) is known as systematic re-
sampling (Kitagawa, 1996). This procedure matches the weights of each proposed particle with
the number of times each particle is accepted. Finally, applying again the Prediction Step, we

generate draws
{
w

t+1|t,i
1 ,st+1|t,i

0

}N

i=1
from p(W t+1

1 , S0|Y t ; γ ) and close the algorithm.
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The Sampling Step is the heart of the algorithm. If we avoid this step and just weight each

draw in
{
w

t |t−1,i
1 ,st |t−1,i

0

}N

i=1
by {Nqi

t }N
i=1, we have the so-called sequential importance sam-

pling (SIS). The problem with SIS is that qi
t → 0 for all i but one particular i ′ as t → ∞ if

dim(W1,t ) > 0 (Arulampalam, Maskell, Gordon and Clapp, 2002, pp. 178–179). The reason is
that all the sequences become arbitrarily far away from the true sequence of states, which is a
zero measure set. The sequence that happens to be closer dominates all the remaining ones in
weight. In practice, after a few steps, the distribution of importance weights becomes heavily
skewed, and after a moderate number of steps, only one sequence has a nonzero weight. Since
samples in macroeconomics are relatively long (200 observations or so), the degeneracy of SIS
is a serious problem. However, our filter still may have the problem that a very small number of
distinct sequences remain. This phenomenon, known as “sample depletion problem”, has been
documented in the literature. In Section 4, we describe how to test for this problem.

Several points deserve further discussion. First, we can exploit the last value of the particle

swarm
{
wT,i

1 ,sT,i
0

}N

i=1
for forecasting, that is, to make probability statements about future values

of the observables. To do so, we draw from
{
wT,i

1 ,sT,i
0

}N

i=1
and by simulating p(W1,T+1; γ ),

p(W2,T+1; γ ), and p(VT+1; γ ), we build p(YT+1|YT ; γ ). Second, we draw from p(S0; γ ) in
the Initialization Step using the transition and measurement equations (1) and (2) (see Santos and
Peralta-Alva (2005) for details). Finally, we emphasize that we are presenting here only a basic
particle filter and that the literature has presented several refinements to improve efficiency, taking
advantage of some of the particular characteristics of the estimation at hand (see, for example,
the auxiliary particle filter of Pitt and Shephard (1999)).

2.5. Estimation algorithms

We now explain how to employ the approximated likelihood function (8) to perform likelihood-
based estimations from both a classical and a Bayesian perspective. On the classical side, the
main inference tool is the likelihood function and its global maximum. Once the likelihood is
approximated by (8), we can maximize it as follows:

Step 0, Initialization: Set i ; 0 and an initial γi . Set i ; i +1
Step 1, Solving the Model: Solve the model for γi and compute f (·, ·; γi )

and g(·, ·; γi ).
Step 2, Evaluating the Likelihood: Evaluate L(YT ; γi ) using (8) and get

γi+1 from a maximization routine.
Step 3, Stopping Rule: If ‖L(YT ; γi )− L(YT ; γi+1)‖ > ξ, where ξ > 0 is the

accuracy level goal, set i; i +1 and go to step 1. Otherwise stop.

The output of the algorithm, γ̂MLE, is the maximum likelihood point estimate (MLE), with

asymptotic variance–covariance matrix var(̂γMLE) = −
(

∂2 L(YT ; γ̂MLE)
∂γ ∂γ ′

)−1
. Since, in general, we

cannot directly evaluate this second derivative, we will approximate it with standard numerical
procedures. The value of the likelihood function at its maximum is also an input when we build
likelihood ratios for model comparison.

However, for the MLE to be an unbiased estimator of the parameter values, the likelihood
L(YT ; γ ) has to be differentiable with respect to γ . Furthermore, for the asymptotic

variance–covariance matrix var(̂γMLE) to equal −
(

∂2 L(YT ; γ̂MLE)
∂γ ∂γ ′

)−1
, L(YT ; γ ) has to be twice
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differentiable with respect to γ . Remember that the likelihood can be written as

L(YT ; γ ) =
T∏

t=1

p(Yt |Y t−1; γ ) =
∫ (∫ T∏

t=1

p(W1,t ; γ )p(Yt |W t
1, S0,Y t−1; γ )dW t

1

)
µ∗(dS0; γ ),

where µ∗(S; γ ) is the invariant distribution on S of the dynamic model. Thus, to prove that
L(YT ; γ ) is twice differentiable with respect to γ , we need p(W1,t ; γ ), p(Yt |W t

1, S0,Y t−1; γ ),
and µ∗(S; γ ) to be twice differentiable with respect to γ .

Under standard regularity conditions, we can prove that both p(Yt |W t
1, S0,Y t−1; γ ) and

p(W1,t ; γ ) are twice differentiable (Fernández-Villaverde, Rubio-Ramírez and Santos, 2006).
The differentiability of µ∗(dS0; γ ) is a more complicated issue. Except for special cases
(Stokey, Lucas and Prescott, 1989, Theorem 12.13, and Stenflo, 2001), we cannot even show
that µ∗(dS0; γ ) is continuous. Hence, a proof that µ∗(dS0; γ ) is twice differentiable is a daunt-
ing task well beyond the scope of this paper.

The possible lack of twice differentiability of L(YT ; γ ) creates two problems. First,

it may be that the MLE is biased and var(̂γMLE) 
= −
(

∂2 L(YT ; γ̂MLE)
∂γ ∂γ ′

)−1
. Second, Newton’s type

algorithm may fail to maximize the likelihood function. In our application, we report

−
(

∂2 L(YT ; γ̂MLE)
∂γ ∂γ ′

)−1
as the asymptotic variance–covariance matrix, hoping that the correct

asymptotic variance–covariance matrix is not very different. We avoid the second problem by
using a simulated annealing algorithm to maximize the likelihood function. However, simulated
annealing often delivers estimates with a relatively high numerical variance. We encounter some
of these problems in our investigation.

Even if we were able to prove that µ∗(dS0; γ ) is twice differentiable and, therefore, the
MLE is consistent with the usual variance–covariance matrix, the direct application of the parti-
cle filter will not deliver an estimator of the likelihood function that is continuous with respect
to the parameters. This is caused by the resampling steps within the particle filter and seems
difficult to avoid. Pitt (2002) has developed a promising bootstrap procedure to get an approxi-
mating likelihood that is continuous under rather general conditions when the parameter space is
unidimensional. Therefore, the next step should be to expand Pitt’s (2002) bootstrap method to
the multidimensional case.

For the maximum likelihood algorithm to converge, we need to keep the simulated inno-
vations W1,t and the uniform numbers that enter into the resampling decisions constant as we
modified the parameter values γi . As pointed out by McFadden (1989) and Pakes and Pollard
(1989), this is required to achieve stochastic equicontinuity. With this property, the pointwise
convergence of the likelihood (8) to the exact likelihood is strengthened to uniform convergence.
Then, we can swap the argmax and the lim operators (i.e. as the number of simulated particles
converges to infinity, the MLE also converges). Otherwise, we would suffer numerical instabili-
ties induced by the “chatter” of changing random numbers.

In a Bayesian approach, the main inference tool is the posterior distribution of the param-
eters given the data π(γ |YT ). Once the posterior distribution is obtained, we can define a loss
function to derive a point estimate. Bayes’ theorem tells us that the posterior density is propor-
tional to the likelihood times the prior. Therefore, we need both to specify priors on the param-
eters, π(γ ), and to evaluate the likelihood function. The next step in Bayesian inference is to
find the parameters’ posterior. In general, the posterior does not have a closed form. Thus, we
use a Metropolis–Hastings algorithm to draw a chain {γi }M

i=1 from π(γ |YT ). The empirical dis-
tribution of those draws {γi }M

i=1 converges to the true posterior distribution π(γ |YT ). Thus, any
moments of interest of the posterior can be computed, as well as the marginal likelihood of the
model. The algorithm is as follows:
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Step 0, Initialization: Set i; 0 and an initial γi . Solve the model for
γi and compute f (·, ·; γi ) and g(·, ·; γi ). Evaluate π(γi ) and approximate
L(YT ; γi ) with (8). Set i ; i +1.

Step 1, Proposal draw: Get a draw γ ∗
i from a proposal density q(γi−1,γ

∗
i ).

Step 2, Solving the Model: Solve the model for γ ∗
i and compute f (·, ·; γ ∗

i )
and g(·, ·; γ ∗

i ).
Step 3, Evaluating the Proposal: Evaluate π(γ ∗

i ) and L(YT ; γ ∗
i ) using (8).

Step 4, Accept/Reject: Draw χi ∼ U (0,1). If χi ≤ L(YT ;γ ∗
i )π(γ ∗

i )q(γi−1,γ
∗
i )

L(YT ;γi−1)π(γi−1)q(γ ∗
i ,γi−1)

set

γi = γ ∗
i , otherwise γi = γi−1. If i < M , set i ; i + 1 and go to step 1.

Otherwise stop.

This algorithm requires us to specify a proposal density q(·, ·). The most commonly used
proposal density in macroeconomics is the random walk, γ ∗

i = γi−1 +κi , κi ∼N (0,�κ), where
�κ is a scaling matrix (An and Schorfheide, 2007). This matrix is chosen to get the appropriate
acceptance ratio of proposals (Roberts, Gelman and Gilks, 1997). The random walk proposal
is straightforward to implement and the experience accumulated by researchers suggests that it
usually works quite efficiently for macroeconomic applications.

Chib and Greenberg (1995) describe many other alternatives for the proposal density, like an
independent chain or a pseudo-dominating density. A popular class of proposal densities, those
that exploit some property (or approximated property) of the likelihood function, are difficult to
implement in macroeconomics, since we know little about the shape of the likelihood.

2.6. Smoothing

Often, beyond filtering, we are also interested in p(ST |YT ; γ ), that is, the density of states
conditional on the whole set of observations. Among other things, these smoothed estimates
are convenient for assessing the fit of the model and running counterfactuals.

First, we analyse how to assess the fit of the model. Given γ , the sequence of observables
implied by the model is a random variable that depends on the history of states and the history
of the perturbations that affect the observables but not the states, YT (ST ,V T ; γ ). Define, for any
γ, the mean of the observables implied by the model and the data, YT :

Y
T
(V T ; γ ) =

∫
Y

T (ST ,V T ; γ )p(ST |YT ; γ )dST . (9)

If V T are measurement errors, comparing Y
T
(V T = 0; γ ) vs. YT is a good measure of the

fit of the model.
Second, we study how to run a counterfactual. Given a value for γ , what would have been

the expected value of the observables if a particular state had been fixed at value from a given
moment in time? We answer that question by computing

Y
T
St :T

k =Sk,t
(V T ; γ ) =

∫
Y

T (ST−k, St :T
k = Sk,t ,V T ; γ )p(ST |YT ; γ )dST , (10)

where S−k,t = (S1,t , . . . , Sk−1,t , Sk+1,t . . . , Sdim(St ),t ) and St :T
−k = {S−k,m}T

m=t . If V T are measure-

ment errors, Y
T
St :T

k =Sk,t
(V T = 0; γ ) is the expected value for the whole history of observables

when the state k is fixed to its value at t from that moment onwards. A counterfactual exercise
compares Y

T
(V T = 0; γ ) and Y

T
St :T

k =Sk,t
(V T = 0; γ ) for different values of k and t .
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The two examples share a common theme. To compute integrals like (9) or (10), we need
to draw from p(ST |YT ; γ ). To see this, let {st,i }N

i=1 be a draw from p(ST |YT ; γ ). Then (9) and
(10) are approximated by

Y
T
(V T = 0; γ ) � 1

N

N∑
i=1

Y
T (st,i ,0; γ )

and

Y
T
St :T

k =Sk,t
(V T = 0; γ ) � 1

N

N∑
i=1

Y
T (st,i

−k, St :T
k = si

k,t ,0; γ ).

Particle filtering allows us to draw from p(ST |YT ; γ ) using the simulated filtered distribu-
tion (see Godsill, Doucet, and West, 2004). In the interest of space, we omit here the details, but
the interested reader can find them in the technical appendix of the paper.

3. AN APPLICATION: A BUSINESS CYCLE MODEL

In this section, we apply particle filtering to estimate a business cycle model with investment-
specific technological change, preference shocks, and stochastic volatility. Several reasons justify
our choice. First, the business cycle model is a canonical example of a dynamic macroeconomic
model. Hence, our choice demonstrates how to apply the procedure to many popular economies.
Second, the model is relatively simple, a fact that facilitates the illustration of the different parts of
our procedure. Third, the presence of stochastic volatility helps us to contribute to one important
current discussion: the study of changes in the volatility of aggregate time series.

Recently, Kim and Nelson (1998) have used a Markov-switching model to document a de-
cline in the variance of shocks to output growth and a narrowing gap between growth rates during
booms and recessions. They find that the posterior mode of the break is the first quarter of 1984. A
similar result appears in McConnell and Pérez-Quirós (2000). This evidence begets the question
of what has caused the change in volatility.

One possible explanation is that the shocks hitting the economy were very different in the
1990’s than in the 1970’s (Sims and Zha, 2006). This explanation has faced the problem of how
to document that, in fact, the structural shocks are now less volatile than in the past. The main
obstacle has been the difficulty in evaluating the likelihood of a dynamic equilibrium model with
changing volatility. Thus, the literature has estimated structural vector autoregressions (SVARs).
Despite their flexibility, SVARs may uncover evidence that is difficult to interpret from the per-
spective of the theory.

The particle filter is perfectly suited for analysing dynamic equilibrium models with stochas-
tic volatility. In comparison, the Kalman filter and linearization are useless. First, the presence of
stochastic volatility induces fat tails on the distribution of observed variables. Fat tails preclude,
by themselves, the application of the Kalman filter. Second, the law of motion for the states of
the economy is inherently non-linear. A linearization will drop the volatility terms, and hence, it
will prevent the study of time-varying volatility.

We search for evidence of stochastic volatility on technology and on preference shocks.
Loosely speaking, the preference shocks can be interpreted as proxying for demand shocks, such
as changes to monetary and fiscal policy, that we do not model explicitly. The technology shocks
can be interpreted as supply shocks. However, we are cautious regarding these interpretations,
and we appreciate the need for more detailed business cycle models with time-varying volatility.

Our application should be assessed as an example of the type of exercises that can be under-
taken with the particle filter. In related work (Fernández-Villaverde and Rubio-Ramírez, 2005),
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we estimate the neoclassical growth model with the particle filter and the Kalman filter on a
linearized version of the model. We document surprisingly big differences on the parameter esti-
mates, on the level of the likelihood, and on the moments implied by the model. Also, after the
first version of this paper was circulated, several authors have estimated dynamic macroeconomic
models with particle filtering. Amisano and Tristani (2005) and An (2006) investigate New
Keynesian models. Particle filtering allows them to identify more structural parameters, to fit
the data better, and to obtain more accurate estimates of the welfare effects of monetary policies.
King (2006) estimates the neoclassical growth model with time-varying parameters. Winschel
(2005) applies the Smolyak operator to accelerate the numerical performance of the algorithm.

We divide the rest of this section into three parts. First, we present our model. Second, we
describe how we solve the model numerically. Third, we explain how to evaluate the likelihood
function.

3.1. The model

We work with a business cycle model with investment-specific technological change, prefer-
ence shocks, and stochastic volatility. Greenwood, Herkowitz and Krusell (1997, 2000) have
vigorously defended the importance of technological change specific to new investment goods for
understanding postwar U.S. growth and aggregate fluctuations. We follow their lead and estimate
a version of their model inspired by Fisher (2006).

There is a representative household with utility function

E0

∞∑
t=0

β t{edt log(Ct )+ψ log(1− Lt )},

where Ct is consumption, 1 − Lt is leisure, β ∈ (0,1) is the discount factor, dt is a preference
shock, with law of motion

dt = ρdt−1 +σdtεdt , εdt ∼N (0,1).

ψ controls labour supply, and E0 is the conditional expectation operator. We explain below
the law of motion for σdt .

The economy produces one final good with a Cobb–Douglas production function given by
Ct + Xt = At K α

t L1−α
t . The law of motion for capital is Kt+1 = (1− δ)Kt +Ut Xt . Technologies

evolve as a random walk with drifts

log At = ζ + log At−1 +σatεat , γ ≥ 0 and εat ∼N (0,1), (11)

logUt = θ + logUt−1 +συtευt , θ ≥ 0 and ευt ∼N (0,1). (12)

Note that we have two unit roots, one in each of the two technological processes.
The process for the volatility of the shocks is given by (Shephard, 2005)

logσat = (1−λa) logσ a +λa logσat−1 + τaηat and ηat ∼N (0,1), (13)

logσυt = (1−λυ) logσυ +λυ logσυt−1 + τυηυt and ηυt ∼N (0,1), (14)

logσdt = (1−λd) logσ d +λd logσdt−1 + τdηdt and ηdt ∼N (0,1). (15)

Thus, the matrix of unconditional variances–covariances ��� of the shocks is a diagonal
matrix with entries {σ 2

a,σ
2
υ,σ 2

d ,τ 2
a ,τ 2

υ ,τ 2
d }.
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Our model is then indexed by a vector of structural parameters:

γ ≡ (α,δ,ρ,β,ψ,θ,ζ,τa,τυ,τd ,σ a,σ υ,σ d ,λa,λυ,λd ,σ1ε,σ2ε,σ3ε) ∈ ϒ ⊂ R19,

where σ1ε,σ2ε, and σ3ε are the S.D. of three measurement errors to be introduced below.
A competitive equilibrium can be defined in a standard way as a sequence of allocations

and prices such that both the representative household and the firm maximize and markets clear.
Since the model has two unit roots in the technological processes, we rescale the variables by
Ỹt = Yt

Zt
, C̃t = Ct

Zt
, X̃t = Xt

Zt
, Ãt = At

At−1
, Ũt = Ut

Ut−1
, Z̃t = Zt

Zt−1
, and K̃t = Kt

ZtUt−1
where Zt =

A1/(1−α)
t−1 Uα/(1−α)

t−1 .
Then, the first-order conditions for the transformed problem include the Euler equation

Z̃t

Ãt K̃ α
t L−α

t (1− Lt )
= Et

β

Ãt+1 K̃ α
t+1L−α

t+1(1− Lt+1)
(α Ãt+1 K̃ α−1

t+1 L1−α
t+1 + (1− δ)

Ũt+1
), (16)

the law of motion for capital

Z̃t+1 K̃t+1 = (1− δ)
K̃t

Ũt
+ X̃t , (17)

and the resource constraint

1−α

ψ
Ãt K̃

α
t L−α

t eρdt−1+σdt εdt (1− Lt )+ X̃t = Ãt K̃
α
t L1−α

t . (18)

These equations imply a deterministic steady state around which we will approximate the
solution of our model. Let Lss, X̃ss, and K̃ss be the steady-state values for hours worked, rescaled
investment, and rescaled capital.

3.2. Solving the model

To solve the model, we find the policy functions for hours worked, Lt , rescaled investment,
X̃t , and rescaled capital K̃t+1, such that the system formed by (16)–(18) holds. This system of
equilibrium equations does not have a known analytical solution, and we solve it with a numer-
ical method. We select a second-order perturbation to do so. Aruoba, Fernández-Villaverde and
Rubio-Ramírez (2006) document that perturbation methods deliver a highly accurate and fast so-
lution in a model similar to the one considered here. However, nothing in the particle filter stops
us from opting for any other non-linear solution method, such as projection methods or value
function iteration. The appropriate choice of solution method should be dictated by the details of
the particular model to be estimated.

As a first step, we parameterize the matrix of variances–covariances of the shocks as ���(χ) =
χ���, where ���(1) = ��� . Then, we take a perturbation solution around χ = 0, that is, around the
deterministic steady state implied by the equilibrium conditions of the model.

For any variable vart , let v̂art = log vart
varss

. Then, the states of the model are given by

s̃t = (̂̃K t ,εat ,ευt ,εdt ,dt−1,σat −σ a,συt −συ,σdt −σ d)′.

The differences in volatilities of the shocks with respect to their mean are state variables of
the model and households keep track of them when making optimal decisions. Thus, a second-
order approximation to the policy function for capital is given by

̂̃K t+1 = ���k1̃st + 1

2
s̃′
t���k2̃st +���k3, (19)
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where ���k1 is a 1×8 vector and ���k2 is a 8×8 matrix. The term ���k1̃st constitutes the linear
solution of the model, while �k3 is a constant added by the second-order approximation that
corrects for precautionary behaviour.

Similarly, we can find the policy functions for rescaled investment and labour:

̂̃Xt =���x 1̃st + 1

2
s̃′
t���x 2̃st +�x3,

L̂ t =���l1̃st + 1

2
s̃′
t���l2̃st +�l3.

Plugging those policy functions into the definition of rescaled output Ỹt = Ãt K̃ α
t L1−α

t , we
can get a second-order approximation

̂̃Y t = ��� y1̃st + 1

2
s̃′
t��� y2̃st +�y3 +σatεat . (20)

3.3. The transition equation

We combine the laws of motion for the volatility (13)–(15) and the policy function of capital (19)
to build

St = f (St−1,Wt ; γ ),

where St = (̃st , s̃t−1) and Wt = (εat ,ευt ,εdt ,ηat ,ηυt ,ηdt )
′. We keep track of the past states,

s̃t−1, because some of the observables in the measurement equation below will appear in first
differences. If we denote by fi (St−1,Wt ) the i-th dimension of f , we have

f1(St−1,Wt ; γ ) = ���k1̃st−1 + 1

2
s̃′
t−1���k2̃st−1 +�k3

f2(St−1,Wt ; γ ) = εat

f3(St−1,Wt ; γ ) = ευt

f4(St−1,Wt ; γ ) = εdt

f5(St−1,Wt ; γ ) = ρdt−2 +σdt−1εdt−1

f6(St−1,Wt ; γ ) = exp((1−λa) logσ a +λa logσat−1 + τaηat )−σ a

f7(St−1,Wt ; γ ) = exp((1−λυ) logσυ +λυ logσυt−1 + τυηυt )−συ

f8(St−1,Wt ; γ ) = exp((1−λd) logσ d +λd logσdt−1 + τdηdt )−σ d

f9−16(St−1,Wt ; γ ) = s̃t−1.

3.4. The measurement equation

We assume that we observe Yt = (� log pt ,� log yt ,� log xt , log lt ), that is, the change in the
relative price of investment, the observed real output per capita growth, the observed real gross
investment per capita growth, and observed hours worked per capita. We make this assump-
tion out of pure convenience. On the one hand, we want to capture some of the main empirical
predictions of the model. On the other hand, and for illustration purposes, we want to keep the
dimensionality of the problem low. However, the empirical analysis could be performed with
different combinations of data. Thus, our choice should be understood as an example of how to
estimate the likelihood function associated with a vector of observations.
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In equilibrium the change in that relative price of investment equals the negative log differ-
ence of Ut :

−� logUt = −θ −συtευt .

This allows us to read συtευt directly from the data conditional on an estimate of θ .
To build the measurement equation for real output per capita growth, we remember that

Ỹt = Yt

Zt
= Yt

A
1

1−α

t−1 U
α

1−α

t−1

,

which implies that

� logYt = � log Ỹt + 1

1−α
(� log At−1 +α� logUt−1)

= � log Ỹt + 1

1−α
(ζ +αθ +σat−1εat−1 +ασυt−1ευt−1).

Using (20), we have that

� logYt =��� y1̃st + 1

2
s̃′
t��� y2̃st −��� y1̃st−1 − 1

2
s̃′
t−1��� y2̃st−1

+σatεat + 1

1−α
(ζ +αθ +ασat−1εat−1 +ασυt−1ευt−1).

This equation shows that, on average, the growth rate of the economy will be equal to ζ+αθ
1−α .

Similarly, for real gross investment per capita growth, we can find

� log Xt =���x 1̃st −���x 1̃st−1 + 1

2
s̃′
t���x 2̃st − 1

2
s̃′
t−1���x 2̃st−1

+ 1

1−α
(ζ +αθ +σat−1εat−1 +ασυt−1ευt−1).

Finally, we introduce measurement errors in real output per capita growth, real gross in-
vestment per capita growth, and hours worked per capita as the easiest way to avoid stochastic
singularity (see our Assumptions 1–3). Nothing in our procedure depends on the presence of
measurement errors. We could, for example, write a version of the model where in addition to
shocks to technology and preferences, we would have shocks to depreciation and to the discount
factor. This alternative might be more empirically relevant, but it would make the solution of the
model much more involved. Since our goal here is to illustrate how to apply our particle filtering
to estimate the likelihood of the model in a simple example, we prefer to specify measurement
errors.

We will have three different measurement errors: one in real output per capita growth, ε1t ,
one in real gross investment per capita growth, ε2t , and one in hours worked per capita, ε3t . We
do not have a measurement error in relative price of investment because it will not be possible
to separately identify it from συtευt . The three shocks are an i.i.d. process with distribution
N (0, I3×3). In our notation of Section 2, Vt = (ε1t ,ε2t ,ε3t )

′. The measurement errors imply a
difference between the value for the variables implied by the model and the observables:

� log pt = −� logUt ,

� log yt = � logYt +σ1εε1t ,

� log xt = � log Xt +σ2εε2t ,

log lt = log Lt +σ3εε3t .
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Putting the different pieces together, we have the measurement equation

⎛⎜⎜⎜⎜⎝
� log pt

� log yt

� log xt

log lt

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−θ

γ+αθ
1−α

γ+αθ
1−α

log Lss +�l3

⎞⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝
−συtευt

��� y1̃st + 1
2 s̃′

t��� y2̃st −��� y1̃st−1 − 1
2 s̃′

t−1��� y2̃st−1 +σatεat + α
1−α (σat−1εat−1 +συt−1ευt−1)

���x 1̃st −���x 1̃st−1 + 1
2 s̃′

t���x 2̃st − 1
2 s̃′

t−1���x 2̃st−1 + 1
1−α (σat−1εat−1 +ασυt−1ευt−1)

���l1̃st + 1
2 s̃′

t���l2̃st

⎞⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎝
0

σ1εε1t

σ3εε2t

σ3εε3t

⎞⎟⎟⎟⎟⎠ .

3.5. The likelihood function

Given that we have six structural shocks in the model and dim(Vt ) < dim(Yt ), we partition Wt

between W1,t = (εat ,εdt ,ηdt ,ηat ,ηυt )
′ and W2,t = ευt . This partition shows that we can learn

much about W2,t directly from the data on the relative price of investment. Then, in the notation
of Section 2, the prediction errors are

ω2,t = ω2,t (W
t
1, S0,Y t ; γ ) = −� log pt + θ

συt
,

v1,t = v1,t (W
t
1, S0,Y t ; γ ) = � log yt −� logYt

σ1ε
,

v2,t = v2,t (W
t
1, S0,Y t ; γ ) = � log xt −� log Xt

σ2ε
,

and

v3,t = v3,t (W
t
1, S0,Y t ; γ ) = log lt − log Lt

σ3ε
.

Let ξt = (ω2t ,vt ). Then, we can write

p(Yt |W t
1, S0,Y t−1; γ ) = p(ξt )|dy(ξt )|−1,

where

p(ξt ) = (2π)−
4
2 exp

(
−ξtξ

′
t

2

)
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and the Jacobian of Yt with respect to Vt and W2,t evaluated at vt and w2,t is

dy (ξt ) =

⎡⎢⎢⎢⎢⎢⎢⎣
−συt 0 0 0

∂� logYt
∂ logευt

σ1ε 0 0

∂� log Xt
∂ logευt

0 σ2ε 0

∂ log Lt
∂ logευt

0 0 σ3ε

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which implies that |dy(ξt )| = συtσ1εσ2εσ3ε.
We rewrite (4) as

L(YT ; γ ) = (2π)−
4T
2

T∏
t=1

∫∫
p(ξt )|dy(ξt )|−1 p(W t

1, S0|Y t−1; γ )dW t
1dS0.

This last expression is simple to handle. Given particles

{{
w

t |t−1,i
1 ,st |t−1,i

0

}N

i=1

}T

t=1
, we

build the prediction errors
{{

ξ i
t

}N
i=1

}T

t=1
implied by them. Therefore, the likelihood function is

approximated by

L(YT ; γ ) � (2π)−
4T
2

T∏
t=1

N∑
i=1

p(ξ i
t )|dy(ξ i

t )|−1. (21)

Equation (21) is nearly identical to the likelihood function implied by the Kalman filter (see
equation (3.4.5) in Harvey, 1989) when applied to a linear model. The difference is that in the
Kalman filter, the prediction errors ξt come directly from the output of the Riccati equation, while
in our filter they come from the output of the simulation.

3.6. Findings

We estimate the model using the relative price of investment with respect to the price of consump-
tion, real output per capita growth, real gross investment per capita growth, and hours worked
per capita in the U.S. from 1955:Q1 to 2000:Q4. Our sample length is limited by the availability
of data on the relative price of investment. The technical appendix describes in further detail the
construction of the different time series for our four observables. Here we only emphasize that,
to make the observed series compatible with the model, we compute both real output and real
gross investment in consumption units. For the relative price of investment, we use the ratio of an
investment deflator and a deflator for consumption. The consumption deflator is constructed from
the deflators of nondurable goods and services reported in the National Income and Product Ac-
counts (NIPA). Since the NIPA investment deflators are poorly measured, we use the investment
deflator constructed by Fisher (2006).

We perform our estimation exercises from a classical perspective and from a Bayesian one.
For the classical perspective, we maximize the likelihood of the model with respect to the pa-
rameters. For the Bayesian approach, we specify prior distributions over the parameters, evaluate
the likelihood using the particle filter, and draw from the posterior using a Metropolis–Hastings
algorithm. The results from both approaches are very similar. In the interest of space, we report
only our classical findings.

3.6.1. Point estimates. Before the estimation, we constrain some parameter values. First,
we force the value of β to be less than 1 (so the utility of the consumer is well defined). Second,
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TABLE 1

Maximum likelihood estimates

Parameter Point estimate S.E. (×10−2)

ρ 0·9982 0·313
β 0·9992 0·167
ψ 1·9564 3·865
θ 0·0076 0·488
ζ 0·691×10−9 0·006
α 0·370 2·188
τa 0·880 26·727
τυ 0·243 19·782
τd 0·144 11·876
σ a 0·005 0·080
συ 0·042 0·872
σ d 0·014 0·876
λa 0·041 14·968
λυ 0·998 9·985
λd 0·996 10·220
σ1ε 2·457×10−4 0·008
σ2ε 2·368×10−4 0·003
σ3ε 4·877×10−4 0·013

the parameters {τa,τυ,τd ,σ a,σ υ,σ d} determining S.D. must be positive. Third, the autoregres-
sive coefficients {ρ,λa,λυ,λd} will be between 0 and 1 to maintain stationarity. Fourth, we fix
the depreciation factor δ to 0·0154 to match the capital-output ratio of the U.S. economy. We do
so because the parameter is not well identified: the likelihood function is (nearly) flat along that
dimension. This is a common finding in the literature (see Del Negro et al., 2007 and Justiniano
and Primiceri, 2005).

Table 1 reports the MLE for the other 18 parameters of the model and their S.E. The autore-
gressive component of the preference shock level, ρ, reveals a high persistence of this demand
component. The discount factor, β, nearly equal to 1, is a common finding when estimating dy-
namic models. The parameter that governs labour supply, ψ, is closely estimated around 1·956 to
capture the level of hours worked per capita. The share of capital, α, is 0·37, close to the estimates
in the literature. The two drifts in the technology processes, θ and ζ , imply an average growth
rate of 0·448% quarter to quarter, which corresponds to the historical long-run growth rate of
U.S. real output per capita since the Civil War, an annual rate of 1·8%. Nearly all that growth is
accounted for by investment-specific technological change. This result highlights the importance
of modelling this biased technological change for understanding growth and fluctuations. The
estimates of {τa,τυ,τd ,σ a,σ υ,σ d} are relatively imprecise. With quarterly data, it is difficult to
get accurate estimates of volatility parameters. The autoregressive components of the stochastic
volatility of the shocks {λa,λυ,λd} are also difficult to estimate, ranging from a low number,
λa , to a persistence close to 1, λυ. Our results hint that modelling volatility as a random walk to
economize on parameters may be misleading, since most of the mass of the likelihood is below 1.

The three estimated measurement error variances are such that the structural model accounts
for the bulk of the variation in the data. A formal way to back up our statement and assess
the performance of the model is to compare the average of the paths of the observed variables
predicted by the smoothed states at the MLE without the measurement errors against the real
data. In the language of Section 2.6, we compare Y

T
(V T = 0; γ̂MLE) and YT . In the four panels

of Figure 1, we plot the average predicted (discontinuous line) and observed (continuous line)
paths of real output per capita growth, real gross investment per capita growth, hours worked
per capita, and relative price of investment.
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FIGURE 1

Model vs. data

The top left panel displays how the model captures much of the dynamics of the real output
per capita growth, including the recessions of the 1970’s and the expansions of the 1980’s and
1990’s. The model has a correlation of 35% to the data, and the average predicted output accounts
for 63% of the S.D. of real output per capita growth. The top right panel shows the fit between the
model average predicted and the observed real gross investment per capita growth. The model
average predicted real gross investment per capita growth has a correlation of 40% to the data,
and it accounts for 80% of the observed S.D. It is in the bottom left panel, hours worked per
capita, where the model shows its best: the correlation between the model average predicted and
observed hours worked per capita is 85% and the model accounts for 76% of the observed S.D. of
hours worked per capita. The bottom right panel analyses the fit of the model with respect to the
relative price of investment. Since we assume that we observe this series without measurement
error, both the average predicted and the observed relative prices are the same. Our summary
assessment of Figure 1 is that the model is fairly successful at capturing aggregate dynamics.

3.6.2. Evolution of the volatility. In Figure 2, we plot the mean of the smoothed paths of
the preference level, dt . This level closely tracks hours worked. Figure 3 teaches the first impor-
tant empirical lesson of this paper: there is important evidence of time-varying volatility in the
aggregate shocks driving the U.S. economy. In the left column of Figure 3, we plot the smoothed
paths of the three normalized shocks of our model (neutral technology shock, investment-specific
technology shock, and preference shocks). In the right column, we graph the smoothed volatility
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FIGURE 2

Mean (± S.D.) of smoothed dt

for the corresponding shock. In all graphs, we also plot the 1 S.D. bands around the mean of
the smoothed paths. The bands illustrate that our smoothed paths are tightly estimated. All the
smoothed paths reported in this section are computed at the MLE.

The first row of Figure 3 shows that little action comes from the evolution of the volatility of
the neutral technology shock. This shock has a flat volatility over the sample (note the scale of the
graph). More interesting are the second and third rows. The left panel of the second row shows
the evolution of the investment-specific technological shocks. The right panel of the second row
shows the basic patter of volatility: two periods of low volatility interrupted by a period of high
volatility. Volatility increased slightly during the late 1950’s, stayed constant during the 1960’s,
and then notably rose during the 1970’s. After its peak in 1981, it decreased during the 1980’s
and stayed stable again during the 1990’s.

The third row documents negative preference shocks in the late 1970’s and early 1980’s and
large positive shocks in the late 1980’s. Since the preference shock can be loosely interpreted as
a demand shock, our empirical results are compatible with those accounts of fluctuations in the
U.S. economy that emphasize the role of changes in demand induced by monetary policy that
occurred during those years. With respect to volatility, it fell during the 1960’s. Then, during the
1970’s, volatility went back up to its level at the beginning of the sample, where it roughly stayed
during the 1980’s. The 1990’s were times again of falling volatility.

How did the time-varying volatility of shocks affect the volatility of the aggregate time se-
ries? Figure 4 plots the log of the instantaneous S.D. of each of the four observables implied by
the MLE and the smoothed volatilities. For example, each point in the top left panel represents
the S.D. of real output per capita growth if the volatility of the three shocks had stayed constant
forever at the level at which we smoothed for that quarter. Figure 4 can be interpreted as the
estimate of the realized volatility of the observables. Of course, for each quarter the smoothed
volatility is not a point but a distribution. Hence, we draw from this distribution using the algo-
rithm mentioned in Section 2.6 and compute the instantaneous S.D. of the observables for each
draw. We report the mean of the instantaneous S.D. of the observables. We also plot the 1 S.D.
bands around it.
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FIGURE 3

Mean (± S.D.) of smoothed shocks and volatilities

All four panels of Figure 4 show the same basic pattern: low and falling volatility in the
1960’s (except for the relative price of investment where volatility is low but not falling), a large
increase in volatility during the 1970’s, with a peak in the early 1980’s, and a fall in volatility
until the end of the sample.

The top left panel indicates that the reduction in the volatility of real output per capita
growth is not the product of an abrupt change in the mid 1980’s, as defended by a part of the
literature, but more of a gradual change. Our findings, in comparison, coincide more with the
views of Blanchard and Simon (2001) and Sims and Zha (2006).

3.6.3. What caused the fall in volatility? Which shocks account for the reduction in the
volatility of U.S. aggregate time series? In the context of non-linear models, it is difficult to
perform a decomposition of the variance because the random shocks hitting the model enter in
multiplicative ways. Instead, we perform two counterfactual experiments.

In the first experiment, we fix the volatility of one shock at its level at the beginning of
the sample in 1955, and we let the volatility of the other two shocks evolve in the same way as
in our smoothed estimates. We plot our results in Figure 5, where the reader can see 12 panels
in four rows and three columns. Each row corresponds to the evolution of volatility of each
of our four observables: real output per capita growth (first row), real gross investment per
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FIGURE 4

Log of the instantaneous S.D.

capita growth (second row), hours worked per capita (third row), and relative price of investment
(fourth row). Each column corresponds to each of the three different possibilities for fixing one
shock: fixing the volatility of the neutral technological shock (first column), fixing the volatility
of the investment-specific technological shocks (second column), and fixing the volatility of the
preference shock (third column). In each panel, we plot the estimated instantaneous variance of
the observable (continuous line) and the counterfactual variance (discontinuous line) implied by
keeping the volatility of the shock at its level in 1955.

Figure 5 illustrates that the decrease in the volatility of the shock to preferences explains
the reduction in volatility experienced during the 1960’s. Neither changes in the volatility of the
neutral technological shock nor changes in the volatility of the investment-specific technological
shock account for the reduction in volatility. Indeed, without the change in the variance of the
investment-specific technological shock, the economy would have been less volatile.

The second counterfactual experiment repeats the first experiment, except that now we fix
the volatilities at their values in the first quarter of 1981, the period where instantaneous volatil-
ity of output was at its highest. We plot our findings in Figure 6, where we follow the same
ordering convention as in Figure 5. Now both the investment-specific technological shock and
the preference shock contribute to the reduction in observed volatility. More important (although
not reflected in the figure), it is the interaction between the two of them that contributes the most
to the reduction in volatility. Again, the change in the volatility neutral technological shock is
irrelevant.
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FIGURE 5

Which shocks were responsible for the volatility decrease of the 1960’s?

3.6.4. Are non-linearities and stochastic volatility important? Our model has one novel
feature, stochastic volatility, and one particularity in its implementation, the non-linear solution.
How important are these two elements? How much do they add to the empirical exercise?

To answer these questions, in addition to our benchmark version, we estimated two addi-
tional versions of the model: one with a linear solution, in which by construction the stochastic
volatility components drop, and one with a quadratic solution but without stochastic volatility.

In Table 2, we report the log likelihoods of each of the three versions of the model at their
MLEs. The comparison of these three log likelihoods shows how both the quadratic component
and the stochastic volatility improve the performance of the model. The quadratic component
adds 116 log points and the stochastic volatility 118 log points. To formally evaluate these num-
bers, we can undertake likelihood ratio-type tests. For example, since the benchmark model nests
the quadratic model without stochastic volatility by setting {τa,τυ,τd} to 0, we have that

L Rbench,quadratic = −2(log Lbench(YT ; γ̂ )− log Lquad(YT ; γ̂ ))
d→ χ(3).

The value of the test rejects the equality of both models at any conventional significance level.
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FIGURE 6

Which shocks were responsible for the volatility increase of the 1970’s?

TABLE 2

Versions of the model

Version Log likelihood
Linear 1313·748
Quadratic, no S.V. 1429·637
Benchmark 1547·285

In the absence of quadratic components, the model requires bigger shocks to preferences to
fit the data. Moreover, the sign of the shocks is often different. Stochastic volatility adds variance
to the shocks during the 1970’s, when this is most needed, and reduces it during the 1960’s and
1990’s.

The good performance of the quadratic model is remarkable because it comes despite two
difficulties. First, three of the series of the model enter in first differences. This reduces the
advantage of the quadratic solution in comparison with the linear one, since the mean growth rate,
a linear component, is well captured by both solutions. Second, the solution is only of second
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order, and some important non-linearities may be of higher order. Consequently, our results show
that, even in those challenging circumstances, the non-linear estimation pays off.

4. COMPUTATIONAL ISSUES

An attractive feature of particle filtering is that it can be implemented on a good PC. Nevertheless,
the computational requirements of the particle filter are orders of magnitude bigger than those
of the Kalman filter. On a Xeon Processor 5160 EMT64 at 3·00 GHz with 16 GB of RAM,
each evaluation of the likelihood with 80,000 particles takes around 12 seconds. The Kalman
filter, applied to a linearized version of the model, takes a fraction of a second. The difference in
computing time raises two questions. First, is it worth it? Second, can we apply the particle filter
to richer models?

With respect to the first question, we show in the previous section that the particle filter
improves inference with respect to the Kalman filter. Similar results are documented by Amisano
and Tristani (2005), Fernández-Villaverde and Rubio-Ramírez (2005), An (2006), and An and
Schorfheide (2007). In some contexts, this improvement may justify the extra computational
effort. Regarding the second question, we point out that most of the computational time is spent
in the Prediction and Filtering Steps. If we decompose the 12 seconds that each evaluation of
the likelihood requires, we discover that the Prediction and Filtering Steps take over 10 seconds,
while the solution of the model takes less than 0·1 second and the Sampling Step around 1 second.
In an economy with even more state variables than ours (we already have eight state variables!),
we will only increase the computational time of the solution, while the other steps may take
roughly the same time. The availability of fast solution methods, like perturbation, implies that
we can compute the non-linear policy functions of a model with dozens of state variables in a
few seconds. Consequently, an evaluation of the likelihood in such models would take around 15
seconds. This argument shows that the particle filter has the potential to be extended to the class
of models needed for serious policy analysis.

To ensure the numerical accuracy of our results, we perform several numerical tests. First,
we checked the number of particles required to achieve stable evaluations of the likelihood func-
tion. We found that 80,000 particles were a good number for that purpose. However, when com-
bined with simulated annealing, we encountered some numerical instabilities, especially when
computing the Hessian. A brute force solution for this problem is to increase the number of par-
ticles when computing the Hessian, for which we used one million particles. A possibly more
efficient solution could be to use more refined algorithms, such as the auxiliary particle fil-
ter of Pitt and Shephard (1999). Second, we checked for a depletion of the sample problem.
For example, Arulampalam et al. (2002, p. 179), propose to evaluate the “effective sample
size” Neff:

Neff = N

1+var

(
p(si

t |Y t ;γ )

p(st |si
t−1;γ )

) ,

where N is the number of particles, p(si
t |Y t ; γ ) is the probability of the state si

t given
observations yt , and p(st |si

t−1; γ ) is the proposal density (note that in this definition we follow
the more conventional notation in terms of states to facilitate comparison with Arulampalam
et al., 2002).

Given that “effective sample size” cannot be evaluated directly, we can obtain an estimate
N̂eff:
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N̂eff = 1∑N
i=1(q

i
t )

2
,

where qi
t is the normalized weight of each particle.

We computed the effective sample size to check that it was high and stable over the sample.
Finally, since version 1 of the model in the previous section has a linear state-space representation
with normal innovations, we can evaluate the likelihood both with the Kalman filter and with the
particle filter. Both filters should deliver the same value of the likelihood function (the particle
filter has a small sample bias, but with 80,000 particles such bias is absolutely negligible). We
corroborated that, in fact, both filters produce the same number up to numerical accuracy.

All programs were coded in Fortran 95 and compiled in Intel Visual Fortran 9.1 to run on
Windows-based PCs. All of the code is available upon request.

5. CONCLUSIONS

We have presented a general purpose and asymptotically efficient algorithm to perform likelihood-
based inference in non-linear and/or non-normal dynamic macroeconomic models. We have
shown how to undertake parameter estimation and model comparison, from either a classical
or Bayesian perspective. The key ingredient has been the use of particle filtering to evaluate the
likelihood function of the model. The intuition of the procedure is to simulate different paths for
the states of the model and to ensure convergence by resampling with appropriately built weights.

We have applied the particle filter to estimate a business cycle model of the U.S. economy.
We found strong evidence of the presence of stochastic volatility in U.S. data and of the role of
changes in the volatility of preference shocks as a main force behind the variation in the volatility
of U.S. output growth over the last 50 years.

Future research on particle filtering could try to extend Pitt’s (2002) results to find estimates
of the likelihood function that are continuous with respect to the parameters, to reduce the nu-
merical variance of the procedure, and to increase the speed of the algorithm. Also, it would be
useful to have more comparisons of particle filtering with alternative procedures and further ex-
plorations of the advantages and disadvantages of the different types of sequential Monte Carlos.
With all of these new developments, we should be able to estimate richer and more interesting
macroeconomic models.
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